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Abstract

Suppose that A and B are closed subsets of a Euclidean space such that A ∩ B 6= ∅,
and we aim to find a point in this intersection with the help of the sequences (an)n∈N

and (bn)n∈N generated by the method of alternating projections. It is well known that
if A and B are convex, then (an)n∈N and (bn)n∈N converge to some point in A ∩ B.
The situation in the nonconvex case is much more delicate. In 1990, Combettes and
Trussell presented a dichotomy result that guarantees either convergence to a point in
the intersection or a nondegenerate compact continuum as the set of cluster points.

In this note, we construct two sets in the Euclidean plane illustrating the contin-
uum case. The sets A and B can be chosen as countably infinite unions of closed
convex sets. In contrast, we also show that such behaviour is impossible for finite
unions.
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1 Motivation

Let X be a real Euclidean space, and let A and B be closed subsets of X. Our aim is to find
a point in A ∩ B which we assume to be nonempty. One classical algorithm is the method
of alternating projections: Given a starting point b−1 ∈ X, generate sequences

(1) (∀n ∈N) an ∈ PA(bn−1) and bn ∈ PB(an)

where PCx :=
{

c ∈ C
∣∣ ‖x− c‖ = dC(x) := infy∈C ‖x− y‖

}
denotes the projection of x

onto C. When A and B are convex, then the projectors PA and PB are single-valued and
the sequences (an)n∈N and (bn)n∈N converge to some point in A ∩ B. This classical result
goes back to Bregman [4], and it has found a huge number of extensions (see, e.g., [1],
[6], [8], [9]). In the general case, when A and B are not necessarily convex, the situation
is much more delicate. In their 1990 paper [7], Combettes and Trussell gave quite general
sufficient conditions for the following dichotomy: either (an)n∈N and (bn)n∈N converge
to a point in A ∩ B or the set of cluster points is a nondegenerate continuum. (For recent
results in the nonconvex case, see [2] and [3] and the references therein.)

The goal of this note is to explicitly construct two sets A and B illustrating the continuum case.

The sets A and B may be chosen to be countably infinite unions of closed convex sets.
In contrast, we also prove that the continuum case cannot occur when A and B are finite
unions of closed convex sets.

The remainder of the paper is organized as follows. In Section 2, we lay the ground
work by studying a certain curve in the Euclidean plane. In Section 3, we use this curve
to construct a sequence of points in the plane that is crucial in obtaining the sets A and B.
Some remarks and the announced positive result conclude the paper.

2 An intriguing curve

We will mostly work in the Euclidean plane R2. As usual, angles will be measured in
radians, but sometimes we shall use degrees as in writing π/2 = 90◦.

Let us recall that the distance d between (r cos(α), r sin(α)) and (s cos(β), s sin(β)),
where r ∈ R+ and α ∈ R, satisfies

d2 = ‖(r cos(α), r sin(α))− (s cos(β), s sin(β))‖2 = r2 + s2 − 2rs cos(α− β)(2a)

≥ r2 + s2 − 2rs = (r− s)2;(2b)
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hence,

(3) r− d ≤ s ≤ r + d.

Define the function ρ by

(4) ρ : R+ → R+ : t 7→ 1 + exp(−t).

This function will represent the distance of a point on the curve at time t to the origin.
Clearly, ρ is strictly decreasing with ρ(0) = 2 and limt→+∞ ρ(t) = 1. Also define

(5) ε : R+ → R++ : t 7→ ρ(t)− ρ(t + 2π)

2
.

Then ε′ = −ε and hence ε is strictly decreasing to limt→+∞ ε(t) = 0. Note that

(6) R+ → R++ : α 7→ ε(α)

ρ(α)
=

1
2

1− e−2π

1 + eα
is strictly decreasing.

We now define the curve

(7) x : R+ → R2 : α 7→ ρ(α) ·
(

cos(α), sin(α)
)
.

Note that x describes a spiral traversing counter-clockwise; x is injective because ρ is
strictly decreasing. Now let α and β be in R+, and assume that ‖x(α) − x(β)‖ ≤ ε(α).
By (3), ρ(α)− ε(α) ≤ ρ(β) ≤ ρ(α) + ε(α). Using the definitions, we solve these inequality
for β and obtain

(8) α− 0.40 ≈ α + ln(2)− ln(3− e−2π) ≤ β ≤ α + ln(2)− ln(1 + e−2π) ≈ α + 0.69;

in degrees, this implies α− 24◦ ≤ β ≤ α + 40◦. To summarize,

(9) ‖x(α)− x(β)‖ ≤ ε(α) ⇒ α− 24◦ ≤ β ≤ α + 40◦.

We will now discuss the monotonicity of the function

(10) f : t 7→ ‖x(α + t)− x(α)‖2.

Because of the triangle inequality (or since sin(t) + cos(t) =
√

2 sin(t + π/4)), it is clear
that

(11) t ∈ ]0, π/2[ ⇒ sin(t) + cos(t) > 1.

One checks that

(12) f ′(t)
exp(2(α + t))

2
= g1(t) + g2(t) + g3(t),
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where

g1(t) = sin(t) exp(2t + α)(1 + exp(α)),(13a)

g2(t) = exp(α + t)
(

sin(t) + cos(t)− 1
)
,(13b)

g3(t) = exp(t)
(

sin(t) + cos(t)− exp(−t)
)
.(13c)

Since each gi is strictly positive on ]0, π/2[, it follows from the mean value theorem that

(14) f is strictly increasing on [0, π/2].

Combining with (9), we deduce1

(15)
(
∀α ∈ R+

)(
∃ ! β > α

)
‖x(β)− x(α)‖ = ε(α).

Furthermore, denoting the unit sphere by S, we have

(16) (∀α ∈ R+) dS(x(α)) = ρ(α)− 1 = exp(−α) > ε(α).

3 An intriguing sequence

We now construct a sequence (xn)n∈N in the Euclidean plane with remarkable properties.
Let us initialize

(17) α0 := 0, x0 := x(α0), ρ0 := ρ(α0), ε0 := ε(α0).

In Cartesian coordinates, x0 = (2, 0), and ε0 ≈ 0.5. Now suppose n ∈N and αn, xn, ρn,
and εn are given. In view of (15), there exists a unique β > αn such that

(18) ‖x(β)− x(αn)‖ = εn.

We then update

(19) αn+1 := β, xn+1 := x(αn+1), ρn+1 := ρ(αn+1), and εn+1 := ε(αn+1).

(The picture illustrates the beginning of the spiral and x0, . . . , x15 along with the radii
used to construct the next iterate.)

1“∃ ! ” stands for “there exists a unique”
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We also set

(20) δn := αn+1 − αn.

By construction,

(21) (∀n ∈N) ‖xn − xn+1‖ = εn and
n

∑
k=0

δk = αn+1 − α0.

Note that

(22) (αn)n∈N is strictly increasing, and (εn)n∈N is strictly decreasing

because the function ε is strictly decreasing. Set

(23) α∞ := lim
n∈N

αn ∈ ]0,+∞] .

Since ρ is strictly decreasing we also note that

(24) (ρn)n∈N is strictly decreasing, with lim
n∈N

ρn =: ρ∞ ∈ [1, 2[ .

Hence the corresponding sequence of quotients satisfies

(25) 1 > qn :=
ρn+1

ρn
→ 1.
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Using (2a) and the half-angle identity for sine, we have

(∀n ∈N) ε2
n = ‖xn − xn+1‖2(26a)

= ρ2
n + ρ2

n+1 − 2ρnρn+1 cos(δn)(26b)

= (ρn − ρn+1)
2 + 2ρnρn+1

(
1− cos(δn)

)
(26c)

= (ρn − ρn+1)
2 + 4ρnρn+1

1− cos(δn)

2
(26d)

= (ρn − ρn+1)
2 + 4ρnρn+1 sin2(δn/2).(26e)

Dividing by ρ2
n and recalling (6), we obtain

(27) (∀n ∈N)

(
1
2

1− e−2π

1 + eαn

)2

=
ε2

n
ρ2

n
= (1− qn)

2 + 4qn sin2(δn/2).

Taking limits, we learn that

(28)
(

1
2

1− e−2π

1 + eα∞

)2

= 4 lim
n

sin2(δn/2).

Since δn, in degrees, belongs to ]0◦, 40◦] by (9), we deduce that (δn)n∈N is convergent as
well. If α∞ = +∞, then δn → 0 by (28); however, if α∞ < +∞, then δn = αn+1 − αn →
α∞ − α∞ = 0. Hence, we always must have

(29) δn → 0.

Again by (28), we have

(30) αn → α∞ = +∞,

which by (21) implies

(31) ∑
n∈N

δn = +∞,

(32) εn → 0,

and

(33) ρn → ρ∞ = 1.

Note also that in view of (26), we have

(34) ε2
n > 4 sin2(δn/2) ≥ δ2

n
4

eventually,
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where we used (29) and the Taylor estimate

(35) sin(t/2) ≥ 1
2

t− 1
48

t3 =
t
2

(
1− 1

24
t2
)
≥ t

4
for t sufficiently close to 0.

Combining with (31), we record that

(36) (∀n ∈N) ‖xn − xn+1‖ > ‖xn+1 − xn+2‖ → 0, and ∑
n∈N

‖xn − xn+1‖ = +∞.

Furthermore, (30) and (33) imply that

(37) the set of cluster points of (xn)n∈N is the unit sphere S.

Define

(38) (∀n ∈N) Cn := {x0, x1, . . .}r {xn}

We claim that

(39) (∀n ∈N) PCn xn = {xn+1}.

Let n ∈N. Since Dn := {xn+1, xn+2, . . .} ⊂ x
(
]αn,+∞[

)
, it follows from (9), (14), and

(15) that PDn xn = {xn+1}. We show that there is no k ∈ N such that k < n and ‖xk −
xn‖ < ‖xn − xn+1‖. Suppose the contrary. Then, by (9), αn − 24◦ ≤ αk < αn. Hence
αk < αn ≤ αk + 24◦. By (14), ‖xk − xk+1‖ = ‖x(αk) − x(αk+1)‖ ≤ ‖x(αk) − x(αn)‖ =
‖xk− xn‖ < ‖xn− xn+1‖ < ‖xk− xk+1‖, which is absurd. This verifies (39). Furthermore,
by (16),

(40) (∀n ∈N) dS(xn) > ‖xn − xn+1‖.

Let us summarize our findings.

Theorem 3.1 The sequence (xn)n∈N and the set Y :=
{

xn
∣∣ n ∈N

}
satisfy the following:

(i) (‖xn − xn+1‖)n∈N is strictly decreasing.

(ii) xn − xn+1 → 0.

(iii) ∑n∈N ‖xn − xn+1‖ = +∞.

(iv) (∀n ∈N) P(S∪Y)r{xn}xn = {xn+1}.

(v) The set of cluster points of (xn)n∈N is the compact continuum S.

(vi) S ∪ D is closed, where D is an arbitrary subset of Y.
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We now obtain the announced example concerning an instance of the method of alter-
nating projections whose set of cluster points is a nondegenerate compact continuum.

Corollary 3.2 Set A :=
{

x2n
∣∣ n ∈N

}
∪ S, B :=

{
x2n+1

∣∣ n ∈N
}
∪ S, and b−1 := x0.

Then A and B are nonempty compact subsets of R2. The corresponding sequences of alternating
projections satisfy

(41) (∀n ∈N) an = PAbn−1 = x2n and bn = PBan = x2n+1.

Moreover, an − bn−1 → 0, bn − an → 0, and S is the set of cluster points of (an)n∈N and of
(bn)n∈N.

Remark 3.3 Some comments on Corollary 3.2 are in order.

(i) We note that Corollary 3.2 is the first example constructed where the set of limit
points of alternating projections is a nondegenerate compact continuum. This com-
plements the analysis of Combettes and Trussell [7] who conceived this case.

(ii) If the starting point b−1 is an arbitrary point, then either a0 ∈ S or a0 ∈ Ar S. In the
first case, we have (∀n ∈N) an = bn = a0; in the second case, the sequences (an)n∈N

and (bn)n∈N are tails of (x2n)n∈N and (x2n+1)n∈N respectively. A more involved
analysis shows that if b−1 is outside the closed unit disk, then PAb−1 ∈ A r S and
we are in the second case. Hence one obtains a nondegenerate compact continuum
of cluster points exactly when b−1 lies outside the closed unit disk.

(iii) The conclusion of Corollary 3.2 hold also true if we replace S be the closed unit
disk. In this case, both A and B are countably infinite unions of convex sets. In the
following result, we show that a degenerate continuum cannot occur as the set of
cluster points when A and B are finite unions of nonempty closed convex sets.

Theorem 3.4 (finite unions of convex sets) Suppose that I and J are nonempty finite index
sets, let (Ai)i∈I and (Bj)j∈J be families of nonempty closed convex subsets of a Euclidean space X,
and set A :=

⋃
i∈I Ai and B :=

⋃
j∈J Bj. Consider a sequence of alternating projections (an)n∈N

and (bn)n∈N generated by A and B: b−1 ∈ X, and (∀n ∈N) an ∈ PAbn−1 and bn ∈ PBan.
Suppose that (an)n∈N and (bn)n∈N are bounded, and that bn − an → 0 and an+1 − bn → 0.
Then there exists a point c ∈ A ∩ B such that an → c and bn → c.

Proof. After relabeling and considering the tails of the sequences if necessary, we assume
that each Ai and each Bj is projected upon infinitely often. The pigeonhole principle
gives (i+, j+) ∈ I × J and subsequences (akn)n∈N and (bkn)n∈N lying in Ai+ and Bj+ re-
spectively. After passing to further subsequences if necessary, we also assume that there
is c ∈ Ai+ ∩ Bj+ such that akn → c and bkn → c. Set I− :=

{
i ∈ I

∣∣ c /∈ Ai
}

, I+ := I r I−,
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J− :=
{

j ∈ J
∣∣ c /∈ Bj

}
, J+ := J r J−, δ := min{mini∈I− dAi(c), minj∈J− dBj(c), 1}, A− :=⋃

i∈I− Ai, and B− :=
⋃

j∈J− Bj. Since akn → c, there exists m ∈N such that ‖am− c‖ < δ/2.
Then dB−(am) ≥ dB−(c) − ‖am − c‖ > δ − δ/2 = δ/2 > ‖am − c‖ ≥ dBrB−(am).
Hence (∀j ∈ J−) bm /∈ PBj(am) and similarly (∀i ∈ I−) am+1 /∈ PAi(bm). Thus,
bm ∈

{
PBj(am)

∣∣ j ∈ J+
}

and am+1 ∈
{

PAi(bm)
∣∣ i ∈ I+

}
. Therefore, because the projectors

are nonexpansive, δ/2 > ‖am − c‖ ≥ ‖bm − c‖ ≥ ‖am+1 − c‖ ≥ · · · and recalling the
assumption that all sets are projected upon yields I− = J− = ∅, i.e., c ∈ ⋂i∈I Ai ∩

⋂
j∈J Bj.

Since c is a cluster point of (an)n∈N and (bn)n∈N, it thus follows that ‖an − c‖ → 0 and
‖bn − c‖ → 0. �
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