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Abstract

A major step towards quantitatve SPECT imaging may
be achieved if attenuation,scatterand blurring effects are
accountedor in thereconstructiorprocess.Herewe consider
an approachwhich simultaneouslyestimatesthe unknawvn
attenuation coeficient and the emission source using the
emissiondataonly. This leadsto an inverse mathematical
problem which could no longer be solved via iterative
procedureslike the well-known EM-algorithm. Instead, a
regularization approach based on nonlinear optimization
techniquesis used. We presenta successfulstrateyy of the
analytictype,andwe testit in asimulatedcasestudy

I. INTRODUCTION

In its original understandingthe term scatteror attenuation
correctionreferredto methodswhich tried to improve SPECT
or PET reconstructedmagesby correctingor modifying the
emissiondataprior to reconstruction This includeduniform
attenuatiorcorrection,or methodsvhich estimatehe Compton
scatteredphotonsfrom secondaryenegy peak information,
and modify the emissiondata by subtractingthe scattered
contribution. The idea was to compensatdor the fact that
tissueattenuatiorand scatterwere not includedin the filtered
backprojectionalgorithm, used until recently to reconstruct
SPECTand PET images. While it is clearthat this approach
is not justified rigorously someof theseheuristicshave been
reportedto work with considerablesuccess.We refer to this
family of methodsastheapproad via modificationof the data
Seg[6] for anoverview on suchmethods.

The meaningof the term attenuatiorand scattercorrection
has changed significantly over recent years, and is now
generally used to delineate stratgyies, where the unknavn
tissueattenuatiormapyu(z) is estimatedvia transmissiorscans
performed either simultaneouslyor in successionwith the
emissionscanning We referto this asthetransmissiortSPECT
correction methods,or simply as the physical approac to
attenuationand scattercorrection. See[11] for a discussion
andreferencesn at leastfive differentsourceconfigurations.

Here we will be mainly concernedwith a third type of
attenuatioror scattercorrectionmethodswhich try to estimate
the unknawn attenuationcoeficient using the emissiondata
only. As comparedo the physicalmethodsthis approacthas
to get by with lessinformation, and thereforeleadsto more

complicatedmathematicainversionproceduresWe will refer
to it as analytical or mathematicalattenuationand scatter
correction The purposeof this work is to presentanddiscuss
severalsuchanalyticalattenuatiorcorrectionmethod basedon
two nonlinearoptimizationprograms{ P) and(G), to compare
them,andto substantiat¢heir viability usinga simulatedcase
studyanda phantomstudy

Il. PHYSICAL ATTENUATION CORRECTION

Transmission SPECT attenuation correction sets a
benchmarkfor the analytical methodsto be discussechere.
However, transmissionSPECT has its own limitations and
drawvbacks, and one may argue that in the future, physical
and analyticalattenuatiorand scattercorrectionwill probably
co-eistandcomplemenbneanother

Transmissiorbasedattenuatiorcorrectionclearly increases
the patientdose,andrequiresmaintainingan additionalradio-
active sourcen theclinical ervironment.In thesamevein, if the
emission/transmissioscanningareto be performedn parallel,
thechoiceof thetransmissiornsotopewill restrictthe choiceof
the compatibleSPECTisotopes.

Evenin successfuapproache# hasbeenobsenedthatthe
higher enegy isotope, usually the SPECT tracer will down
scatterinto the enegy window of the transmissionisotope,
generatingcross-talkbetweenthe two procedureqsee[11]).
This leadsto artifactsin the reconstructedmages. In [11],
the authorssuggestthat if the transmissionsourceusedthe
higherenepgy isotopethanthe SPECTtracer theimpactof the
cross-talkcould be somavhatreduced.But eventhen,someof
theindicatedrestrictionspersist.

Spilling over of the higherenegy isotopewould not matter
if the emissionand transmissionscanswere performedin
successionjsingeitherthesameor a differentcamerasystems.
However, thiswill complicatethe protocol,andmayleadto the
nontrivial problemof co-registrationof two imagesacquired
with differentgeometries.In addition,if X-ray CT imagingis
usedfor the transmissionmaging, the attenuationmap could
notbeentirelyadaptedo the SPECTtracerenegy dueto beam
hardening.

Theseissueswhich we have only toucheduponhere,make
it seeminterestingto have alternatve proceduresywhich would
allow to estimatethe unknown tissueattenuatiormapusingthe
emissiondataonly. We will startinvestigatingthis possibility,
by looking at someof the analyticalmethodsproposedn the



past,and shall then presentthe optimizationmodels(G) and
(P) onwhich our preseneapproachis based.

[11. ANALYTICAL ATTENUATION CORRECTION

Analytical attenuatiorcorrectionhasalreadya rich history,
and the existing methodsmay roughly be groupedin three
catgyories.

A first class of methods,pioneeredby F. Natterer[26],
usesthe Helgasonconsisteng formula (seee.g. [27, Theorem
[1.6.2]) to estimatethe unknown attenuatiormap i) prior to
reconstructinghe emissionsource.This ideahasrecentlybeen
revived in [35, 21], seealso[16], leadingto a methodcalled
ConTraSPECT where the authorsfit an elliptical dummy
attenuationmap featuring six parameters. This approach,
which in mary casesworks surprisinglywell, is only feasible
for a 360° camerarotation, since Helgasons formula hasno
substitutefor differentcases. Notice further that the artificial
attenuatiommapsobtainedby this type of methodsareunlikely
to sene the purposeof scattercorrection.

A secondtype of mathematicamethods,also initiated by
Natterer[28], tries to fit a templateor referenceattenuation
map o (z), alongwith a prespecifieddeformationprocedure,
to the individual case,using either the consisteng formula,
or by estimating,, and f simultaneouslyvia the attenuated
Radontransform(1) below. This approackcould obviously be
extendedor refinedby usinga stackof modelattenuatiormaps
and applying automaticlearning procedureswhen matching
the referenceobject. The attenuationmapsobtainedby this
classof methodsareof betterquality thanin thefirst caseand
mayvery well be usedto includescattercorrection.

Our present contribution belongs to a third form of
mathematicahttenuationcorrectionmethods,which usesthe
attenuatedRadontransform(cf. [27]):

—/ u(s0 +70+4) dr
e Jt dt

Rlp)f(s,0) = /jo f(s0 + o+

=p(s,0) 1)

to simultaneoushestimatethe unknavn attenuatiormap p(z)

andemissionsourcef (z) from the emissiondatap(s, ). Here
p(s, 8) is the datumacquiredon the line referencedy (s, 9),

and f(z) and u(z) are the emissionsourceand attenuation
coeficient respectiely. Equation(1) wasusedin [12], where
the authorschoosea Poissonmodel for the statisticsof the
emissiondatap. It hasrecently beenrevived by V. Dicken
[13, 14], who usesa Tychono type regularizationto invert
equation(1). This requiressolvinganoptimizationproblemof

theform

(G) min IR[uf —plI” + aZu. f]
S

featuring an appropriateregularizationterm oZ[u, f] which
penalizesand therebyavoids highly irregular reconstructions
u, f that would match the data within the acceptableerror
tolerance(seeSectionV). An approachin the samespirit is

[19]. In (G) we minimize the negative log-likelihood of a
Gaussiarlaw, and possiblechoicesof the norm || - || will be
discussedh thenext section.TheregularizingtermZ|, f] will
thenplay the role of a Bayesianprior, andpossiblechoicesof
theseregularizersare discussedn SectionVII, while steering
thepenaltyparametery is discussedn SectionV.

An interestingway to solve (G) wasrecentlyproposeddy
Bronnikov [3, 4, 5]. Exploiting the factthat R[] f is linearin
f, theauthorfirst solvesthe inner linear leastsquaregproblem
in (G) with respecto thevariable f, usingthe pseudo-inerse
R[u]t. Theremainingnonlineareastsquareproblem

min [ RLRIT = plI* + oZ[u]

in the unknawn y is thenof smallerdimension.This is in fact
a specialcaseof an algorithm proposedoy Golub and Pereira
in [15]. The methodis reportedto work well on a simulated
example.In particular it is reportedo avoid theundesireatross
talk betweenthe reconstruction®f f andu obsenede.g. by
Dicken. Yet anotherapproachbasedon a direct inversionof
(1), is Zengetal. [31], wherethe authorsusea singularvalue
decompositiorto partially linearizethe nonlineardependence
of R[u]f onp.

It is temptingto try to solve problem(G) by analternating
procedurewhich optimizeswith either i or f fixed, iterating
back and forth betweenthesemodes. Several approache®f
this type have beenpresentedecently Thereconstructionsll
seemto suffer from a strongcross-talkphenomenotbetween
f and p, not surprisinglyso, asalternatingproceduref this
type arenot corvergentasa rule andare oftenreportedto fail.
Our presentinvestigationshaows that it is preferableto usea
genuinelycorvergent optimization stratgly, combinedwith a
suitablechoiceof theregularizersasdiscussedn SectionVII.

Anothermethodto solve (1) usesa Poissorstatisticfor the
emissiondata. This leadsto an optimizationproblemsof the
form

N
{ Riji|p) fi
J=1k=1 % i=1
N
“paton (Y- Roululfi) | + aZles

i=1

min
fiu

(P)

which up to constant terms minimizes the negatve
Poissonlog-likelihood function of the independentPoisson
distributed random vector p (pjr) with expectation
E(pjr) = Zf\il Riji fi, augmentedoby a regularizing term
oTlu, f] as above. We solve (P) directly using nonlinear
optimization methods. The nonlinearity of (1) respectiely
(P) in the variable x foils using iterative proceduresn the
spirit of the notoriousEM-algorithm. Nonethelessthereis an
alternatve way in which the EM-algorithmcould still be used.
We shalldiscusghisin SectionVI.

We usethe following standarchotations:Leti = 1,..., N
be the discretizationof the emissionimage and attenuation
map into pixels or voxels, f; the actvity of the ith element,
1; its attenuatiorcoeficient. Let &k = 1,..., S betheangular
positions or stops of the camera,andlet j = 1 M

gy



enumeratecamerabins. Then R[] may be understoodas
the conditionalprobabilitythata photonoriginatingfrom voxel
i isrecordedn thecamerabin j atthecamergpositionk or 6.
Accordingly, p = (p,) representshe projectiondata,with p;y,
the numberof countsdetectedn camerabin j during stop k.
Clearly somemaodificationsmay be adopted. We may switch
to differentbasisfunctions, seee.g. [38], and we may even
choosdlifferentbasedor . and f in orderto accountfor their
differentspatialresolutions.

IV. NONLINEAR LEAST SQUARES

An important problem of the nonlinear least squares
approach(G) is the correctchoice of the norm |e||? of the
forwarderrore = R[u]f — p in dataspace.Thereis evidence
that the Euclideannorm may not be an appropriatecandidate.
This point was alreadymadein [27, 13, 14], while [3, 4] still
usesthe Euclideannorm. Here we will give some support
for the choicessuggesteddy [27, 13, 14] by comparingthe
approache$G) and(P).

Notice that[27] shaws that for fixed p, the linear operator
f — R[u]f is continuousbetweenthe spaceslL?(D) on the
unit disk D and L?(Z, w) onthecylinder Z = [-1,1] x D if
theweightedmeasures(s) ds df, with w(s) = (1 — s?)~1/2,is
usedon Z. This weightedEuclideannorm attributeshigh cost
to mismatchin placeswith few counts,typically locatedat the
endsof the cameracrosssection. The probabilisticmodel (P)
usingthe Poissorstatisticssupportghis algument.

Let {(w,p) = w — plogw, so that the negative
Poissonlog-likelihood function in (P) may be written as
Sty ey L(wik pik) With wie = S0, Rigelulfi. Taylor
expansiongivesthewell-known estimate

y 2
twp) — ttpp) < 3100
valid for 0 < w < 2p. This meansthat as soon as the
parametricforward estimatew;, is closeenoughto the datum
Djk, IN particular wj, < 2pj, the negatve log-likelihood
objectivein (P) will, upto the constanterm>_ ., £(pjk,pjk),
be closeto theweightednormexpression

! 2.1 ZM ZS (Wi — pjk)?
—_ —_ = — _— 2

j=1k=1

which is thenthe norm we shoulduseif we prefera Gaussian
model(G). Thenorm(2) coincideswith thenormon L?(Z, w)
usedabove if the sourcef is a constantfunction on the unit
disk.

V. STOPPING AND SCALING

While thechoiceof theregularizerZ[f, ] will bediscussed
in SectionVIl, we presentlydwell on practicalaspectof (G)
and (P), which concernappropriatestopping rules for the
algorithms,aswell asa suitablescalingof the variablesf and

L.

We generallystopthe optimizationprocedureassoonasthe
{o-norm || R[u] f — p||% approachetheoverallerrorin thedata:

IR[]f = plI3 ~ D pji 3)

jk

This is clearly basedon a Poissonstatistic of the datap, and
was alreadyreportedto work well in a different context [2].
Ourpresenexperimentsconfirmthis guideline.If theweighted
norm|| - ||, is optimized,it may be preferableto replace(3) by
thetest

IRIulf —pl; ~ 1, (4)

which works equallywell in practice. In our experimentswe
usetherule (3).

Notice thatthe choiceof the penaltyparameter is closely
relatedto this stoppingtest. If « is chosentoo large, we may
be unableto achieve the desirederrormamgin (3). Ontheother
hand, choosinga too small will give mary candidateq f, )
which match(3). In thatcasetheeffect of ourregularizeris too
weak.

Concerning scaling, obsere that the highly nonlinear
dependenceof R[u]f on p is in strong contrastwith the
linearityin f, andthegradientf the objective functionin (G)
or (P) in the variablesy and f may be ordersof magnitude
apart. This may causeseriousproblemsin practice, and it
is preferableto properly scalethe nonlinearvariable. In our
experimentswe found that absolute counts for f and the
unit m~*! for ;1 worked best. The standardunit cm—! on the
contraryproducedoo stronggradientsn .

V1. POISSON MODEL

In this sectionwe discusspracticalaspectof the Poisson
model (P). In our experiments,we have solved (P) directly
using nonlinear optimization methods, since the standard
versionsof the EM-algorithm, along with its modifications
like OS-EM [18] or row action methods[7], are no longer
applicable.

Asweshallseefollowing theout-sebf [34, 8], it is possible
to obtainanextendedversionof the EM-algorithm.,if we accept
to performan explicit optimizationstepat eachiteration,atthe
costof slowing down the procedure This is alreadythe caseif
Bayesiarextensionof the EM-algorithmincludingregularizers
areconsideredasshavnin [33].

Recallthatthe EM-algorithmfor (P) generates sequence
(f™,u™) of parameterestimatesby alternatingly performing
an E-stepand an M-step [34, 8]. Given currentparameters
(f™, u™), the E-stepcreatesa new instancey™ of the so-called
complete data vector, and the M-step then performs a
maximum likelihood estimationin the completedata space,
basedon these hypotheticaldata ¢”. This generatesnew
parameteestimates™t1, pun+1.

In our case we assumethat the complete data vector
g = (g xr) is independentand Poison distributed with
expectationE(g;jx) = Rijr[u] fi. Thisis ahypotheticquantity
representingthat part of the actvity in pixel i which is
emittedtowardscamerabin j during stopk. Theincomplete
datap = (pj;x), by definition always thosewho are actually



sampledarelinkedto the completedatag throughtheforgetful
connectionp;, = Efvzl gijk- With thesepreparationsthe
schemebecomes:

E-step. Given parameterestimatesf™ and p", form the
completedatavectorg™ by
Rigi [ 7
Q= P L (5)
Z Rirji "] f37

/=1

M-step.  Given the complete data vector ¢, obtain new
parameterestimatesf™*!, ™! by solving the maximum
likelihoodoptimizationproblem

M S

SN Rigrlulfi — ¢y dog (Rijlpl f:)

j=1k=1i=1

g ©

Someremarksare in order here. Notice first that (5) in
the E-stepis the formula for the conditional expectationof
the completedatavector ¢, given the data, p, and underthe
assumptiorthatthe currentparameteestimatesf™ andu™ are
the correctones. This partis in factexactly the sameasin the
well-known staticcase(seee.g.[34, 8]).

The differenceis in the M-step. Since u has becomea
variable theis no hopeto solvingthe minimizationover (u, f)
explicitly. Whatseemsaworse,dueto thevariableu, the M-step
no longersplitsinto N problemsof size 2.5, while it did split
in aseriesof N problemsof size S in theclassicakcase(with 1
known andheldfixed).

We may neverthelessdo one thing and perform the
minimizationover f first. This may be solved explicitly and
givesaformulalinking f*+! andu™t!. To find it, noticethat
theobjective (6) mayberecastas

Z%Wfi — 7t log fi = > _ afty log (Rijk[u])

ijk

()

with the abbreviations oy[u] = > Rij[p] and
T = ij - The minimization over f only involvesthe
first two terms,is separablén thatvariable, andhastheexplicit
solution
f'_n—‘rl _ Tin
' oi[pr ]

(8)

which will of coursecomeinto actionassoonaswe will have
obtainedy™*! by solving the remaining optimization of (7)
with respecto p. After substituting(8) into (7), theremaining
partof the M-stepis, up to termsnow constanin y:

min Yt logalu] = Y aij log (Rugelu]).
i ijk

9)

This optimizationproblemwith solutionp™*1 is of size N, to
be solved onceper M-step. Altogether we obtainan iterative
procedurewhich we may useto estimateu, andwhich we cast
asaniterative proceduren the parametersg, ¢):

Modified EM-Algorithm

1. Given the syntheticdata ¢ = (g¢;;x), obtain a new
parameteestimateu™ by solving(9).

2. Obtain f* viaformula(8).
3. Obtaing™ viaformula(5).

Clearly, f may be eliminatedfrom this scheme,which may
in consequencde consideredan estimationprocedurefor
alone. Notice that this suggestddeaslik e using a coarsegrid
approximatiorto estimateu, in orderto acceleratehis process.

VIl. REGULARIZERS

In a probabilistic setting, regularizing terms may be
interpretedas Bayesianpriors on the parameteispacef the
Gaussiaror Poissonmodel underconsiderationas showvn in
[17]. In the presentsection,we discusspossiblechoicesof
regularizersZ|f] andZ|[u] adaptedo our problem.

Usinga high-pasdilter

I(f] = o115 = %0 - fI13

seemsnatural, as we expect noise contritutions to be of
high frequeng, which we should then penalizethrough the
regularizing term. But how to choosethe cutoff frequeng
b? As proposedby [24, 25|, the Fourier slice theoremcould
give us a guidelineon the choiceof 5. Obsene that without
tissueattenuationj/%?(o, 0) = f(o0), which tells us that the
spatialresolutionof the unknowvn emissionsourceis no better
thanthe spatialresolutionof the projections,or put differently,
ary detail presentn theimage f shouldbe visible in someof
the projections. Consequentlydetails finer than the known
resolutiond of the projectionp shouldbe attributed to noise
sourcesaandpenalizedhrough(10).

Clearly, in the presencef tissueattenuationwe have to be
consenrative aboutthe proposedhoiceof b, asthe Fourierslice
theoremwill only be approximatelytrue. Nonetheless(10)
works considerablywell in practice(seealso[2]).

An interestingvariation of (10) usesthe fact that the 2D
spectrump of the attenuatedRadontransformp = R[u|f is
concentrate@n a bowtie shapedegion in the frequeng plane
(cf. [32, 27, 23]). This wasfirst obsenedin the unattenuated
case but [23] shows thatit remainsqualitatively correctin the
attenuatedase.This suggesta regularizerof theform

T[] = [Hmo(RHIZ = 1B RFI13

where ®,,, , is an appropriatecutoff operatoradaptedto a
bowtie of width 2b in the directionof the frequeny planeaxis
belongingto the variables, andthickness2m at the origin in
directionof the frequeng planeaxis belongingto the variable
0 (seeFigure X). For detailsseethe above references.Notice
thatin both formulas(10), (11) we exploit Parseval’s identity,
which allows us to implementthe regularizerin the frequengy
domain.

A somavhat different regularizer with some popularity
in the mathematicalcommunity is the so-called flat zone
regularizer

(10)

(11)

Il = IV s (12)



which modifiesthe notoriousTychonos term, known to be too

smoothing replacingthe Euclideannorm by the 1-norm. This

is reportedto privilege reconstructedmagesf featuring flat

zoneswith identical grey values. Someof our experiments
confirmthis phenomenoifseeSectionlX). We stopto give an

optimizer's point of view explainingthis behaior.

Consider for simplicity a 1D linear inverse problem
for the abstract operator R.  Following (G), we solve
ming |Rf — pl|3 + o f'||: for a fixed penalty constanta.
Along with (G) considerthe correspondingerror tolerance
optimizationprogram

~ minimize

1712
(&) subjectto

IRf —pll2<e€

for afixede. Obsene thataslong asthe inequality constraint
in (G) is active, (G) and (G) areequivalentin the following
sense:every local solution f¢ of (G) is alsoa local solution
fa Of (G) with acertainvaluea = «(e). Corversely a local
solution f,, of (G) alsolocally solves (G) for the valuee =
e(a) = |Rfa — plla- Forshort, f€ = fo ), andfo = f<().
Now consideradiscretizedzersionof (G), wherewereplace
thedervative f’ by afinite differenceapproximation Making a
changeof variablesy; = f; — fi11, Say werecastthe problem

as

minimize
subjectto

. lgllx

) IRTg — plls < e

where f = Tg is that changeof variables. This meansthat
we minimize the 1-normof g over anelliptic cylinder, andthe

minimumis found by scalingthe normball until it toucheghe

cylinder from outside. Now recall thatthe 1-normball has2n

extremepoints,n the dimensionof the discretizedy, andit is

highly likely thatthe contactis in one of theseextremepoints,
anextremeface,etc. As we cansee,ary oneof theseextreme
elementshasmary differencesy; equalzero,which produces
the mentionedflat zones. Notice, however, that this analysis
shaws that the choice of the 1-normis somavhat accidental
here,andthatothernormballscould be usedwith equalrights.

How aboutregularizing 4? In principle we could usethe
sameideasasfor f, eventhoughthe guidelinefor the cutoff
frequeng in (10) is no longer correct. What is obsened in
our experimentsand confirmed in other approachess that
the resolution of the attenuationmap p(z) neednot be as
fine asthat of the emissionsourcef(z). In particular since
the reconstructiormethoditself has someimperfections,the
work requiredto improve saythe ultimate 10% of resolutionof
u(x) arepracticallywastedasthey barelyimprove the quality
of the reconstructedmage f. This suggestaising a coarser
bandwidthb for thesignalu(z).

Notice that we recommendusing the filter (11) for pu,
since the exponentin (1), known as the divergent beam
transformDu(z, 6), see[27], is closeto the Radontransform
Ru, exhibiting similar spectralproperties. This meansthat
regularizing R also helpsto stabilizeDu(x, 0). Looking at
formula (1), it is clearthat eventhoughwe try to estimatey
through our procedure,what is requiredto reconstructf is

not x, but exp{—Du(z,0)}. In particular exp{—Du(z,0)}
should have its spatial resolution (bandwidth)comparableto
thatof f, not p.

VIII. EXISTING METHODS

Our new optimization approachto inverting (1) has to
be comparedto someexisting techniques. In particulayr we
implementedcf. [16]) the ConTraSPECTmethodof [35, 21],
which corrects for attenuationusing a dummy attenuation
map pen(z) of elliptical shapewith constantattenuation.
This leaves a total of six degreesof freedom, the constant
attenuationcoeficient, and 5 geometricparameterdixing the
shapeandpositionof theellipse.UsingHelgasons consisteng
formula, the attenuationmapis adjustedto the emissiondata
using nonlinearleastsquares.As reportedin [35, 21], the six
variablesare sometimeddifficult to optimize simultaneously
and the best results are obtained by fixing the attenuation
coeficient after someinitial steps,andoptimizingthe5 shape
parametersubsequently As mentionedin the introduction,
sinceHelgasons formulais only valid over 360°, we canonly
compareour methodto ConTraSPECTin this case. Notice
that the often surprisingly good resultsof ConTraSPECTare
understoodrom our previouscommentsmakingthe pointthat
1 is not requiredat a very high precisionin orderto improve
the quality of thereconstructedmagef.

A somavhat older approach,useful for instancein brain
imaging,but known to fail in morecomplicatedsituationslike
a cardiacstudy consistdn automaticallydetectingthe contoug
andassuminga constantttenuatiorcoeficientthereon.In our
experimentalbrain study we have estimatedhe headcontour
using emissiondata acquired at a secondaryenegy peak,
representingcatteregphotonsfrom the primary photopeak.

The ConTraSPECTandthe contourmethodhave presently
been used to provide good starting points for the various
optimizers(seethe next section). A detailed comparisonof
thesetwo methodsas attenuationcorrectionstrateyies of their
own rightis presentedhn [16].

We concludethis sectionby mentioning anotherinverse
approachto (1), recentlyproposedby Novikov [30]; seealso
[29]. Theauthorpresenta mathematicallyappealingnversion
formula for the attenuatedradontransform, (1), a curiosity,
sincethis formulahasbeensoughtfor like the holy grail since
atleast1915,andmary a valiantresearcheceasedo believe
in its existence. Structurally it is of the form f = N|u|d,
if d = R[u]f, thatis, it inverts f — R[u]f, but not
(s f) — R[u]f. It couldthereforebe employedin a physical
attenuation correction approach, but less straightforvardly
in the analytical setting. However, the formula is unlikely
to improve on current SPECT reconstructionproceduresas
it doesnot allow to take collimator blurring into account.
If implementedas proposedin [29, 20], Novikov's formula
will play a role for SPECT similar to the role filtered
back-projectiomplaysfor CT imaging.



IX. EXPERIMENTS

A first simulatedstudyusesthe MCAT phantomsliceatthe
level of theheartshavn in Figurel. We assume %™ Tc-based
tracerwith relatve concentrationof 75.0, 3.82 and 1.76 in
heart, lungs and soft tissue. The attenuationcoeficient in
the cortical bones,trabecularbones,lungs and muscleat the
nominal enegy £y = 140keV of Technetiumwere chosen
as 0.210,0.166, 0.0427and 0.150cm—*! respectiely. The
emissionsourcef andattenuatiormapy werebothdiscretized
into 64 x 64 pixelsof size6.25 x 6.25mm. A SPECTcamera
with a perfect parallel hole collimator was assumed,and
syntheticprojectiondatausingthe attenuatedRadontransform
were calculated. The model includestissue attenuation,but
neithercollimator blurring nor scatter The datawere Poisson
noisedin orderto createarealisticsignal-to-noiseatio. A total
of 64 projectionswere scannedover 180°, and alternatvely
over 360°. The size of the cameraprojectionbins was 6.25
mm. Thetotal numberof countsin the selectedslicewasof the
orderof 180,000.

A secondexperimentalstudy usesthe physical Radiology
Support Device (RSD) neuro-receptorphantom shovn in
Figure 2. The phantom, an artifical skull enclosedwithin
materialthat mimics soft tissue,ears,noseand neck, hasone
brainreserwir andfour striatalcontainersThe chambersvere
filled with a homogeneoussolution of 303kBg/ml labelled
with %mTc, The projection data were acquired with an
Elscint dual headspectralSPX camera,equippedwith a low
enegy high resolution (LEHUR) collimator. A total of 60
angular views, equally spacedover 180°, and alternatiely
over 360°, werescannedver 15sper view, andthe projection
datawere sampledon a 128 x 128 grid with pixels of size
3.44 x 3.44mm. The datawere scannedover 15s per view,
and correctedfor the known decayof the tracerisotope. This
resultedin approximately400,000countsper projection. A
+10% enegy window aboutthe primaryphotopeakat 140keV
wasused. A secondemissiondatasetwasacquiredin a 3%
enegy window abouta secondaryeakat 122keV.

X. RESULTS OF THE SIMULATION

In the simulatedstudy we have reconstructedhe unknaovn
w1 and f usingthefollowing

2D Algorithm

1. Generataninitial guess(u’, f°) usingoneamongfour
possibleproceduredy, ..., I4.

2. Run the optimizer (G;) or (P;) using one of the five
possibleregularizers; € {0,1,2,h,1 + ¢}, until the
stoppingtest(2) applies.

3. Keepthe i so obtained,and obtain f... by inverting
R[u]f = d viathe EM-algorithm.

In eachoptimizationscenario(G) or (P) we have started
the reconstructionmethod with four different initial points
(f°,u%). I, correspondso choosingf® = 0, u° = 0. I
correspondgo running the Gaussiaroptimization (G) with a

constanattenuatiormapon the contour thatis x(z) = u, with

1 a variableto be optimized. I3 chooseghe ConTraSPECT
reconstruction foy, i) asinitial. Notice that since pie; has
nonzerovaluesoutsidethe contour the optimizationprocedure
(G) or (P), too, will have to allow for nonzerop outsidethe
contour Finally, I, choosesf® asthe EM-reconstructiorwith

1Y = lieonst CONStanton the contour and basedon the best
possiblevalueof .

Based on programs (G) and (P), we have used the
following optimizationstratgjies(G;): (Go) uses(G) without
regularizer (G1) uses(G) andthe flat zoneregularizer(12)
for f and i, (G2) uses(G) with the Tychonors regularizer
Z[f] = ||V f]l2 for both f andu, while (G},) usesa high pass
filter (10) for f and u. Finally, (G14.) we combinesthe flat
zoneregularizerwith (14), a speciallyadaptedpenaltytermto
avoid the cross-talkphenomenotetweery, and f. In thecase
of the Poissorprogram the notationis analogous.

In Table 1 we have comparedthe results f,.. of various
optimization basedreconstructions. Using the true emission
sourcewe calculatetherelative errorterms:

_ Hftrue - frec||2

e =
e ||ftrue”2

Theentriesin Table1 show relative errortermsfor the various
regularizers.Thefirst line shavs the relative errorsof the four
possiblenitials.

Notice that if we reconstruct fem true USING the true
attenuatiommap uiire, therelative errorsareeem true = 18.1%
for 180°%, andeem true = 16.0% for a 360° tour. Theseerrors
are due to the random nature of the emissiondata. Since
the signal-to-noiseration in fem true iS oNly mildly inferior
to the signal-to-noiseration of the data, theseerrors may be
considereda goodindicatorfor the lowestpossiblenoiselevel
in anyreconstruction.

(13)

L [ o [ 6 [ 15 [ 4L |
— [100[10028.1]26.6]] — |21.0]]23.4]22.3
Go |[61.8]53.4][27.4[24.4][ — [20.0[22.7[20.5
Gy | * | * [[21.2[18.6]] — |18.8[21.0]19.3
G, || * | * [[244]235] — | * [[225] *
Gy |[61.2] * [[24.4[226 — | * [22.6/20.4

Giie 20.5
P, [[66.3[58.8]26.8[25.3] — [20.5][22.7]20.7
P (653 * [[204[18.9]] — [19.8][21.7[19.6
P, ([65.1] * [[24.9]23.0] — | * [22.6] *
P, (658 * [[24.3[223]] — [204] * | *
Pryic 21.3

[ [[180°]360°][180°]360°][180°]360°]180°]360°]]

Tablel
Comparisorof OptimizationMethods

Noticethat I3 couldonly betestedon a 360" tour, which is
indicatedby the — in thefirst sub-columrof 7;3. Thesymbol*
indicatesthat the optimizer was not ableto improve the error
mamgin of the initial point (f°,4°). The results displayed



correspondto the best choicesof the penalty constantsa
involved in the various regularizers. Those differ between
the programs(G) and (P), and alsobetweenthe regularizers
j € {1,2,h,1+ c}. As we obsenred,the correctchoiceof the
penaltiesa. may dependon the type of study (kidney, heart,
brain,etc.),but oncespecifiedjs generallypatientindependent.
This obsenationwasalreadymadein [22].

We obsene that I3 and I, provide alreadyinitial guesses
with a good error margin, but generallyoptimizing improves
over the initial values. Notice, however, a relatively strong
dependenceof the optimizers on the starting points. For
instancenoneof the (G)'sor (P)'swasablereducetheerrorin
1, to acompetitive value,sostrat@y I; turnsoutinsuficient.

In the heartstudyit is possibleto use a specially suited
regularizer in order to avoid the cross-talk phenomenon
betweenf and . reportedin several approachesThe shadev
of f apparentn thereconstructeq: appearsn aregion where
the correctvalueof y is basicallyknown. While correctingu
by handis of courseprohibitive, we recommendh regularizer
of theform

N
Ifon) = Y fi (ptmax — 1) (14)
=1

whichwill obviously penalizevaluesu; toolow atplacesi with
high actiity f;. Notice that this is a non-corvex functionin
(f, ).

This approachworkswell, but thebadnews s thatit barely
improvesthequality of thereconstructed,.. or theerrorse,cc.
Thegoodpartof thatbadnewsis thatthis seemgo indicatethat
the damageof the shadev artifactis negligeableanyway, soits
only effectis thatthereconstructeg,.. is lessfangy.

Fig. 1 Transaxialslice throughthe MCAT phantomat the level of
the heart. Left 9" Tc uptale distribution, right attenuationmap at
140keV.

XI. RESULTS OF THE PHANTOM STUDY

In the phantomstudy thereconstructionsvereobtainedvia
thefollowing
3D Algorithm

1. Dividethe3D ROl into transaxiaklicesy = 1,...,T. In
eachslice generateaninitial guessusing /4, andrun the
2D Algorithm to obtaina reconstructior{y”, f).

Fig. 2 Reconstructionof same transaxial MCAT slice. Activity
distribution (left) is closeto thetruth. A shadev artifactof the heartis
still visible in thereconstructedttenuatiormap(right).

Fig. 3 X-ray CT imagesof the RSD phantom.Right corticalslice, left
cerebellaslice.

2. Form a 3D attenuatiormap p by stackingthe p”, v =
1 T.

gy

3. Obtain the emissionsource f,.. by a 3D inversion of
Rulu]lf = d via the EM-algorithm, where the model
includesattenuatiorandcollimatorblurring.

In orderto estimatethe headcontourrequiredin I, we
havereconstructethedataacquirecaboutthesecondargnegy
peakat 122leV .

Notice that the slice-by-sliceestimationof 1 in stepl is
necessarysincea 3D inversionwould leadto a difficult large
scaleoptimizationproblemwith 2 - 643 unknown variables.

Since the actvities in the different containersof the
phantomare known, the true emissionsourceis known up to
a constantfactor However, the proportionality constantis
difficult to estimatein practice,andwe have thereforedecided
to useadifferentstrat@y to evaluatethereconstructiong;...

XI1l. CONCLUSION

Our experimentshave shavn that attenuationcorrection
using SPECTemissiondataonly is possible.In the simulated
study someof the reconstructions,.. camecloseto the error
mamin alreadypresentin the randomdata. In that situation,
the resultis closeto optimal, and it seemshard to improve
e.g. by constructingmore sophisticatedregularizers. Put
differently, the preponderantractionin the error comesfrom
thereconstructionmethoditself.

In the simulationwe obsenedthatthe flat zoneregularizer
performedslightly betterthanthe bandpasdiltering, probably
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