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Abstract

A major step towards quantitative SPECT imaging may
be achieved if attenuation,scatter and blurring effects are
accountedfor in the reconstructionprocess.Herewe consider
an approachwhich simultaneouslyestimatesthe unknown
attenuationcoefficient and the emission source using the
emissiondata only. This leads to an inversemathematical
problem which could no longer be solved via iterative
procedureslike the well-known EM-algorithm. Instead, a
regularization approach based on nonlinear optimization
techniquesis used. We presenta successfulstrategy of the
analytictype,andwe testit in asimulatedcasestudy.

I . INTRODUCTION

In its original understanding,thetermscatteror attenuation
correctionreferredto methodswhich tried to improve SPECT
or PET reconstructedimagesby correctingor modifying the
emissiondataprior to reconstruction. This includeduniform
attenuationcorrection,or methodswhichestimatetheCompton
scatteredphotonsfrom secondaryenergy peak information,
and modify the emission data by subtractingthe scattered
contribution. The idea was to compensatefor the fact that
tissueattenuationandscatterwerenot includedin the filtered
backprojectionalgorithm, used until recently to reconstruct
SPECTandPET images. While it is clear that this approach
is not justified rigorously, someof theseheuristicshave been
reportedto work with considerablesuccess.We refer to this
family of methodsastheapproach via modificationof thedata.
See[6] for anoverview on suchmethods.

The meaningof the term attenuationandscattercorrection
has changed significantly over recent years, and is now
generally used to delineatestrategies, where the unknown
tissueattenuationmap���
	�� is estimatedvia transmissionscans
performed either simultaneouslyor in successionwith the
emissionscanning.We referto this asthetransmissionSPECT
correction methods,or simply as the physical approach to
attenuationand scattercorrection. See[11] for a discussion
andreferenceson at leastfivedifferentsourceconfigurations.

Here we will be mainly concernedwith a third type of
attenuationor scattercorrectionmethods,which try to estimate
the unknown attenuationcoefficient using the emissiondata
only. As comparedto thephysicalmethods,this approachhas
to get by with less information, and thereforeleadsto more

complicatedmathematicalinversionprocedures.We will refer
to it as analytical or mathematicalattenuationand scatter
correction. Thepurposeof this work is to presentanddiscuss
severalsuchanalyticalattenuationcorrectionmethod,basedon
two nonlinearoptimizationprograms,��
�� and ����� , to compare
them,andto substantiatetheir viability usinga simulatedcase
studyanda phantomstudy.

I I . PHYSICAL ATTENUATION CORRECTION

Transmission SPECT attenuation correction sets a
benchmarkfor the analytical methodsto be discussedhere.
However, transmissionSPECT has its own limitations and
drawbacks, and one may argue that in the future, physical
andanalyticalattenuationandscattercorrectionwill probably
co-exist andcomplementoneanother.

Transmissionbasedattenuationcorrectionclearly increases
the patientdose,andrequiresmaintainingan additionalradio-
activesourcein theclinicalenvironment.In thesamevein,if the
emission/transmissionscanningareto beperformedin parallel,
thechoiceof thetransmissionisotopewill restrictthechoiceof
thecompatibleSPECTisotopes.

Evenin successfulapproachesit hasbeenobservedthat the
higher energy isotope,usually the SPECTtracer, will down
scatterinto the energy window of the transmissionisotope,
generatingcross-talkbetweenthe two procedures(see[11]).
This leadsto artifacts in the reconstructedimages. In [11],
the authorssuggestthat if the transmissionsourceusedthe
higherenergy isotopethantheSPECTtracer, theimpactof the
cross-talkcouldbesomewhatreduced.But eventhen,someof
theindicatedrestrictionspersist.

Spilling over of thehigherenergy isotopewould not matter
if the emission and transmissionscanswere performed in
succession,usingeitherthesameor adifferentcamerasystems.
However, thiswill complicatetheprotocol,andmayleadto the
nontrivial problemof co-registrationof two imagesacquired
with differentgeometries.In addition,if X-ray CT imagingis
usedfor the transmissionimaging, the attenuationmapcould
notbeentirelyadaptedto theSPECTtracerenergy dueto beam
hardening.

Theseissues,which we have only toucheduponhere,make
it seeminterestingto havealternativeprocedures,which would
allow to estimatetheunknown tissueattenuationmapusingthe
emissiondataonly. We will startinvestigatingthis possibility,
by looking at someof the analyticalmethodsproposedin the



past,andshall thenpresentthe optimizationmodels ����� and
��
�� on� which ourpresentapproachis based.

I I I . ANALYTICAL ATTENUATION CORRECTION

Analytical attenuationcorrectionhasalreadya rich history,
and the existing methodsmay roughly be groupedin three
categories.

A first class of methods,pioneeredby F. Natterer [26],
usestheHelgasonconsistency formula (seee.g. [27, Theorem
II.6.2]) to estimatetheunknown attenuationmap ����	�� prior to
reconstructingtheemissionsource.This ideahasrecentlybeen
revived in [35, 21], seealso [16], leadingto a methodcalled
ConTraSPECT, where the authors fit an elliptical dummy
attenuationmap featuring six parameters. This approach,
which in many casesworks surprisinglywell, is only feasible
for a ������� camerarotation, sinceHelgason’s formula hasno
substitutefor differentcases.Notice further that the artificial
attenuationmapsobtainedby this typeof methodsareunlikely
to serve thepurposeof scattercorrection.

A secondtype of mathematicalmethods,also initiated by
Natterer[28], tries to fit a templateor referenceattenuation
map � � ��	�� , alongwith a prespecifieddeformationprocedure,
to the individual case,using either the consistency formula,
or by estimating � and � simultaneouslyvia the attenuated
Radontransform(1) below. This approachcouldobviously be
extendedor refinedby usinga stackof modelattenuationmaps
and applying automaticlearning procedureswhen matching
the referenceobject. The attenuationmapsobtainedby this
classof methodsareof betterquality thanin thefirst case,and
mayverywell beusedto includescattercorrection.

Our present contribution belongs to a third form of
mathematicalattenuationcorrectionmethods,which usesthe
attenuatedRadontransform(cf. [27]):
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to simultaneouslyestimatethe unknown attenuationmap ���
	��
andemissionsource� �
	�� from theemissiondata9=��"$#/%>� . Here
9=��"$#/%>� is the datumacquiredon the line referencedby ��"$#&%�� ,
and � �
	�� and ���
	�� are the emissionsourceand attenuation
coefficient respectively. Equation(1) wasusedin [12], where
the authorschoosea Poissonmodel for the statisticsof the
emissiondata 9 . It has recentlybeenrevived by V. Dicken
[13, 14], who usesa Tychonov type regularizationto invert
equation(1). This requiressolvinganoptimizationproblemof
theform

�����@?BA
CD�E F G ��� � �H�JIK9 GML +ONQP � �R#/�S�
featuring an appropriateregularization term NTP � �R#/�S� which
penalizesand therebyavoids highly irregular reconstructions
�R#&� that would match the data within the acceptableerror
tolerance(seeSectionV). An approachin the samespirit is

[19]. In ����� we minimize the negative log-likelihood of a
Gaussianlaw, and possiblechoicesof the norm G,U�G will be
discussedin thenext section.Theregularizingterm P � �R#&�S� will
thenplay the role of a Bayesianprior, andpossiblechoicesof
theseregularizersarediscussedin SectionVII, while steering
thepenaltyparameterN is discussedin SectionV.

An interestingway to solve ����� wasrecentlyproposedby
Bronnikov [3, 4, 5]. Exploiting the fact that

��� � �H� is linear in
� , theauthorfirst solvesthe inner linear leastsquaresproblem
in ����� with respectto thevariable � , usingthepseudo-inverse��� � �
V . Theremainingnonlinearleastsquaresproblem

?JAWCF G ��� � � ��� � �WVX9YIK9 G L +ONZP � � �
in theunknown � is thenof smallerdimension.This is in fact
a specialcaseof an algorithmproposedby Golub andPereira
in [15]. The methodis reportedto work well on a simulated
example.In particular, it is reportedto avoid theundesiredcross
talk betweenthe reconstructionsof � and � observed e.g. by
Dicken. Yet anotherapproach,basedon a direct inversionof
(1), is Zenget al. [31], wherethe authorsusea singularvalue
decompositionto partially linearizethe nonlineardependence
of
��� � �!� on � .
It is temptingto try to solve problem ����� by analternating

procedurewhich optimizeswith either � or � fixed, iterating
back and forth betweenthesemodes. Several approachesof
this typehave beenpresentedrecently. Thereconstructionsall
seemto suffer from a strongcross-talkphenomenonbetween
� and � , not surprisinglyso, asalternatingproceduresof this
typearenot convergentasa rule andareoftenreportedto fail.
Our presentinvestigationshows that it is preferableto usea
genuinelyconvergentoptimizationstrategy, combinedwith a
suitablechoiceof theregularizersasdiscussedin SectionVII.

Anothermethodto solve (1) usesa Poissonstatisticfor the
emissiondata. This leadsto an optimizationproblemsof the
form
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e cW\ a � � �H� c +jN1P � �R#/�S�
which up to constant terms minimizes the negative
Poissonlog-likelihood function of the independentPoisson
distributed random vector 9 ' ��9 \ a � with expectationk �
9 \ a �l' bcm]_^ e cW\ a � c , augmentedby a regularizing term
NZP � �R#&�S� as above. We solve ��
�� directly using nonlinear
optimization methods. The nonlinearity of (1) respectively
��
�� in the variable � foils using iterative proceduresin the
spirit of the notoriousEM-algorithm. Nonetheless,thereis an
alternative way in which theEM-algorithmcouldstill beused.
We shalldiscussthis in SectionVI.

We usethe following standardnotations:Let no'qpr#/s&s/s�#&t
be the discretizationof the emissionimage and attenuation
map into pixels or voxels, � c the activity of the n th element,
� c its attenuationcoefficient. Let uv'Opw#&s/s/s/#/x be theangular
positions or stops of the camera, and let yz' pw#/s&s/s&#/{



enumeratecamerabins. Then
e cW\ a � � � may be understoodas

theconditionalprobabilitythataphotonoriginatingfrom voxel
n is recordedin thecamerabin y at thecameraposition u or % a .
Accordingly, 9|'}�
9 \ a � representstheprojectiondata,with 9 \ a
the numberof countsdetectedin camerabin y during stop u .
Clearly somemodificationsmay be adopted.We may switch
to different basisfunctions,seee.g. [38], and we may even
choosedifferentbasesfor � and � in orderto accountfor their
differentspatialresolutions.

IV. NONLINEAR LEAST SQUARES

An important problem of the nonlinear least squares
approach����� is the correct choice of the norm G 2 G L of the
forwarderror 2B' ��� � �!�~I�9 in dataspace.Thereis evidence
that the Euclideannorm may not be an appropriatecandidate.
This point wasalreadymadein [27, 13, 14], while [3, 4] still
usesthe Euclideannorm. Here we will give somesupport
for the choicessuggestedby [27, 13, 14] by comparingthe
approaches����� and ��
�� .

Notice that [27] shows that for fixed � , the linear operator
��� ��� � �H� is continuousbetweenthe spaces� L ����� on the
unit disk � and � L ����#��J� on thecylinder �j' � Iopw#$p����v� if
theweightedmeasure�J��"r�38�"g8>% , with �J��"r��'���p IK" L � * ^!� L , is
usedon � . This weightedEuclideannormattributeshigh cost
to mismatchin placeswith few counts,typically locatedat the
endsof thecameracrosssection.Theprobabilisticmodel ��
��
usingthePoissonstatisticssupportsthis argument.

Let �>���Y#�9=� ' ��I�9 f
h�i � , so that the negative
Poisson log-likelihood function in ��
�� may be written as[\!]_^ `a ]_^ �>�
� \ a #�9 \ a � with � \ a ' bcm]_^ e c
\ a � � �H� c . Taylor
expansiongivesthewell-known estimate

�>���Y#�9=�;IK�>�
9�#�9;��� p� �
��IK9;� L9
valid for ����� � � 9 . This meansthat as soon as the
parametricforwardestimate� \ a is closeenoughto the datum
9 \ a , in particular, � \ a � � 9 \ a , the negative log-likelihood
objective in ��
�� will, up to theconstantterm \ a �>�
9 \ a #�9 \ a � ,
becloseto theweightednormexpression

p� G ��IK9 G L �o� ' p�
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which is thenthe norm we shoulduseif we prefera Gaussian
model ����� . Thenorm(2) coincideswith thenormon � L ���_#��J�
usedabove if the source � is a constantfunction on the unit
disk.

V. STOPPING AND SCALING

While thechoiceof theregularizerP � �S#�� � will bediscussed
in SectionVII, we presentlydwell on practicalaspectsof �����
and ��
�� , which concernappropriatestopping rules for the
algorithms,aswell asa suitablescalingof thevariables� and
� .

We generallystoptheoptimizationprocedureassoonasthe
� L -norm G ��� � �H�oI�9 G LL approachestheoverallerrorin thedata:

G ��� � �!�BIK9 G�LL
�

\ a 9 \ a (3)

This is clearly basedon a Poissonstatisticof the data 9 , and
was alreadyreportedto work well in a different context [2].
Ourpresentexperimentsconfirmthisguideline.If theweighted
norm G�U�G � is optimized,it maybepreferableto replace(3) by
thetest

G ��� � �!�BIK9 G�L � � pr# (4)

which works equallywell in practice. In our experimentswe
usetherule (3).

Notice that thechoiceof thepenaltyparameterN is closely
relatedto this stoppingtest. If N is chosentoo large,we may
beunableto achieve thedesirederrormargin (3). On theother
hand,choosing N too small will give many candidates���S#����
whichmatch(3). In thatcase,theeffectof our regularizeris too
weak.

Concerning scaling, observe that the highly nonlinear
dependenceof

��� � �H� on � is in strong contrast with the
linearity in � , andthegradientsof theobjectivefunctionin �����
or ��
�� in the variables� and � may be ordersof magnitude
apart. This may causeseriousproblemsin practice,and it
is preferableto properly scalethe nonlinearvariable. In our
experimentswe found that absolutecounts for � and the
unit � * ^ for � worked best. The standardunit �M� * ^ on the
contraryproducedtoo stronggradientsin � .

VI. POISSON MODEL

In this sectionwe discusspracticalaspectsof the Poisson
model ��
�� . In our experiments,we have solved ��
�� directly
using nonlinear optimization methods, since the standard
versionsof the EM-algorithm, along with its modifications
like OS-EM [18] or row action methods[7], are no longer
applicable.

As weshallsee,following theout-setof [34, 8], it is possible
to obtainanextendedversionof theEM-algorithm,if weaccept
to performanexplicit optimizationstepat eachiteration,at the
costof slowing down theprocedure.This is alreadythecaseif
Bayesianextensionsof theEM-algorithmincludingregularizers
areconsidered,asshown in [33].

Recallthat theEM-algorithmfor ��
�� generatesa sequence
���Z��#��g�;� of parameterestimatesby alternatinglyperforming
an E-stepand an M-step [34, 8]. Given current parameters
���Z��#��g�;� , theE-stepcreatesa new instance�/� of theso-called
complete data vector, and the M-step then performs a
maximum likelihood estimationin the completedata space,
basedon these hypothetical data � � . This generatesnew
parameterestimates�Z�$� ^ #��g�w� ^ .

In our case we assumethat the complete data vector
� ' ��� c
\ a � is independentand Poison distributed with
expectation

k ��� c
\ a �_' e c
\ a � � �H� c . This is a hypotheticquantity
representingthat part of the activity in pixel n which is
emittedtowardscamerabin y during stop u . The incomplete
data 9�'���9 \ a � , by definition always thosewho are actually



sampled,arelinkedto thecompletedata� throughtheforgetful
connection9 \ a ' bcm]_^ � c
\ a . With thesepreparations,the
schemebecomes:
E-step. Given parameterestimates�Z� and �g� , form the
completedatavector �/� by

� �c
\ a '�9 \ a
e c
\ a � �g�>�!�Z�cb

c�� ]�^
e c � \ a � � � �H� �c �

(5)

M-step. Given the completedata vector �/� , obtain new
parameterestimates �Z�$� ^ , �g�$� ^ by solving the maximum
likelihoodoptimizationproblem

?JAWCD�E F
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Someremarksare in order here. Notice first that (5) in
the E-step is the formula for the conditional expectationof
the completedatavector � , given the data, 9 , and under the
assumptionthat thecurrentparameterestimates�Z� and �g� are
thecorrectones.This part is in factexactly thesameasin the
well-known staticcase(seee.g.[34, 8]).

The differenceis in the M-step. Since � has becomea
variable,theis no hopeto solvingtheminimizationover ���R#/� �
explicitly. Whatseemsworse,dueto thevariable� , theM-step
no longersplits into t problemsof size

� x , while it did split
in aseriesof t problemsof size x in theclassicalcase(with �
known andheldfixed).

We may neverthelessdo one thing and perform the
minimization over � first. This may be solved explicitly and
givesa formula linking �Z�$� ^ and �g�$� ^ . To find it, noticethat
theobjective(6) mayberecastas

c£¢ c
� � �H� c I.5 �c f
h�i � c I c
\ a � �c
\ a f
h�i

e cW\ a � � � (7)

with the abbreviations ¢ c
� � � ' \ a e c
\ a � � � and

5��c ' \ a �/�c
\ a . The minimization over � only involves the
first two terms,is separablein thatvariable,andhastheexplicit
solution

� �$� ^c ' 5��c
¢ c
� � �$� ^ � (8)

which will of coursecomeinto actionassoonaswe will have
obtained�g�$� ^ by solving the remainingoptimization of (7)
with respectto � . After substituting(8) into (7), theremaining
partof theM-stepis, up to termsnow constantin � :

?JA
CF c 5 �c fWh�i ¢ c
� � ��I c
\ a � �cW\ a f
h�i

e cW\ a � � � s (9)

This optimizationproblemwith solution �g�$� ^ is of size t , to
be solved onceper M-step. Altogether, we obtainan iterative
procedure,which we mayuseto estimate� , andwhich we cast
asaniterativeprocedurein theparameters���R#/��� :

Modified EM-Algorithm

1. Given the synthetic data �¤' ��� c
\ a � , obtain a new
parameterestimate� � by solving(9).

2. Obtain �S� via formula(8).

3. Obtain ��� via formula(5).

Clearly, � may be eliminatedfrom this scheme,which may
in consequencebe consideredan estimationprocedurefor �
alone. Notice that this suggestsideaslike usinga coarsegrid
approximationto estimate� , in orderto acceleratethisprocess.

VII. REGULARIZERS

In a probabilistic setting, regularizing terms may be
interpretedasBayesianpriors on the parameterspacesof the
Gaussianor Poissonmodel underconsideration,as shown in
[17]. In the presentsection,we discusspossiblechoicesof
regularizersP � �S� and P � � � adaptedto our problem.

Usingahigh-passfilter

P � �S��' G!¥�¦ � G LL ' G/§�¦�UQ¨� G LL (10)

seemsnatural, as we expect noise contributions to be of
high frequency, which we should then penalizethrough the
regularizing term. But how to choosethe cutoff frequency©
? As proposedby [24, 25], the Fourier slice theoremcould

give us a guidelineon the choiceof
©
. Observe that without

tissueattenuation,
� � � ¢ #/%��~' ¨�=� ¢ %>� , which tells us that the

spatialresolutionof the unknown emissionsourceis no better
thanthespatialresolutionof theprojections,or put differently,
any detail presentin the image � shouldbe visible in someof
the projections. Consequently, details finer than the known
resolution

©
of the projection 9 shouldbe attributed to noise

sourcesandpenalizedthrough(10).
Clearly, in thepresenceof tissueattenuation,we have to be

conservativeabouttheproposedchoiceof
©
, astheFourierslice

theoremwill only be approximatelytrue. Nonetheless,(10)
worksconsiderablywell in practice(seealso[2]).

An interestingvariation of (10) usesthe fact that the 2D
spectrum ¨9 of the attenuatedRadontransform9�' ��� � �!� is
concentratedon a bowtie shapedregion in the frequency plane
(cf. [32, 27, 23]). This wasfirst observed in the unattenuated
case,but [23] shows that it remainsqualitatively correctin the
attenuatedcase.This suggestsa regularizerof theform

P � �S��' G!¥�ª E ¦ � � � � G LL ' G�§�ª E ¦�U � � G LL (11)

where § ª E ¦ is an appropriatecutoff operatoradaptedto a
bowtie of width

� ©
in thedirectionof the frequency planeaxis

belongingto the variable " , andthickness
� � at the origin in

directionof the frequency planeaxisbelongingto the variable
% (seeFigureX). For detailsseethe above references.Notice
that in both formulas(10), (11) we exploit Parseval’s identity,
which allows us to implementthe regularizerin the frequency
domain.

A somewhat different regularizer with some popularity
in the mathematicalcommunity is the so-called flat zone
regularizer

P � �S��' G�« � G ^ # (12)



which modifiesthenotoriousTychonov term,known to be too
smoothing,¬ replacingthe Euclideannorm by the1-norm. This
is reportedto privilege reconstructedimages � featuringflat
zoneswith identical grey values. Someof our experiments
confirmthis phenomenon(seeSectionIX). We stopto give an
optimizer’spoint of view explainingthis behavior.

Consider for simplicity a 1D linear inverse problem
for the abstract operator

�
. Following ����� , we solve

?JA
C D G � �¡Il9 G LL +�N G �S­ G ^ for a fixed penalty constant N .
Along with ����� consider the correspondingerror tolerance
optimizationprogram

� ®��� minimize G �S­ G ^
subjectto G � �JIK9 G L ��¯

for a fixed ¯ . Observe that aslong asthe inequalityconstraint
in �=®�Y� is active, ����� and � ®�B� areequivalent in the following
sense:every local solution �Z° of �=®�Y� is also a local solution
�<± of ����� with a certainvalue N£'ON���¯�� . Conversely, a local
solution �&± of ����� also locally solves � ®�B� for the value ¯.'
¯���N���' G � � ± I.9 G L . For short, � ° '²� ±T³ °µ´ , and � ± '¶� ° ³d± ´ .

Now consideradiscretizedversionof � ®�Y� , wherewereplace
thederivative �S­ by afinite differenceapproximation.Makinga
changeof variables· c 'l� c I¸� c � ^ , say, we recasttheproblem
as

�=®�B� minimize G · G ^
subjectto G �J¹ ·YIK9 G L �¶¯

where �j' ¹ · is that changeof variables. This meansthat
we minimize the1-normof · over anelliptic cylinder, andthe
minimumis foundby scalingthenormball until it touchesthe
cylinder from outside.Now recall that the1-normball has

�rº
extremepoints,

º
the dimensionof the discretized· , andit is

highly likely that thecontactis in oneof theseextremepoints,
anextremeface,etc. As we cansee,any oneof theseextreme
elementshasmany differences· c equalzero,which produces
the mentionedflat zones. Notice, however, that this analysis
shows that the choiceof the 1-norm is somewhat accidental
here,andthatothernormballscouldbeusedwith equalrights.

How aboutregularizing � ? In principle we could usethe
sameideasas for � , even thoughthe guidelinefor the cutoff
frequency in (10) is no longer correct. What is observed in
our experimentsand confirmed in other approachesis that
the resolution of the attenuationmap ���
	�� need not be as
fine as that of the emissionsource � ��	�� . In particular, since
the reconstructionmethoditself hassomeimperfections,the
work requiredto improvesaytheultimate p���» of resolutionof
����	�� arepracticallywasted,asthey barelyimprove thequality
of the reconstructedimage � . This suggestsusing a coarser
bandwidth

©
for thesignal���
	�� .

Notice that we recommendusing the filter (11) for � ,
since the exponent in (1), known as the divergent beam
transform¼½���
	�#/%�� , see[27], is closeto the Radontransform� � , exhibiting similar spectralproperties. This meansthat
regularizing

� � alsohelpsto stabilize ¼½����	g#&%�� . Looking at
formula (1), it is clear that even thoughwe try to estimate�
through our procedure,what is required to reconstruct� is

not � , but ¾&¿>ÀÂÁ�I�¼½����	g#/%>��Ã . In particular, ¾/¿3À Á�I�¼o���
	g#&%���Ã
shouldhave its spatial resolution(bandwidth)comparableto
thatof � , not � .

VIII . EXISTING METHODS

Our new optimization approachto inverting (1) has to
be comparedto someexisting techniques. In particular, we
implemented(cf. [16]) theConTraSPECTmethodof [35, 21],
which corrects for attenuationusing a dummy attenuation
map � Ä�Å Å!�
	�� of elliptical shape with constant attenuation.
This leaves a total of six degreesof freedom, the constant
attenuationcoefficient, and5 geometricparametersfixing the
shapeandpositionof theellipse.UsingHelgason’sconsistency
formula, the attenuationmap is adjustedto the emissiondata
usingnonlinearleastsquares.As reportedin [35, 21], the six
variablesare sometimesdifficult to optimize simultaneously,
and the best results are obtainedby fixing the attenuation
coefficient after someinitial steps,andoptimizing the 5 shape
parameterssubsequently. As mentionedin the introduction,
sinceHelgason’s formula is only valid over ������� , we canonly
compareour methodto ConTraSPECTin this case. Notice
that the often surprisinglygood resultsof ConTraSPECTare
understoodfrom our previouscomments,makingthepoint that
� is not requiredat a very high precisionin order to improve
thequality of thereconstructedimage � .

A somewhat older approach,useful for instancein brain
imaging,but known to fail in morecomplicatedsituationslike
a cardiacstudy, consistsin automaticallydetectingthecontour,
andassuminga constantattenuationcoefficient thereon.In our
experimentalbrain study, we have estimatedthe headcontour
using emission data acquired at a secondaryenergy peak,
representingscatteredphotonsfrom theprimaryphotopeak.

The ConTraSPECTandthe contourmethodhave presently
been used to provide good starting points for the various
optimizers(seethe next section). A detailedcomparisonof
thesetwo methodsasattenuationcorrectionstrategiesof their
own right is presentedin [16].

We concludethis section by mentioning anotherinverse
approachto (1), recentlyproposedby Novikov [30]; seealso
[29]. Theauthorpresentsa mathematicallyappealinginversion
formula for the attenuatedRadontransform,(1), a curiosity,
sincethis formulahasbeensoughtfor like theholy grail since
at least1915,andmany a valiant researcherceasedto believe
in its existence. Structurally, it is of the form �Æ'�Ç � � �!8 ,
if 8È' ��� � �H� , that is, it inverts ��� ��� � �H� , but not
�
�R#&� �É� ��� � �H� . It could thereforebeemployedin a physical
attenuationcorrection approach, but less straightforwardly
in the analytical setting. However, the formula is unlikely
to improve on current SPECTreconstructionprocedures,as
it does not allow to take collimator blurring into account.
If implementedas proposedin [29, 20], Novikov’s formula
will play a role for SPECT similar to the role filtered
back-projectionplaysfor CT imaging.



IX. EXPERIMENTS

A first simulatedstudyusestheMCAT phantomsliceat the
level of theheartshown in Figure1. Weassumea Ê�Ê ª Tc-based
tracer with relative concentrationsof 75.0, 3.82 and 1.76 in
heart, lungs and soft tissue. The attenuationcoefficient in
the cortical bones,trabecularbones,lungs and muscleat the
nominal energy Ë � 'zp�Ì�� keV of Technetiumwere chosen
as 0.210, 0.166, 0.0427and 0.150 cm * ^ respectively. The
emissionsource� andattenuationmap� werebothdiscretized
into ��Ì.����Ì pixelsof size �Zs ��Í ���Ts ��Í mm. A SPECTcamera
with a perfect parallel hole collimator was assumed,and
syntheticprojectiondatausingtheattenuatedRadontransform
were calculated. The model includestissueattenuation,but
neithercollimator blurring nor scatter. The datawerePoisson
noisedin orderto createa realisticsignal-to-noiseratio. A total
of 64 projectionswere scannedover p�Î���� , and alternatively
over ����� � . The size of the cameraprojectionbins was 6.25
mm. Thetotalnumberof countsin theselectedslicewasof the
orderof 180,000.

A secondexperimentalstudy usesthe physicalRadiology
Support Device (RSD) neuro-receptorphantom shown in
Figure 2. The phantom, an artifical skull enclosedwithin
materialthat mimics soft tissue,ears,noseandneck,hasone
brainreservoir andfour striatalcontainers.Thechamberswere
filled with a homogeneoussolution of 303kBq/ml labelled
with Ê�Ê ª Tc. The projection data were acquired with an
Elscint dual headspectralSPX camera,equippedwith a low
energy high resolution(LEHUR) collimator. A total of 60
angular views, equally spacedover p�Î���� , and alternatively
over ������� , werescannedover 15sperview, andtheprojection
data were sampledon a p � Î¡�lp � Î grid with pixels of size
�Ts Ì�Ì:�Ï�Zs Ì�Ì mm. The datawere scannedover 15s per view,
andcorrectedfor the known decayof the tracerisotope. This
resultedin approximately400,000countsper projection. AÐ p���» energy window abouttheprimaryphotopeakat p�Ì�� keV
wasused.A secondemissiondatasetwasacquiredin a

Ð �Ñ»
energy window aboutasecondarypeakat p ��� keV.

X. RESULTS OF THE SIMULATION

In thesimulatedstudy, we have reconstructedtheunknown
� and � usingthefollowing

2D Algorithm

1. Generatean initial guess�
� � #/� � � usingoneamongfour
possibleproceduresÒ ^ #&s/s/s&#�Ò&Ó .

2. Run the optimizer ��� \ � or ��
 \ � using one of the five
possibleregularizers yÆÔ¤Á��T#<pr# � #&ÕT#$pJ+��/Ã , until the
stoppingtest(2) applies.

3. Keep the � so obtained,and obtain �/Ö×Ä�Ø by inverting��� � �H�.'²8 via theEM-algorithm.

In eachoptimizationscenario����� or ��
�� we have started
the reconstructionmethod with four different initial points
���S��#�� �>� . Ò ^ correspondsto choosing �S�l'Ù� , � �l'Ú� . Ò Lcorrespondsto running the Gaussianoptimization ����� with a

constantattenuationmapon thecontour, thatis ����	���':� , with
� a variableto be optimized. Ò&Û choosesthe ConTraSPECT
reconstruction����Ä�Å Å!#�� Ä�Å Å!� as initial. Notice that since � Ä�Å Å has
nonzerovaluesoutsidethecontour, theoptimizationprocedure
����� or ��
�� , too, will have to allow for nonzero� outsidethe
contour. Finally, Ò Ó chooses�S� astheEM-reconstructionwith
� �l'(� Ø�ÜXÝ/Þ×ß constanton the contour, and basedon the best
possiblevalueof � .

Based on programs ����� and ��
�� , we have used the
following optimizationstrategies ��� \ � : ��� � � uses����� without
regularizer, ��� ^ � uses ����� and the flat zoneregularizer (12)
for � and � , ��� L � uses ����� with the Tychonov regularizer
P � �S�É' G�« � G L for both � and � , while ���,à�� usesa high pass
filter (10) for � and � . Finally, ��� ^ �Âá � we combinesthe flat
zoneregularizerwith (14), a speciallyadaptedpenaltytermto
avoid thecross-talkphenomenonbetween� and � . In thecase
of thePoissonprogram,thenotationis analogous.

In Table 1 we have comparedthe results ��ÖµÄ�Ø of various
optimizationbasedreconstructions.Using the true emission
sourcewe calculatetherelativeerrorterms:

2 ÖµÄ�Ø ' G � ß×Ö×â&Ä I¡� Ö×Ä�Ø G LG ��ß×Ö×â&Ä G L
(13)

Theentriesin Table1 show relative error termsfor thevarious
regularizers.Thefirst line shows therelative errorsof the four
possibleinitials.

Notice that if we reconstruct � Ä�ã E ß×Ö×â&Ä using the true
attenuationmap � ß×Ö×â&Ä , therelative errorsare 2 Ä�ã E ß×Öµâ/Ä 'äp�ÎZsåp�»
for p�Î�� � , and 2 Ä�ã E ßµÖ×â/Ä 'Æp��Zs ��» for a ����� � tour. Theseerrors
are due to the randomnature of the emissiondata. Since
the signal-to-noiseration in � Ä�ã E ß×Ö×â&Ä is only mildly inferior
to the signal-to-noiseration of the data, theseerrorsmay be
considereda goodindicatorfor the lowestpossiblenoiselevel
in anyreconstruction.

Ò ^ Ò L Ò Û Ò Ó
– p���� p���� � ÎZsåp � �Ts � I � pws � � �Zs Ì ��� s �
� � �Ñpws Î Í �Zs Ì ��æ s Ì � ÌTs Ì I � �Zs � ��� s æ � �Zs Í
� ^ * *

� pws � p�ÎTs � I p�ÎZs Î � pws � p�çZs �
� L * *

� ÌZs Ì � �Ts Í I *
��� s Í *

�,à �Ñpws � *
� ÌZs Ì ��� s � I *

��� s � � �Zs Ì
� ^ �Âá � �Zs Í

 � ���Zs � Í ÎZs Î � �Zs Î ��Í s � I � �Zs Í ��� s æ � �Zs æ

 ^ � Í s � *

� �Zs Ì p�ÎTs ç I p�çZs Î � pws æ p�çZs �

 L � Í såp *

� ÌZs ç � �Ts � I *
��� s � *


 à � Í s Î *
� ÌZs � ��� s � I � �Zs Ì * *


 ^ �gá � pws �
p�Î���� ������� p�Î���� ������� p�Î���� ������� p�Î���� �������

Table1
Comparisonof OptimizationMethods

Notice that Ò Û couldonly betestedon a ������� tour, which is
indicatedby the I in thefirst sub-columnof Ò Û . Thesymbol*
indicatesthat the optimizerwasnot able to improve the error
margin of the initial point ���S��#�� �>� . The results displayed



correspondto the best choices of the penalty constants N
involvè ed in the various regularizers. Those differ between
the programs����� and ��
�� , andalsobetweenthe regularizers
y6ÔéÁ>pw# � #/Õ�#<pÉ+¸�/Ã . As we observed,thecorrectchoiceof the
penaltiesN may dependon the type of study (kidney, heart,
brain,etc.),but oncespecified,is generallypatientindependent.
Thisobservationwasalreadymadein [22].

We observe that Ò Û and Ò Ó provide alreadyinitial guesses
with a good error margin, but generallyoptimizing improves
over the initial values. Notice, however, a relatively strong
dependenceof the optimizers on the starting points. For
instance,noneof the ����� ’sor ��
�� ’swasablereducetheerrorin
Ò ^ to acompetitivevalue,sostrategy Ò ^ turnsout insufficient.

In the heart study it is possibleto use a specially suited
regularizer in order to avoid the cross-talk phenomenon
between� and � reportedin several approaches.The shadow
of � apparentin thereconstructed� appearsin a region where
the correctvalueof � is basicallyknown. While correcting�
by handis of courseprohibitive, we recommenda regularizer
of theform

P � �S#�� ��'
b
cd]�^ � c �
� ã�êXë IK� c � (14)

whichwill obviouslypenalizevalues� c toolow atplacesn with
high activity � c . Notice that this is a non-convex function in
���S#���� .

This approachworkswell, but thebadnews is thatit barely
improvesthequalityof thereconstructed� Ö×Ä�Ø or theerrors2 ÖµÄ�Ø .
Thegoodpartof thatbadnewsis thatthisseemsto indicatethat
thedamageof theshadow artifact is negligeableanyway, so its
only effect is thatthereconstructed� Ö×Ä�Ø is lessfancy.

Fig. 1 Transaxialslice through the MCAT phantomat the level of
the heart. Left ì�ìMí Tc uptake distribution, right attenuationmap atîðï<ñ

keV.

XI. RESULTS OF THE PHANTOM STUDY

In thephantomstudy, thereconstructionswereobtainedvia
thefollowing

3D Algorithm

1. Dividethe3D ROI into transaxialslicesòó'�pr#/s/s&s�# ¹ . In
eachslicegeneratean initial guessusing Ò Ó , andrun the
2D Algorithm to obtaina reconstruction�
�gôõ#/�Zôõ� .

Fig. 2 Reconstructionof same transaxial MCAT slice. Activity
distribution (left) is closeto thetruth. A shadow artifactof theheartis
still visible in thereconstructedattenuationmap(right).

Fig. 3 X-ray CT imagesof theRSDphantom.Right corticalslice,left
cerebellarslice.

2. Form a 3D attenuationmap � by stackingthe �gô , ò¶'
pr#/s&s/s�# ¹ .

3. Obtain the emissionsource � Ö×Ä�Ø by a 3D inversion of� ¦ � � �H��'�8 via the EM-algorithm, where the model
includesattenuationandcollimatorblurring.

In order to estimatethe headcontour requiredin Ò&Ó , we
havereconstructedthedataacquiredaboutthesecondaryenergy
peakat 122keV .

Notice that the slice-by-sliceestimationof � in step1 is
necessary, sincea 3D inversionwould leadto a difficult large
scaleoptimizationproblemwith

� U ��Ì Û unknown variables.
Since the activities in the different containers of the

phantomareknown, the true emissionsourceis known up to
a constantfactor. However, the proportionality constantis
difficult to estimatein practice,andwe have thereforedecided
to useadifferentstrategy to evaluatethereconstructions� Ö×Ä�Ø .

XII. CONCLUSION

Our experimentshave shown that attenuationcorrection
usingSPECTemissiondataonly is possible.In the simulated
study, someof the reconstructions�/Ö×Ä�Ø camecloseto the error
margin alreadypresentin the randomdata. In that situation,
the result is close to optimal, and it seemshard to improve
e.g. by constructingmore sophisticatedregularizers. Put
differently, the preponderantfraction in the error comesfrom
thereconstructionmethoditself.

In thesimulationwe observedthat theflat zoneregularizer
performedslightly betterthanthe bandpassfiltering, probably



Fig. 4 Reconstructedattenuationmap of samecortical slice with
profile (left). Activity curvesalongprofile (right) show no attenuation
correction (lower curve), initial guess ö<÷ (broken line) result of
optimizer(uppercontinuousline). Thetrueactivity curve is known to
beflat.

Fig. 5 Samereconstructedcortical slice shown without attenuation
correction (left), and with attenuation correction (right). The
true activity distribution is known to be homogeneous. Both
reconstructionsusethecorrectcollimatorresponse.

Fig. 6 Samereconstructedcerebellarslice shown without attenuation
correction (left), and with attenuationcorrection (right). Both
reconstructionsusethecorrectcollimatorresponse.

dueto thefact that theidealsource� ß×Ö×â&Ä is piecewiseconstant,
with edgessharperthan in realistic situations. An additional
complicationof thehighpassfilter is thattwo parameters

©
and

N had to be adapted,but the guidelineswe indicatedworked
well.

The experimentalstudyshows that our methodworks well
in a realistic situation. The proposedattenuationcorrection
showed a significantimprovementin the cortical slices,anda
mild onein thecerebellarregion.
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