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Abstract We investigate the convergence of subgradient-oriented descent methods
in non-smooth non-convex optimization. We prove convergence in the sense of sub-
sequences for functions with a strict standard model, and we show that convergence
to a single critical point may be guaranteed if the Kurdyka–Łojasiewicz inequality is
satisfied. We show, by way of an example, that the Kurdyka–Łojasiewicz inequality
alone is not sufficient to prove the convergence to critical points.

Keywords Non-smooth non-convex optimization · Subgradient-oriented descent
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1 Introduction

In smooth optimization, a sequence of descent directions is called gradient-oriented
iff angles with negative gradients stay uniformly away from 90◦. Convergence of
gradient-oriented methods is guaranteed by the Armijo condition in tandem with a
safeguard against too small steps [1]. Convergence is a priori understood in the sense
of subsequences, but the work of Absil et al. [2] and subsequent generalizations [3–
6] ensure a posteriori convergence to a single critical point if the objective function
satisfies the Kurdyka–Łojasiewicz inequality.

In this work we investigate whether the KŁ-inequality allows similar results in
non-smooth optimization. We consider non-smooth subgradient-oriented descent,
where trial steps are computed by a convex quadratic tangent program, and where
step finding uses the Armijo condition in tandem with backtracking. Our approach
includes bundling techniques to deal with large size problems.
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It turns out that there is a discrepancy between the smooth and the non-smooth
case. In our framework the KŁ-inequality alone is not sufficient to prove convergence
to a single critical point. Convergence only occurs under the additional hypothesis
that the objective has a strict standard model in the sense of [7]. We demonstrate by
way of an example that without this hypothesis convergence to a critical point may
even fail for tame convex functions.

Bolte et al. [4] characterize the Kurdyka–Łojasiewicz inequality by the finite
length of discrete subgradient trajectories, and by the existence of an approximate
Talweg. We show that in the non-smooth case convergence of discrete subgradient
trajectories to a single critical point is no longer guaranteed by the KŁ-inequality
alone. As before the additional hypothesis of a strict standard model is needed. This
is in contrast with [8], where it is shown that under the KŁ-inequality finite length
of the continuous subgradient trajectory automatically implies its convergence to a
critical point. So yet another discrepancy occurs within the non-smooth framework,
now between discrete and continuous subgradient trajectories.

Attouch et al. [9] prove an abstract convergence result under the Kurdyka–
Łojasiewicz inequality. We investigate whether the sufficient conditions of [9] can
be used in our non-smooth framework, where trial steps are generated by a convex
quadratic tangent program.

The paper is organized as follows. Sections 2.1–2.5 present the context and re-
call the model concept introduced in [7]. Sections 3.1–3.3 prove convergence of
subgradient-oriented descent methods for functions with a strict standard model sat-
isfying the KŁ-inequality. Consequences for the Talweg and for discrete gradient
trajectories are given in Sect. 4.2. Links with the abstract descent result of [9] are
discussed in Sect. 4.3. Limiting examples appear in Sect. 4.4.

2 Preparation

In this section we recall known concepts and discuss technical notions.

2.1 The Kurdyka–Łojasiewicz Inequality

Following [5], a locally Lipschitz function f : Rn → R satisfies the Kurdyka–
Łojasiewicz inequality at x∗ ∈ R

n iff there exist η ∈]0,∞[, a neighborhood U of
x∗, and a concave function κ : [0, η] → [0,∞[ with:

(i) κ(0) = 0,
(ii) κ is of class C1 on ]0, η[,

(iii) κ ′ > 0 on ]0, η[,
(iv) For every x ∈ U with f (x∗) < f (x) < f (x∗) + η we have

κ ′(f (x) − f
(
x∗))dist

(
0, ∂Lf (x)

) ≥ 1.

Here ∂Lf (x) is the limiting subdifferential of f at x. f satisfies the strong KŁ-
inequality at x∗ iff the same estimate holds for the Clarke subdifferential ∂f (x). For
strictly differentiable f this reduces to the standard definition of the KŁ-inequality.
Bolte et al. [10, Theorem 11] show that definable functions satisfy the strong KŁ-
inequality, which covers a large variety of practical cases.
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2.2 Subgradient-Oriented Descent

In a non-smooth framework the angle condition does no longer describe a useful set
of search directions. The reason is that directions allowing descent form in general
not a half-space, but a cone with opening angle < 180◦. That means a direction d

with ∠(d,−g−) < 90◦, g− the steepest ascent subgradient, does not even need to
allow descent. Fortunately, gradient-orientedness has an equivalent definition, which
carries over to the non-smooth case.

Definition 2.1 A sequence dj of normalized directions allowing descent of f at
xj is called subgradient-oriented iff there exist Clarke subgradients gj ∈ ∂f (xj ) and
symmetric matrices Pj satisfying

0 < λ ≤ λmin(Pj ) ≤ λmax(Pj ) ≤ Λ < ∞ (1)

for 0 < λ < Λ < ∞ and all j ∈ N, such that dj = − Pj gj

‖Pj gj ‖ . In other words, the dj are
steepest descent directions at xj with respect to the uniformly equivalent Euclidean
norms ‖x‖2

j = x�Pjx.

2.3 Discrete Subgradient-Oriented Flow

Bolte et al. [4] characterize the KŁ-inequality for convex C1,1 functions by finite
length of discrete gradient flow. This refers to sequences xj satisfying the strong
descent condition

β‖∇f (xj )‖‖xj+1 − xj‖ ≤ f (xj ) − f (xj+1). (2)

If (2) is to hold for all points on [xj , xj+1], then β‖∇f (xj )‖ ≤ −∇f (xj )
�dj , hence

cos∠(−∇f (xj ), dj ) ≥ β > 0, so dj is gradient-oriented in the usual sense. Here we
analyze the non-smooth and non-convex analogue of this result, using Definition 2.1.
We seek algorithmic conditions ensuring convergence of discrete subgradient trajec-
tories. Our results will be compared to [4, 5] in Sect. 4.2.

2.4 Abstract Descent Method

Attouch et al. [9] prove convergence of an abstract non-smooth descent method under
the KŁ-inequality. Their sequence xj has to satisfy the axiom

f (xj ) − f (xj+1) ≥ a‖xj − xj+1‖2 (3)

for some a > 0, and the existence of gj+1 ∈ ∂Lf (xj+1) satisfying

‖gj+1‖ ≤ b‖xj − xj+1‖ (4)

for some b > 0. While (3) is the strong descent condition (2) and can be forced by
backtracking, it is less obvious how condition (4) can be forced algorithmically. The
challenge is to find a finite process at each iteration j which ensures (4) for the entire
sequence xj .
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If it is possible to force (4) algorithmically, then it is natural to also consider a
similar condition rooted at xj , i.e., there exist gj ∈ ∂Lf (xj ) and b > 0 such that

‖gj‖ ≤ b‖xj − xj+1‖, (5)

because in tandem with the KŁ-inequality and tangent program (6), condition (5) is
also sufficient to imply convergence to a single critical point.

We shall explain why (4) and (5) are difficult to force algorithmically for non-
smooth programs if computable local models are used in the tangent program. We
will get back to this line in Sect. 4.3.

2.5 The Model Concept

Definition 2.2 (Compare [7, 13]) φ : Rn × R
n → R is called a first-order model of

the locally Lipschitz function f : Rn → R iff φ(·, x) is convex for every x ∈ R
n and

satisfies the following axioms:

(M1) φ(x, x) = f (x) and ∂1φ(x, x) ⊂ ∂f (x).
(M2) For every x and every ε > 0 there exists δ > 0 such that f (y) ≤ φ(y, x) +

ε‖y − x‖ whenever ‖y − x‖ ≤ δ.
(M3) φ is jointly upper semi-continuous, that is, (yj , xj ) → (y, x) implies

lim sup
j→∞

φ(yj , xj ) ≤ φ(y, x).

The first-order model φ is called strict at x̄ ∈ R
n iff the following strict version of

axiom (M2) is satisfied:

(M̂2) For every ε > 0 there exists δ > 0 such that for all x, y ∈ B(x̄, δ),

f (y) ≤ φ(y, x) + ε‖y − x‖.
The model φ is called strict iff it is strict at every x̄.

The first-order model φ is called strong at x̄ iff the following even stronger version
of (M2) is satisfied:

(M̃2) There exist δ > 0 and L > 0 such that for all x, y ∈ B(x̄, δ)

f (y) ≤ φ(y, x) + L‖y − x‖2.

φ is called strong iff it is strong at every x̄.

Remark 2.1 One notes the resemblance with the Taylor expansion. Every locally
Lipschitz function has a first-order model, which we call the standard model:

φ�(y, x) = f (x) + f ◦(x, y − x),

where f ◦(x, d) is the Clarke directional derivative of f . For C1-functions φ�(y, x) =
f (x)+ ∇f (x)(y − x) is the Taylor expansion. Note, however, that the Taylor expan-
sion is unique, while we wish f to have as many models as possible, because each
leads to a new optimization method.
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Following [11, 12] a locally Lipschitz function f : Rn → R is lower Ck at x0 iff
there exist a compact K and a continuous F : B(x0, δ) × K → R with all partial
derivatives of order ≤ k with respect to x continuous, such that

f (x) = max
y∈K

F(x, y), x ∈ B(x0, δ).

f is called lower Ck iff it is lower Ck at every x. Following [12] lower C2 functions
are already lower Ck for every k ≥ 2, but the class lower C1 is substantially larger
than the class lower C2. Finally, we call f upper Ck iff −f is lower Ck .

Proposition 2.1 Let f be locally Lipschitz. If f is upper C1, then its standard model
φ� is strict, and if f is upper C2, then φ� is strong.

Proof (1) Let f be upper C1 at x̄. Let ε > 0. By Daniilidis and Georgiev [14] there
exists δ > 0 such that −f (tx + (1− t)y) ≤ −tf (y)− (1− t)f (x)+ εt (1− t)‖x −y‖
for all x, y ∈ B(x̄, δ) and 0 ≤ t ≤ 1. This can be re-arranged as

f (y) ≤ f (x) + t−1(f
(
x + t (y − x)

) − f (x)
) + ε(1 − t)‖x − y‖.

Taking the limsup t → 0+ readily implies f (y) ≤ f (x)+f ◦(x, y −x)+ ε‖x −y‖ =
φ�(y, x) + ε‖x − y‖, hence strictness of φ� at x̄.

(2) The proof of the upper C2 case is similar. �

The following definition is useful for the analysis of the subsequent sections.

Definition 2.3 A locally Lipschitz function f belongs to the class S iff its standard
model φ� is strict.

Remark 2.2 The property f ∈ S seems weaker than upper C1. Indeed, from [11]
we know that upper C1 at x̄ is equivalent to the following: For every ε > 0 there
exists δ > 0 such that for all x, y ∈ B(x̄, δ) and g ∈ ∂f (x) one has −f (y) + f (x) ≥
g�(y − x) − ε‖y − x‖. In contrast, for strictness of φ� it suffices that this be true for
some g ∈ ∂f (x). We may represent this in a more compact form as: f is upper C1 at
x̄ iff for every ε > 0 there exists δ > 0 such that for all x, x + td ∈ B(x̄, δ), ‖d‖ = 1,
t > 0, we have

t−1(f (x + td) − f (x)
) ≤ f ◦(x,−d) + ε,

whereas strictness of the standard model replaces this by the formally weaker

t−1(f (x + td) − f (x)
) ≤ f ◦(x, d) + ε.

3 Convergence

In this central section we develop our algorithm and prove convergence to a single
critical point under the KŁ-inequality.
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3.1 Descent Step Finding

We start with the question how to compute a subgradient-oriented descent step. The
difficulty is that if g ∈ ∂f (x), then due to non-smoothness, −g will not necessarily
allow descent. Directions allowing descent form a cone, not a half-space. It is there-
fore harder to find one. As we focus on subgradient-oriented methods, we will work
with φ�, even though some of the results hold for more general φ.

A function φ
�
k : Rn ×R

n → R is called a first-order working model iff φ
�
k(·, x) is

convex, φ
�
k ≤ φ�, φ

�
k(x, x) = φ�(x, x) = f (x), and ∂1φ

�
k(x, x) ⊂ ∂1φ

�(x, x) = ∂f (x).
Working models are maintained and updated iteratively during the inner loop (Algo-
rithm 1) with counter k by adding cutting planes. Here cutting planes means tangents
to φ�(·, x) at the various null steps yk . In other words, due to the specific structure of
φ�, each φ

�
k has the form

φ
�
k(·, x) = sup

g∈Gk

f (x) + g�(· − x)

for a suitable Gk ⊂ ∂f (x). Note that the standard model itself has the same structure
with G = ∂f (x), i.e.,

φ�(·, x) = sup
g∈∂f (x)

f (x) + g�(· − x),

which guarantees φ
�
k ≤ φ� and ∂1φ

�
k(x, x) ⊂ ∂1φ

�(x, x). As we shall see, the man-
agement of the sets Gk during the inner loop has to respect two basic rules, referred
to as cutting planes and aggregation, which we proceed to explain.

Given the current working model φ
�
k(·, x) at x, the step-finding algorithm com-

putes the solution yk of the tangent program

min
y∈Rn

sup
g∈Gk

f (x) + g�(y − x) + 1

2tk
‖y − x‖2

P , (6)

where ‖x‖2
P = x�Px is an Euclidean norm fixed during the inner loop at x. The

solution yk of (6) is called the trial step, tk is called the stepsize, while t−1
k > 0 is

sometimes referred to as the proximity control parameter. The necessary optimality
condition for (6) implies

0 ∈ ∂1φ
�
k

(
yk, x

) + t−1
k P

(
yk − x

)
,

or, equivalently,

g∗
k := t−1

k P
(
x − yk

) ∈ ∂1φ
�
k

(
yk, x

)
. (7)

We call g∗
k the aggregate subgradient and f (x) + g∗�

k (· − x) the aggregate plane at
yk . Note that g∗

k ∈ ∂f (x) due to the specific structure of φ�.
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Algorithm 1 Descent step finding by backtracking

Input: Current serious iterate x. Output: New serious iterate x+.
Parameters: 0 < γ < γ̃ < 1, 0 < θ < Θ < 1.

1: Initialize. Put counter k = 1, fix t1 > 0 and g0 ∈ ∂f (x). Put G1 = {g0}.
2: Tangent program. Given tk > 0, the current Gk ⊂ ∂f (x) and working model

φ
�
k(·, x) = f (x) + maxg∈Gk

g�(· − x), compute solution yk of the tangent pro-
gram

(TP) min
y∈Rn

φ
�
k(y, x) + 1

2tk
‖y − x‖2

P .

3: Acceptance test. Compute

ρk = f (x) − f (yk)

f (x) − φ
�
k(y

k, x)
.

If ρk ≥ γ , then put x+ = yk and quit successfully with new serious step x+.
Otherwise, if ρk < γ , go to step 4.

4: Cutting plane. Pick a subgradient gk ∈ ∂f (x) such that f (x) + g�
k (yk − x) =

φ�(yk, x), or equivalently, f ◦(x, yk − x) = g�
k (yk − x). Include gk into the new

Gk+1 for the next sweep.
5: Aggregate plane. Include the aggregate subgradient g∗

k in the new set Gk+1, and
allow the inclusion of additional subgradients from ∂f (x).

6: Step management. Compute the test quotient

ρ̃k = f (x) − φ�(yk, x)

f (x) − φ
�
k(y

k, x)
.

If ρ̃k ≥ γ̃ , then select tk+1 ∈ [θtk,Θtk]. On the other hand, if ρ̃k < γ̃ then keep
tk+1 = tk . Increment counter k and go back to step 2.

Having computed a trial step yk by solving (6), we test acceptance by computing
the test parameter

ρk = f (x) − f (yk)

f (x) − φ
�
k(y

k, x)
.

We say that yk satisfies the descent condition iff ρk ≥ γ . If this is the case, we accept
x+ = yk as the new serious iterate, and the step-finding algorithm terminates suc-
cessfully. On the other hand, if ρk < γ , then we call yk a null step. In this case the
inner loop continues, and this requires improving the working model by modifying
the set Gk , and possibly by shortening the stepsize tk . In the case of a null step yk ,
we compute gk ∈ ∂f (x) such that φ�(yk, x) = f (x) + g�

k (yk − x) and include gk in
the new set Gk+1. Moreover, we also include the aggregate subgradient g∗

k in the set
Gk+1.

Remark 3.1 Note that our test ρk>γ replaces the descent conditions (2) and (3).
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We mention two specific ways to construct φ
�
k . The first option is to maintain a

finite set Gk = {g0, . . . , gk−1}, where at each step k the new cutting plane gk is added.
In this case (TP) has the simple form

min
y∈Rn

max
i=0,...,k−1

f (x) + g�
i (y − x) + 1

2tk
‖y − x‖2

P , (8)

which can be converted to a convex quadratic program. Here the aggregate subgradi-
ent has the form

g∗
k =

k−1∑

i=0

λigi, λi ≥ 0,

k−1∑

i=0

λi = 1,

with gi ∈ Gk and λi > 0. Including g∗
k in the set Gk+1 allows to drop older elements

of Gk , so that the size of Gk can be limited.
The second case of interest is when φ

�
k = φ� for all k. Here the test quotient ρ̃k

has constant value 1, so we always reduce the stepsize in case of a null step. Adding
cutting planes and aggregate planes has no effect, because they are already included
in G = ∂f (x). The only action taken by the algorithm is backtracking. The solution yk

of the tangent program has now the specific form yk = x − tkPg−, where g− ∈ ∂f (x)

is the projection of 0 onto ∂f (x) with respect to the Euclidean norm ‖ · ‖P . In other
words, this case covers all non-smooth subgradient-oriented descent method with
backtracking linesearch in the sense of Definition 2.1.

Theorem 3.1 Let f be locally Lipschitz. Suppose 0 �∈ ∂f (x). Then after a finite num-
ber of trials k the descent step-finding algorithm locates gk ∈ ∂f (x) and a stepsize
tk > 0 such that x+ = x − tkP

−1gk satisfies the descent condition ρk ≥ γ .

Proof We assume, contrary to what is claimed, that the algorithm turns infinitely,
generating a sequence yk of trial points which all fail the acceptance test. That means
ρk < γ for all k ∈N. According to step 5 of the algorithm the step size tk is either kept
invariant, or reduced by a factor θ < 1, but it is never increased. We have therefore
two cases. Case 1 is when tk → 0, case 2 is when tk is bounded away from 0. In both
cases we will have to achieve a contradiction with the hypothesis 0 �∈ ∂f (x). The first
case may now be settled along the lines of [7, Lemma 4], while the second case uses
the method of proof in [13, Lemma 6] or [7, Lemma 5]. �

Remark 3.2 The above algorithm requires a method to compute g ∈ ∂f (x) where the
maximum g�d = f ◦(x, d) = max{h�d : h ∈ ∂f (x)} is attained for a given d . The
existence of such an oracle is a realistic hypothesis (see e.g. Sect. 8.2 of [7, 16]).

3.2 Algorithm

In this section we state the main algorithm and comment on its rationale. Recall first
that the step-finding Algorithm 1 combines successive improvement of the work-
ing model, achieved by adding cutting planes, with occasional backtracking steps,
tk+1 ∈ [θtk,Θtk]. This means that in the inner loop (Algorithm 1) the stepsize is never
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Algorithm 2 Subgradient-oriented descent method
Parameters: 0 < γ < γ̃ < 1, 0 < γ < Γ < 1, 0 < θ < Θ < 1, 0 < c < C < ∞,

0 ≤ t < t ≤ ∞.
1: Initialize. Put counter j = 1, choose initial guess x1, and fix t

�
1 > 0. Choose an

Euclidean norm ‖x‖2
1 = x�P1x such that c‖ · ‖ ≤ ‖ · ‖1 ≤ C‖ · ‖.

2: Stopping. At counter j , stop if 0 ∈ ∂f (xj ). Otherwise go to inner loop.
3: Inner loop. Given xj and the Euclidean norm ‖ · ‖j satisfying c‖ · ‖ ≤ ‖ · ‖j ≤

C‖ · ‖, use the step-finding algorithm with proximity control (Algorithm 1)
started at stepsize t

�
j to find a stepsize tk > 0 such that the kth trial point yk

satisfies ρk ≥ γ . Put xj+1 = yk and go to step 4.
4: Updating stepsize. Check whether ρk ≥ Γ at acceptance xj+1 = yk . If this is

the case, put t
�
j+1 = θ−1tk , otherwise put t

�
j+1 = tk . Go to step 5.

5: Small stepsize safeguard rule (Optional). Replace t
�
j+1 by max{t�j+1, t}.

6: Large stepsize safeguard rule (Optional). Replace t
�
j+1 by min{t, t�j+1}.

7: Updating norm. Choose new Pj+1 such that c‖ · ‖ ≤ ‖ · ‖j+1 ≤ C‖ · ‖. Then go
to step 2.

increased. Therefore, in the outer loop, we allow the stepsize t
�
j+1 = θ−1tk to increase

if acceptance gives a good ratio ρk ≥ Γ . If acceptance is medium γ ≤ ρk < Γ , then
we memorize the last stepsize used.

Algorithm 2 contains the steepest descent method, and all subgradient-oriented
descent methods in the sense of Definition 2.1, as special cases. On the other hand,
it is more general because it allows to approximate these methods by numerically
implementable iterative technique. This is beneficial in practical situations, where
the full subdifferential ∂f (x) is inaccessible to direct computation.

Step 5 is void if t = 0, and the same for step 6 when t = ∞. This is indicated
by the term optional. We wish to avoid these rules in the proofs, even though they
are acceptable in practice. For instance, linesearch methods tempting second-order
steps always put t = 1. Note that if t = 0 and t = ∞, then the step length is fully
memorized between serious steps, an important option for large scale programs.

The idea to fully memorize the steplength was analyzed in [6], with the outcome
that stepsize may be fully memorized for C1,1-functions, whereas this is not possible
for C1 functions. Here the linesearch has to be started at t1 ≥ t for a threshold t > 0.
Since C1 functions are upper C1, and C1,1-functions are upper C2, we can consider
items 2 and 3 of Theorem 3.2 below as non-smooth extensions of Theorems 1, 2 in
[6], and of the results in [2].

3.3 Convergence

In this section we prove subsequence convergence of Algorithm 2. Convergence to a
single critical point follows under the strong KŁ-inequality.

Theorem 3.2 Suppose f is locally Lipschitz and {x ∈ R
n : f (x) ≤ f (x1)} is

bounded. Let xj be the sequence generated by Algorithm 2. Then the following are
satisfied:
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1. If the standard model φ� of f is strict, i.e., f ∈ S, then xj has at least one accu-
mulation point which is critical.

2. If the standard model is strict and Algorithm 2 is operated with the small stepsize
safeguard rule t > 0, then every accumulation point of xj is critical.

3. If the standard model is strong, then every accumulation point of the xj is critical
(and the small step safeguard rule is not needed: t = 0).

4. If the standard model φ� is strict and f satisfies the strong Kurdyka–Łojasiewicz
inequality, then xj converges to a single critical point (and the small stepsize
safeguard rule is not needed: t = 0).

In all these cases the large stepsize safeguard rule is not needed, i.e., t = ∞.

Proof By Theorem 3.1, at serious iterate xj Algorithm 1 finds a new serious iter-
ate xj+1 = ykj passing the acceptance test at the kj th step of the inner loop. From
acceptance ρkj

≥ γ and optimality (7) we obtain

t−1
kj

‖xj − xj+1‖2 ≤ γ −1(f
(
xj

) − f
(
xj+1)). (9)

During the rest we will concentrate on the case where the sequence xj is infinite.
Now statement 3 may be obtained from the proof of Theorem 1 in [7]. Statement
2 can be dealt with using the proof of Theorem 2 of [7], because the only type of
subsequences excluded in that proof is ruled out by the small stepsize safeguard rule.
In the case of statement 1 we only need one subsequence with an accumulation point,
and that is again essentially covered by Theorem 2 in [7]. See also Theorem 2 in [13].

Let us now assume that f satisfies the Kurdyka–Łojasiewicz inequality. We have
to show that xj converges to a single critical point x∗. It follows from statement 1 that
the sequence xj has at least one accumulation point x∗ which is critical. Moreover,
the set of accumulation points L of xj is closed, as can be proved by a diagonal
argument. Since f (xj ) is decreasing, we conclude that f has a constant value on the
set L.

By assumption, for every x ∈ L, there exist an open neighborhood U(x) of x

and a continuous concave function κx : [0, ηx] → [0,∞[ of class C1 on (0, ηx) with
κx(0) = 0, κ ′

x > 0 on (0, ηx), such that

κ ′
x

(
f

(
x′) − f (x)

)
dist

(
0, ∂f

(
x′)) ≥ 1

whenever x′ ∈ U(x) satisfies f (x) < f (x′) < f (x) + ηx . Using compactness of
L, we find finitely many points x1, . . . , xr ∈ L such that the U(x1), . . . ,U(xr)

cover L. Choose ε > 0 such that V := {x ∈ R
n : dist(x,L) < ε} ⊂ ⋃r

i=1 U(xi).
Put η = mini=1,...,r ηxi

, and define the function κ ′(t) := maxi=1,...,r κ ′
xi

(t), then κ ′

is continuous and decreasing because all the κ ′
xi

are. Putting κ(t) := ∫ t

0 κ ′(τ ) dτ

therefore defines a concave class C1 function on [0, η] with κ(0) = 0 and κ ′ > 0
on ]0, η[. In addition, κ has the following property: For every x ∈ L and every
x′ ∈ V = {x′ : dist(x′,L) < ε} with f (x) < f (x′) < f (x) + η we have

κ ′(f
(
x′) − f (x)

)
dist

(
0, ∂f

(
x′)) ≥ 1. (10)
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Indeed, to see this let x, x′ as above. Find xi such that x′ ∈ U(xi). Then

1 ≤ κ ′
xi

(
f

(
x′) − f (xi)

)
dist

(
0, ∂f

(
x′))

≤ κ ′(f
(
x′) − f (x)

)
dist

(
0, ∂f

(
x′)),

using κ ′
xi

≤ κ ′ and f (xi) = f (x). That proves our claim.
Let us for the following assume without any loss that f ≡ 0 on L. Recall that

by acceptance ρ ≥ γ the aggregate subgradient g∗
j = t−1

kj
Pj (x

j − xj+1) satisfies

t−1
kj

‖xj − xj+1‖2
j ≤ γ −1(f (xj ) − f (xj+1)). Concavity of κ gives the estimate

κ
(
f

(
xj

)) − κ
(
f

(
xj+1)) ≥ κ ′(f

(
xj

))(
f

(
xj

) − f
(
xj+1))

whenever 0 < f (xj ) < η, 0 < f (xj+1) < η. Combining these two gives

κ
(
f

(
xj

)) − κ
(
f

(
xj+1)) ≥ κ ′(f

(
xj

))
γ t−1

kj
‖xj − xj+1‖2

j .

By the strong KŁ-inequality (10), and using f (x) = 0, we have κ ′(f (xj )) ≥ ‖g‖−1

for every Clarke subgradient g ∈ ∂f (xj ). Therefore κ ′(f (xj )) ≥ ‖g∗
j ‖−1 for the ag-

gregate subgradient, which due to the specific form of the Clarke model φ� belongs
to ∂f (xj ). We deduce

κ
(
f

(
xj

)) − κ
(
f

(
xj+1)) ≥ γ

t−1
kj

‖xj − xj+1‖2
j

t−1
kj

‖Pj (xj − xj+1)‖ ≥ c′‖xj − xj+1‖

for some constant c′ independent of j . That proves summability of ‖xj − xj+1‖,
hence xj is a Cauchy sequence, which converges to x∗ and L = {x∗}. Since L was
shown to contain at least one critical point of f , we conclude that x∗ is critical. That
completes the proof of the theorem. �

4 Applications

In this section we present several consequences and applications of the main Theo-
rem 3.2. Then discrete subgradient trajectories, the approximate Talweg, and abstract
descent are discussed.

4.1 Consequences of the Main Theorem

We start with proving convergence of the steepest descent method, as promised. Re-
call that we wanted algorithmically verifiable criteria for convergence, as opposed to
conditions like [19]. The price to pay for this is that we require f ∈ S.

Corollary 4.1 Suppose f is upper C1 and satisfies the strong KŁ-inequality. Let {x ∈
R

n : f (x) ≤ f (x1)} be bounded and let xj be generated by a subgradient-oriented
descent method, where the stepsize is fully memorized. Then xj converges to a critical
point of f .
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Proof By Proposition 2.1 we have f ∈ S. Therefore Algorithm 2 converges for the
special case, where step finding uses Algorithm 1 with φ

�
k = φ�. Note that we are

in the case t = 0 and t = ∞, so no restriction at all is made on the stepsize, which
means it is fully memorized. �

The next result describes a situation where the use of the small stepsize safeguard
rule t > 0 may be beneficial. Namely, it gives a satisfactory answer for stopping even
when the KŁ-inequality is not available:

Corollary 4.2 Let f ∈ S and suppose Algorithm 2 is operated with t > 0. Suppose
{x ∈ R

n : f (x) ≤ f (x1)} is bounded. Then for every ε > 0 there exists j0 ∈ N such
that all iterates xj , j ≥ j0, are within distance ε of some critical point of f .

Proof Suppose there exist ε̄ > 0 and infinitely many xj , j ∈ J , which have no criti-
cal point of f within ε̄ reach. Due to t > 0, this sequence xj , j ∈ J , has an accumu-
lation point, which by Theorem 3.2 is critical, a contradiction. �

The small stepsize safeguard rule is not needed if f has a strong model:

Corollary 4.3 Suppose f is upper C2 and {x ∈ R
n : f (x) ≤ f (x1)} is bounded.

Then for every ε > 0 there exists j0 ∈ N such that every iterate xj , j ≥ j0, is within
distance ε of some critical point of f .

Proof Since f has a strong standard model, infinite subsequences xj , j ∈ J2, where
t
�
j = tkj

→ 0 can be excluded. As the proof of Theorem 2 in [13] shows, all other sub-
sequences, have an accumulation point which is critical, and that proves the result. �

So far we have never needed the large stepsize safeguard rule t < ∞. There is one
specific situation, where this rule is beneficial, because it gives an additional option
to convergence to a single critical point without the KŁ-inequality.

Corollary 4.4 Suppose the set K of critical points of f ∈ S is a priori known to
be totally disconnected. If Algorithm 2 is operated with both safeguard rules, i.e.,
0 < t < t < ∞, then the sequence xj converges to a single critical point x∗.

Proof From the proof of Theorem 3.2 we know that t−1
kj

‖xj − xj+1‖ → 0. Hypoth-

esis t < ∞ yields tkj
≤ t < ∞, so we deduce xj − xj+1 → 0, j → ∞. As a con-

sequence, by Ostrowski’s Theorem [20], the set L of accumulation points of the se-
quence xj is either a singleton or a nontrivial compact continuum.

Secondly, the hypothesis t > 0 ensures that every accumulation point of the se-
quence xj of serious iterates is critical, so that L ⊂ K . Since by hypothesis the only
connected components of K are the singletons, L must be singleton, hence xj con-
verges to a single critical point x∗. �
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Once again we could dispense with t > 0 if f was upper C2, respectively, if model
φ� was strong, and we could dispense with t < ∞ if we knew for other reasons that
xj − xj+1 → 0.

4.2 Talweg and the Unskilled Skier’s Descent

In [8] the Kurdyka–Łojasiewicz inequality was used to prove finite length of subgra-
dient trajectories ẋ(t) ∈ −∂f (x(t)). In the continuous case this automatically implies
convergence to a critical point. Now subgradient-oriented descent is a discrete form
of the subgradient trajectory. This point of view is taken in [4], where the authors
use the finite lengths of such trajectories to characterize the KŁ-property. However,
as we shall see in Sect. 4.4, in the non-smooth case, the finite length of a discrete
subgradient trajectory does not imply its convergence to a critical point. In order to
ensure convergence, we need again strictness of φ�, i.e., f ∈ S.

In [4] the authors use yet another discrete construction related to the KŁ-property,
which they call the Talweg. Again, finite length (but not convergence to a critical
point) of the Talweg characterizes the KŁ-inequality. Here we consider the following:

Algorithm 3 Unskilled skier’s descent into the valley
Parameters: 0 < γ < γ̃ < 1, 0 < γ < Γ < 1, 0 < θ < Θ < 1, 0 < c < C < ∞,

K > 0.
1: Given the current serious iterate x, stop if 0 ∈ ∂f (x). Otherwise use the step-

finding Algorithm 1 to find x̂ satisfying the acceptance test ρ ≥ γ .
2: Manage the stepsize t� as in Algorithm 2.
3: Given the intermediate iterate x̂, find the new serious iterate x+ on the same

level curve, i.e., f (x+) = f (̂x), such that ‖x+ − x̂‖ ≤ K‖x̂ − x‖. Then go back
to step 1.

The interpretation is as follows. The novice skier, lacking control, starts steepest
descent (Schuss) downhill from his current position x. Not being able to wedel, this
leads him straight to x̂, with sufficient decrease ρ ≥ γ achieved quickly. Stopping
at x̂ is arranged by sitting down on the bottom. In need of some rest, the clumsy
skier now puts his skis in parallel with the level line to be stable for a while and then
walks some distance along the level curve from x̂ to x+. From here the procedure
loops on by another pair of schuss-walk steps. The obvious question is whether the
unskilled skier ever reaches the valley, i.e., whether the method converges to a critical
point. (Finite length of the trajectory without convergence to a critical point is no
consolation for the novice skier, because the ski lodge is at the bottom of the valley
at a critical point. Convergence to a non-critical point means St. Bernhard dogs will
have to pick him up on the slope a few days later.)

The step from x to x̂ is identical with the serious step of Algorithm 2. In [5]
sequences with jumps like x̂ → x+ are called piecewise subgradient trajectories.

Theorem 4.1 Suppose f is locally Lipschitz and {x ∈ R
n : f (x) ≤ f (x1)} is

bounded. Let x1, x̂1, x2, x̂2, . . . be the sequence generated by the unskilled skier’s
descent method. Then the following are satisfied:
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1. If the standard model φ� is strict, then xj , x̂j have at least one common accumu-
lation point x∗ which is critical.

2. If the standard model is strong, then every accumulation point of xj , x̂j is critical.
3. If the standard model is strict and the small step safeguard rule (t > 0) is used,

then every accumulation point of xj , x̂j is critical.
4. If the standard model is strict, i.e., f ∈ S, and f satisfies the strong KŁ-inequality,

then xj , x̂j converge to a single critical point x∗.

Proof Concentrating on item 4., the argument of Theorem 3.2 shows that∑
j ‖xj − x̂j‖ < ∞. By step 3 of Algorithm 3, ‖xj+1 − x̂j‖ ≤ K‖x̂j − xj‖, so

that
∑

j ‖xj − xj+1‖ converges. �

Remark 4.1 If f has the strong KŁ-property, but the standard model of f fails to be
strict at x∗, then xj , x̂j still converge to x∗, but x∗ may fail to be critical. An example
of this behavior is given in Sect. 4.4.

4.3 Links with Abstract Convergence

We are now in the position to discuss the role of the sufficient conditions (3) and (4)
in the convergence result of [9], and that of the alternative condition (5).

As we see from part (1) of the proof of Theorem 3.2, our acceptance test ρ ≥ γ

forces the descent condition f (xj )−f (xj+1) ≥ γ t−1
kj

‖xj −xj+1‖2, which is weaker

than (3) in [9], and coincides with it when the t−1
kj

are bounded below. We could force

this by the large stepsize safeguard rule, t < ∞, but we only do this in Corollary 4.4,
because in all other cases it represents an unnecessary limitation. Nonetheless, in
the light of our result, condition (3) used in [9] may be considered sub-optimal but
reasonable, because in practice we expect tkj

to be bounded above most of the time.
More importantly, our analysis shows how (3) can be forced.

Let us now focus on condition (4), which is coined on the proximal point algo-
rithm, where a sequence xj is generated iteratively as

xj+1 ∈ argmin
x∈Rn

f (x) + 1

2tj
‖x − xj‖2. (11)

Here (3) is satisfied if stepsizes stay bounded away from zero, tj ≥ t > 0, and (4) is
then also satisfied with b = t−1 and gj+1 = t−1

j (xj − xj+1) ∈ ∂f (xj+1). Reference
[9] presents other cases where (4) is satisfied. In our terminology, (11) corresponds
to using f as its own model in the tangent program (6).

Remark 4.2 The situation becomes more delicate if only a local model φ(·, xj ) of f

is available in the tangent program at xj :

min
y∈Rn

φ(y, xj ) + 1

2tj
‖y − xj‖2.

Here the optimality condition t−1
j (xj − xj+1) ∈ ∂1φ(xj+1, xj ) gives only informa-

tion about ∂1φ(xj+1, xj ), which may be difficult, or even impossible, to relate to the
information about ∂f (xj+1) required in (4).
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The dilemma is that if a model φ(·, xj ) of f is used, the Armijo condition (3) is
not satisfied for prior chosen stepsizes tj , due to the discrepancy between φ(yk, xj )

and f (yk). To force (3) we then have to take shorter steps tj . This, however, is in
conflict with condition (4), which can not be forced by backtracking, as it requires
steps to be not too small. So as soon as f is replaced by a local model φ(·, xj ), one
has to prove that there exists a nonempty set of stepsizes t for which both conditions
(3) and (4) are true, and one has to provide an algorithm which finds a step t in this
set in finite time. That this may fail is shown in Examples 4.1, 4.2.

Let us next focus on condition (5), which we expect to be somewhat weaker than
(4), and therefore easier to verify. This is corroborated by the following.

Proposition 4.1 Suppose xj is bounded and subgradient-oriented with respect to the
norms ‖x‖2

j = x�Pjx. Let f be upper C2 at every accumulation point x∗ of xj . If the
sequence xj satisfies condition (4), then it also satisfies (5), possibly with a different
constant b′ > 0.

Proof By (1) there exists c > 0 such that ‖x‖2
j = x�Pjx ≥ c‖x‖‖Pjx‖ for all x and

all j .
Let us now single out an accumulation point x∗ and consider a subsequence xj

converging to x∗. For simplicity call this subsequence xj again. By assumption there
exist δ > 0 and K > 0 such that f −K‖ ·−x‖2 is concave for all x ∈ B(x∗, δ). Since
xj ∈ B(x∗, δ) for j ≥ j0, we have

−g�
j+1(xj+1 − xj ) + g�

j (xj+1 − xj ) ≥ −K‖xj+1 − xj‖2

for j ≥ j0 by monotonicity of −f + K‖ · −xj‖2. That shows

−g�
j (xj+1 − xj ) ≤ K‖xj+1 − xj‖2 − g�

j+1(xj+1 − xj )

≤ K‖xj+1 − xj‖2 + ‖gj+1‖‖xj+1 − xj‖.
Since xj+1 − xj = tj dj , with dj = −Pjgj/‖Pjgj‖ subgradient-oriented, we have
−g�

j (xj+1 − xj ) ≥ c‖gj‖‖xj+1 − xj‖. Moreover, since (4) holds with b, we have
‖gj+1‖ ≤ b‖xj+1 − xj‖, hence

c‖gj‖‖xj+1 − xj‖ ≤ (K + b)‖xj+1 − xj‖2,

which shows that (5) is true with b′ = (K + b)/c for j ≥ j0. �

Remark 4.3 One consequence of Proposition 4.1 is that it is reasonable to look for de-
scent methods satisfying (3) and (5). Not only is there overlap with methods based on
(3) and (4), which work in situations discussed in [9]. The proof of Theorem 3.1 also
shows that (3) and (5) give convergence under the KŁ-inequality in their own right,
a fact which was first presented in [21]. However, the limitations of both approaches
become evident in practical situations, when computable local models φ(·, xj ) have
to be used in the tangent program.

Author's personal copy



J Optim Theory Appl

4.4 Examples

In this section we consider several limiting examples.

Example 4.1 The following example adapted from [22] can be used to show the diffi-
culties with non-smooth subgradient-oriented descent. We define a convex piecewise
affine function f :R2 → R as

f (x) := max
{
f0(x), f±1(x), f±2(x)

}

where f0(x) = −100, f±1(x) = ±2x1 + 3x2, f±2(x) = ±5x1 + 2x2. The following
plot shows that part of the level curve [f = a] which lies in the upper half plane
x2 > 0. It consists of the polygon connecting the five points (− a

5 ,0), (− a
11 , 3a

11 ),
(0, a

3 ), ( a
11 , 3a

11 ), ( a
5 ,0). We are interested in the lower level set [f ≤ a], which lies

inside the polygon, and above the x1-axis.
We decompose the lower level set [f ≤ a] ∩ [x2 ≥ 0] into four regions where dif-

ferent branches of f are active, i.e., [f = f1+], [f = f1−], indicated by the symbols
f1+, f1−, etc. The lines [f1+ = f2+] and [f1− = f2−] connect the origin to the points
(± a

11 , 3a
11 ), while [f1− = f1+] ∩ [x2 ≥ 0] is the positive x2-axis.

Let Ra denote the rhombus (0,0), ( a
11 , 3a

11 ), (0, a
3 ), (− a

11 , 3a
11 ), shaded gray in the

plot. Consider the current x on the upper right part of level curve [f = a]. Then
x1 = τa

11 for some 0 < τ ≤ 1, and x2 = − 2
3x1 + a

3 . The steepest descent direction
at x is −∇f1+ = (−2,−3). This is the line parting at x through A,B,C. (The two
limiting positions for x are the parallel dashed lines.) We now construct an instance
of steepest descent, where steps from x which are accepted by the test ρ ≥ γ lie
before B . With the exception of A, this means we will stop at a point x+ which is
again on the upper part of a rhombus Ra+ , where a+ = f (x+) < f (x), possibly on
the other side of the x2-axis. Proceeding in this fashion, we will generate a sequence
x, x+, x++, . . . which will never escape from the rhombi Rf (x), Rf (x+), Rf (x++),
and will converge to the origin, which is not a critical point of f .
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Note that our algorithm would also accept A on the positive x2 axis, and this
is indeed the only escape point from the rhombus. Once an iterate A is found, the
steepest descent direction switches to (0,−3) and we leave the rhombi through the
origin. Our argument is that finding the only escape point A is not algorithmically
feasible, even more so as we have not specified any condition which distinguishes A

from the other points accepted by the test ρ ≥ γ .
If we plot the function t �→ f (x + td), where d is the steepest descent direction

d = (−2,−3) at x with 0 < x1 ≤ a
11 , then we get a piecewise linear convex curve

with two kinks, at the points A = (0, a
3 − 13

6 x1) and B = ( 13
27x1 − 2

27a;− 13
9 x1 + 2

9a),
the lowest value being at B . The line hits the x1-axis at C = ( 13

9 x1 − 2
9a,0). The

function values at these points are f (A) = f1+(0, a
3 − 13

6 x1) = a − 13
2 x1, f (B) =

f1−( 13
27x1 − 2

27a,− 13
9 x1 + 2

9a) = − 26
27x1 + 4

27a− 13
3 x1 + 2

3a = 22
27a− 143

27 x1 f1+(B) =
− 91

27x1 + 14
27a and f (C) = f2−( 13

9 x1 − 2
9a,0) = − 13·5

9 x1 + 10
9 a. We obtain

ρ = a − f (B)

a − f1+(B)
= a − 22

27a + 143
27 x1

a − 14
27a + 91

27x1
= 5a + 143x1

13a + 91x1
.

If we put x1 = τ a
11 with 0 < τ ≤ 1, then ρ = 5+ 143τ

11

13+ 91τ
11

= 55+143τ
143+91τ

. This quotient is inde-

pendent of a and has its largest value at τ = 1, namely, ρ = 198
242 . Therefore, if we put

1 > γ > 198
242 , then none of the B is accepted by the test ρ ≥ γ , meaning that the inter-

val of acceptance ]x, x+] ⊂]x,B[ lies before B , and contains A in its interior. Note
that this interval of acceptance corresponds also to the interval of points accepted by
condition (3). That means that the new serious iterate x+ will have exactly the same
properties as discussed for x, now in the rhombus Ra+ .

The question is how criteria (4) and (5) from Sect. 2.4 behave. Can we find
x+ ∈]x,B[ where ‖∂f (x+)‖− ≤ b‖x − x+‖? Since x − x+ → 0 and the gradient is
constant on [f = f1−] and [f = f1+], the only candidate to be accepted by (4) is A.
The Clarke subgradients are gt = t (2,3) + (1 − t)(−2,3) = (4t − 2,3), 0 ≤ t ≤ 1.
Unfortunately, ‖gt‖ ≥ 3, so A does not work. There is no point on the entire segment
[x,B] which is accepted by (4). One would at least have hoped that A were accepted,
since from A onward the steepest descent direction will pick another track and es-
cape from the rhombus. In fact, the escape line is the positive x2-axis. (Recall that
our own method does accept A, but a linesearch trying to locate a single point could
not claim to work in practice.) In contrast, (4) rejects even the escape point A. The
same argument shows that (5) fails.

We still have to explain why convergence to a critical point fails here. According
to our main theorem, this is due to the fact that the Clarke model is not strict at
x∗ = (0,0), a fact which can be verified directly.

Remark 4.4 The ideal subgradient trajectory ẋ(t) ∈ −∂f (x(t)) switches to the escape
line at point A, allowing to leave the rhombus. This leads to the observation that
in non-smooth optimization, and this is in stark contrast with smooth optimization,
looking at the continuous trajectory associated with a class of descent methods is
useless, because it tells us nothing about the discrete method.
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Example 4.2 Consider Nesterov’s 2008 non-smooth variant [23] of the Rosenbrock
function f̂ (x1, x2) = 1

4 (x1 − 1)2 + |x2 − 2x2
1 + 1|, a contour plot of which can be

seen in Fig. 1 (left) of [24]. The unique global minimizer is x∗ = [1,1], f̂ is non-
smooth at points on the manifold M = {x ∈ R

2 : x2
2 − 2x1 + 1 = 0}. For x �∈ M we

have ‖∇f̂ (x)‖ ≥ 1, so that ‖gj+1‖ ≤ b‖xj+1 − xj‖ for gj+1 ∈ ∂f̂ (xj+1) can only
be arranged if ‖xj+1 − xj‖ ≥ 1/b > 0 for all j where xj+1 �∈ M. That means that
every iterative descent method which tries to satisfy (3) in tandem with either (4) or
(5) has only two choices: It must either find the minimum x∗ in a finite number of
steps, or it must stay precisely on the manifold M, i.e., xj ∈ M for all j ≥ j0. Since
f̂ is not sharp at x∗, finite convergence will not occur, not even for the proximal point
method, and if the manifold M is not explicitly known to the step-finding routine,
identifying iterates xj+1 ∈M may not be a numerically feasible. For instance, in [24]
the authors have tested a non-smooth version of the BFGS-method, which zig-zags
around the manifold M, but does not find iterates on M even though it converges
to x∗ ∈M.

Example 4.3 One may argue that tangent program (11) is not realistic, because it is
just as difficult to solve as the original problem minx∈Rn f (x). While this is true as
a rule, we might make a concession for non-convex f : Here the use of (11) might
be justified if the tangent program is convex, hence easier. This requires search for a
convexifying (1/2tj )‖ · −xj‖2 at each step j . However, this will spoil (4) if f is not
lower C2. As an example on the real line, define f ′(x) = −1 for x ≤ 0, and f ′(x) =
1 for x ∈ [2−k, αk], f ′(x) = −k for x ∈ (αk,2−k+1], where αk = 2−k(5/4 + 2k)/

(1 + k), k = 1,2, . . . , then the primitive f of f ′ has a unique minimum at x = 0,
but in order to have convexity for f at iterates xj ∈ ⋃∞

j=1(αj ,2−k+1], one needs
smaller and smaller tj in (11) as xj → 0. Then conditions (4) and (5) fail, while the
backtracking strategy of Algorithm 2 is still functional.

5 Conclusions

We have shown that convergence of subgradient-oriented non-smooth descent meth-
ods to critical points relies on two pillars. The Kurdyka–Łojasiewicz condition guar-
antees summability of

∑
j ‖xj − xj+1‖ < ∞ and therefore finite length of the dis-

crete subgradient trajectory. Strictness of the standard model ensures convergence to
critical points in the sense of subsequences. When combined, these two give conver-
gence to a single critical point.

The present approach, which is particularly useful for large size problems due
to the bundling mechanism, can be adapted to deal with constraints e.g. by using
the progress function approach of [17, 25], which was developed in [26] for smooth
problems, or the improvement function of [27]. It is also possible to use weighted
maxima as in [28]. Extensions to inexact values can be found in [18].

It remains open whether the Kurdyka–Łojasiewicz property can also be brought
to work for bundle methods based on more general and more practical oracles, like
downshifted tangents [17], tilted tangents [27], or to nonstandard models used e.g.
in eigenvalue optimization [15]. Substantially new techniques of proof will have to
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be brought forward to settle these cases. Fortunately, results like Corollary 4.2 can
be extended to these cases and give a satisfactory convergence theory for practical
purposes even without the KŁ-inequality.
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