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Abstract

Dynamic Single PhotonEmissionComputedTomography
(dSPECT)is a techniguewhich visualizeschangingactivity
distributionsin the humanbody, usingdynamicemissiondata
acquiredduring a singlerotationof a standardSPECTcamera
system. The reconstructionprocessin dSPECTis basedon
nonlinearregularizationand optimizationtechniquesand we
presently comparea number of possible problem oriented
figures of merit based on different spatial and temporal
regularizationtechniquesTheaccuray of dASPECTin termsof
temporalandspatialresolutionis testedn a simulateddynamic
cardiacstudyanda dynamicrenalpatientstudy

I. INTRODUCTION

Dynamic functionalimagingwith SPECTcamerasystems
has beenrecognizedas a promising new option for medical
diagnostics, and several approachesto visualizing and
guantifying dynamic parameterof time-varying processesn
the body have recentlybeenproposed(see[l, 2, 3, 4, 5, 6]).
Dynamic Single Photon Emission Computed Tomography
(dSPECT)is one suchmodality, whosemostimportantaspect
is its ability to reconstructime-varying actiity distributions
from dynamic data acquired on a standardprotocol with
a single rotation of the camerasystem(cf. [10]). Image
reconstructiorin dSPECTis basedon nonlinearregularization
and optimization techniques(cf. [7, 8]), but dynamic
versionsof the EM-algorithmhave alsobeenfound andtested
(see[5, 9]). The way dSPECTdealswith the problem of
inconsistenfprojectionswas validatedin a numberof studies,
including simulations phantomand patientexperiments.

It shouldbe emphasizedhatcastingdynamicSPECTasan
ill-posed inverseproblem pointsto several solution stratgies
via regularizing techniques,but doesnot stipulate a unique
possiblefigure of merit. We thereforecomparea Poissonand
a Gaussianobjective, both to be employed in tandemwith
suitableproblemorientedregularizers We validateour choices
usinga simulateddynamiccardiacstudy and a dynamicrenal
patientstudy

The choiceof the acquisitionprotocol may have a strong

influenceon the performanceof the dSPECTmethod.Optimal
acquisition protocols in clinically relevant situations have
recentlybeenproposedn [10].

[I. METHODS

Image reconstructionin dSPECTIis no longer basedon
filtered backprojectionor the well-known iterative methods.
Instead,a large scalenonlinearoptimization problem of the
form

minimize F(f,Rf —d)

subjectto  fi1 < fia < ... < fip,
fipi 2 fipprl Z 2 fiS
fik >0

(P)

issolved. HereZ ( f, e) isanappropriatdigureof meritfunction
which attributesa costto a possibledynamicimagef, R is the
attenuatedlynamicRadontransform,ande = Rf — d is the
forwarderrorbetweerthe obseneddatad andthe hypothetical
projectiondataRf. The constraintsn (P) arereferredto as
shapeconstrints sincethey determinethe overall profile or

shapeof the pixel curves. The caseabove is whenevery single
dixel (dynamicpixel) i hasincreasingactivity duringtheinitial

timesk of thescan < k < p;, reachedts peakactiity attime
k = p;, anddecaysduring the remainingtimesp; < k < S,

(S is the numberof stopsor times). The peaktime p; for the
activity curvein pixel i mayvary from pixel to pixel.

We mention a different type of shapeconstraintsusing
secondorder information. For instance,we may assumethe
time profile in the ith pixel to be concare betweertimesk = 0
andk = ¢;, ¢; the inflection point, and corvex during the
remainingtimes £ = g¢;,...,.S, a shapeoften encountered
in applications, and built into constraintsthrough second
differencesSettingf, = fx — fe—1, fr = fr. — fr_1, Welet

af572 SO

to beusedalongwith positivity constraints,f;; > 0.
Returningto (P) above, the peak positions p; for the
pixels: aredeterminecautomaticallyby an extra optimization
step, performedprior to the actualimagereconstructionP).
The presentpaperwill also contribute a new methodof peak
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detection, which has several new featurescomparedto the
method [8] we previously applied. In particular the new
approachgivesa rapid estimationof the shapeof the expected
time profiles,andis usedto establishgoodinitial estimategor
the main optimizationroutine, an importantaspectaswe are
facinglarge scaleoptimizationproblems.

A first figure of merit function testedin a number of
situationsincludesthe negative log-likelihood of a weighted
Gaussiaraw

R Rf—d) = SISTVRF - + S(). ()

where S(f) is a properly chosenregularizing or smoothing
termderived e.g. from a prior Bayesianmodelof the spaceof
dynamicimagesf. Typical exampleswill be presentecand
discussedh the next section.

An alternatvefigureof meritis obtainedf theemissiordata
d aremodelledby a Poissorstatistic. Thenthe costshouldbe

-7:2(f7Rf_d) =

Z (ZRijkfik — dji log (ZRz’jkfik)) + S(f) @
J.k i i

wherei is summationover pixels (voxels), j over bins, and
k over angularpositions(stops). The left-handtermin F is,
up to constantsthe negative log-likelihoodof the Poissoriaw,
while S is a smoothingterm arisingfrom a Bayesianapproach
ashefore.

A forerunnerof dSPECT first publishedin [11], assumed
a two-compartmentnodel of the underlyingtracerdynamics
of a Tc99m-basedatty acid heartstudy Here the nonlinear
optimizationmodelwas

minimize  F(f,Rf —d)

SUbjeCttO fik = Ail(ii)\“k -+ AZ‘Q(Z*)\/’:QIC -+ Aig
Ait > A2 >0
Ap +Ap +A3>0

(NLS)

wherethe figure of merit could be chosenas above. It was
shavn in [6, 12 that this modelis numericallydifficult, and
in mary casesperforms wealer than (P), even when the
hypothesi©f anunderlyingtwo-compartmeninodelis correct.
Notice that subjectto someimportantmodifications,(IN.LS)
has recently been revived in a number of approacheg(cf.
[2, 3]). In theseapproacheshemajordifferencedrom [11] are
in particularthe choiceof the spatialbasisfunctions,the model
of the blood input function, andthe factthat pixels ¢, prior to
reconstructionwere divided into a staticand a dynamic part
in orderto reducethe numberof unknovn parametersi;,, and
i, to befitted.

[11. SPATIAL AND DYNAMIC REGULARIZERS

The needto enhanceimage reconstructionmethodsby
regularizationtechniquess widely recognizedcf. for instance
[13]). It appliesto static SPECTor PET image processing

just as to other reconstructiontechniguesoriginating from
mathematicallyill-posed problems. This points to a major
drawvback of mostiterative techniques|ike the EM-algorithm
(andits variations),sincethey arebasicallyin conflict with the
needof spatialregularization. Namely thesemethodshinge
on the possibility to processpixels sepaately in the M-step
(andits counterparts)while spatialregularizationrequiresjust
the opposite thatis, mixing pixelswhenapplyinglocal filters.
In our opinion, this is a strong point for using optimization
technigueseventhoughsomeideasto include spatialfiltering
into EM-lik e iterations do exist (seee.qg.[9]).

In dSPECT we find it useful to insist on two types of
regularization, spatial filtering, as already apparentin static
SPECT or PET, and dynamic filtering applied to the time
seriesin eachdynamicpixel. We shall subsequentlzomment
on someof the regularizersusedin dSPECTreconstructions.
For spatial regularizers, a rich literature in the domain of
imageprocessings of courseavailable. We referto [13] for a
presentatiorform an ECT point of view. On the other hand,
dynamicfiltering is a new issuein ECT, andsuccessfufigures
will have to be establishe@&mpirically.

A spatialffilter usefulto SPECTanddSPECTbhasednideas
from[14] is

S(F) = SIHefI3 = Slls - F113. 3)
Here H, f is a spatial high passfilter with cutoff frequeng
b. The secondequality indicatesthat this regularizermay be
corveniently implementedvia 2D FFT and using Parseal’s
identity: choosea 2D lag window function ¢;(s) having
&p(0) = 0andgy(s) =1 for |s| > b.

The rationale of (3) is in the Fourier slice theorem:
E[Rf(-,0)](0) = f(ob), (cf. [16], where Fy[] is the 1D
Fourier transformwith respectto the s-variable). It tells us
thatin the absencef tissueattenuationany detailapparentn
theimage f shouldalsobe visible in someof the projections
Rf(-,6). Or put differently, ary detail smaller than 27 /b
in a candidateimage f, (b is the known spatial bandwidth
of the sinogram),should be attributed to a noise source,as
it could not originate from the data. Following the idea of
regularization,we do not simply suppressigh frequenciesn
thereconstructedmages. Instead,a high cost(3) is attributed
to thesehigh frequenciesandthe optimizerwill thereforetry
to avoid them.

Naturally, in caseswhereattenuationmay not be ignored,
the Fourier slice theoremis only approximatelycorrect, and
someof the detailsof f will be smoothedaway in Rf dueto
tissueattenuatiorandscatter We thenhave to be conserative
whenchoosingthe cutoff bandwidthb, which shouldbe mildly
above the known bandwidthof the sinogram.For all that, this
filter workswell in practice andwe stronglyrecommendts use
here.

A variantto (3) is

S(f)

SIHRDIE = Sl - BRAZ @)



whereH,;, is now a 1D spatialhigh passfilter appliedto the

spatialspectrumof the sinogram.Herez), is thecorresponding the regularizersin casea; = a; = 1.

1D cutoff function, ¢,(0) = 0, ¢¥(s) = 1 for |s| > b. Even

though mathematicallyequivalentto (3) in the un-attenuated without regularizer (3).

case,the two regularizershehave slightly differentin practice
(se€[12] for moredetails).

It wasshown in [15] thatthe 2D spectrumof the dynamic
attenuated?adorﬁransform,]?f, is concentratedn aregion of
bowtie shapeasshowvn in Figure 1. This factwas previously
known (cf. [17, 1€]) in the static case. Using a 2D cutoff
function ¢, ,, adaptedto the bowtie shape,we are led to
consideraregularizingtermof theform

() = Sléom - RII3: (5)
Here ¢y, (0) = 0 and ¢, (s) = 1 for s outsidea bowtie
of vertical thickness2m at (0, 0) and of horizontalwidth 2b,
whereb is againthe spatialbandwidthof thesinogram(see[15]
for details).

A numericalexperimentto comparethe spatialregularizers
(3) and(5) is presentedh Tablel belon. We considetthefigure
of merit

1 (5] = 9 ~
§||Rf —d|I3 + 7”¢m,b “Rf[5+ 7”% “flI3. (6)
where R was chosenas the classicalstatic Radontransform,

discretizedover 180° using64 stopsand64 camerabins for a
64 x 64 imagegrid. Noticethatthe Hessiarof (6) is

H; Hy
——
R'R+a R F{ &}, F, R+ ay Fy O} F,

Here @, ,,, is a matrix representinghe cutoff function ¢y ,,, of
bowtie shapen thesinogramspace®,, is the matrix for the2D
cutoff ¢, in imagespaceand F; is the2D FFT.

| Hessian | Amax [Amin]
RTR 3918] 0
RTH|R 276 | 0
H, 110
| RTR+ oy RTH,R | * [ 0]
RTR + H, 3918] 0.4
RTR+10%H, 3918| 2.0
RTR+10*H, 10099 2.1
| RT R projected [3917] 2.2]
RTR+ RTH, R+ 103H, |3919] 3.5
RTR+10RTH, R + 103H, | 3928| 9.1
RTR+102RTH, R + 103 H,|27798 27

Tablel
Extremaleigervaluesof regularizedobjective

The interpretationof Table 1 is asfollows. Line 1 shavs
that the Radontransform,even thoughtheoreticallyinjective,
is rank deficient in practice due to the symmetriesin the

geometry Lines 2 and 3 give the extremal eigervalues of

Line 4 shaws that
regularizer (5) barely improvesthe condition numberif used
Lines 5 to 7 show that regularizer
(3) makesthe Hessianinvertible. The valuea, = 10° seems
optimal here. Lines 9 - 11 shav that the regularizer (5), if

usedin tandemwith (3), improvesthe conditionnumberof the
HessiankRT R + 10°H..

As introducedand usedin our experiments,the spectral
filters(3),(4) and(5) usethe Euclidearnorm,whichis certainly
the natural candidate. Notice however that in the case of
Tychonor regularization, S(f) = %|/f]|3, the 2-norm does
often have too stronga smoothingeffect. As a remedy the
following 1-normterm

S(f) = ()

hasbeenproposed.t hasbeenverified experimentallythat (7)
tendsto privilege flat zonesin reconstructedmages. It may
thereforebe ervisagedto usethe 1-normfor the spectrafilters
aswell. Notice thatin eachcase,the implementationof the
spatialgradientV, f usesfinite differenceapproximationsof
thepartialderivatives.In thecaseof (7), we have usedtheusual
schemeshown in Figure2.

Temporalffilters areneededn dSPECTreconstructionsand
may be basedon the samephilosophy: usewhateser type of
prior informationavailableto avoid unrealisticreconstructions
£, bearingin mindthatin anill-posedproblemmary unrealistic
candidated will matchthe availabledatawithin anacceptable
tolerancen the sensehatthey saturatehe noiselevel: |[Rf —
d||? ~ Var(d) (seeSectionlV). Herewe shalllimit oursehes
to two examples)eaving the morestraightforwardadoptionsof
theabove spatialfiltersto thereader

Our first example is motivated by a dynamic physical
phantom[19] built at the Vancouwer Hospital. The phantom
heart consistsof several small cylindrical containerswith a
drainandaninflow. Eachcontaineris equippedwith a mixing
propellerto guaranteea homogeneoufiow. Tuningthe motor
which steersthe pump may; in principle, producearbitrary
actiity profilesin the containers. Considerthe situation of
washout,where the containeris initially filled with activity
£(0). Pumpingfreshwater at flow rate R(t) meansthat the
remainingactiity in the containemf volumeV attimet is

7t) = £(0) exp{— / t %&z}

The idea is now to avoid highly irregular curves f(t) by
penalizingirregularbehavior of themotor. In a sensethe most
naturalprofile is flow with constantate, R'(¢) = 0. In terms
of f,thisleadsto R'/V = —(f'/f) = —(log f)” = 0. In the
continuousmodel, the dynamicregularizercould thereforebe

choseres
8 =3 / ) ((1ogf<t>)”)

«
I f s

2

dt, 8)



T thetotal time of the scan. Discretizinginto time stepsk =
1,..., S viafinite differencedeadsto theregularizer
a N 2
5 Z (10gfi,k+1 +log fik—1— 210gfik> .
i=1 k=2
9)

The rationaleof (8), (9) is that if every cell acts similar to
themacroscopicontainerof the phantomheart,the optimizer
(P) will privilege uniform flow, andthis will have the desired
smoothingeffect.

As a secondexample one may usethe dynamicanalogue
of the spatial Fourier high pass filter (3). As already
obsened in [15], this requiresan additional stepif applied
to decreasing-onlyprofiles, which are discontinuoussignals
in the spaceof periodic functions. Fourier filters, if applied
directly to thesecurves, would bearthe risk of blurring the
signalat theinitial times,dueto the inherentdiscontinuity To
overcomethis problem,[15] proposeso flip the discontinuous
signal, and to apply a 1D Fourier filter to the doubled,and
thereforecontinuous,time curves. The ideasare detailedin
thatreference.

S

S(f) =

V. NOISE LEVEL AND STOPPING

A practical questionrelatedto the use of any of these
regularizersis the correct choice of the penalty constant
«a. A good rule of thumb is to use o to steerthe mean
square error |Rf — d||3 towards its expected value
>k Var(dje) ~ > dji, wherethe latterassumes Poisson
statisticfor the emissiondata. This workswell in practice,and
the correctvaluea for agivensettingis easilyfound.

V. PEAK DETECTION

Since we are interestedin studiesrepresentingwash-in
and washoutperiodsof a dynamictracer the useof the shape
constrained model (P) requires, prior to reconstruction,
locatingthe peakpositionp; in eachindividual pixeli. In some
casesa rough estimateof the peaktime may be obtainedby
inspectingthe projectiondata, but this is not alwaysa reliable
indicator, in particularwhen attenuationis sizableand tends
to affect the shapeof the profiles. Here we proposea method
of peakdetection,which in our testingproved extremely fast
and efficient. Using a variant of model (P), we fit to each
activity curve in eachpixel i a hat-shapedurve asdisplayed
in Figure 3 (left), using four unknovn parameters;z;; =
left-end activity, x;,, = peak position, x;3 = peak height,
andz;, = right-endactiity. Writing fi. = hy(z;), where
x; = (i1,...,2:4), andwhereh;, sampleghe continuoushat
functionattime k, we solve the optimizationproblem

minimize 1| Rh(z) — d||* + S(h(z))
SUbjeCttO zi1 >0, 33 > Ti1, Tiz 2> X0 > 0

(A)

for thedecisionvariablez = (z;). HereS(f) = S(h(z)) isa
spatiallyregularizingterm asusedbefore. Solving (A) senes

four differentpurposes.Along with the peakposition, we get
an estimationof the peakactwity, andwe may choosethe hat-
shapeddynamicimage f = h(z) asa first indicator for the
overall dynamicsin the image. Finally, we may usethe hat
shapedunctionsasindicatorswhetherapixelis really dynamic.

A natural extension of the hat-shapeis the extended
hat shovn in Figure 3 (right), featuring eight determining
parametersin additionto the propertiesof the simplehat, the
extendedhat hasthe advantagethatit may be usedto generate
good initial guessedor the dynamic profiles expectedin the
final dSPECTreconstructiorprocesy P).

V1. DETECTING DYNAMIC PIXELS

In mary cases,the truly dynamicregion is only a small
part of the image,andit is possibleto identify pixels whose
activity will be merelystatic. This will reducethe numberof
unknown parameterin thefinal reconstructiorprocedure P).
We subsequentlyputline one way in which the reconstruction
basedon hat-shapedunctions(Figure 3, left) may be usedto
decidewhetherthe actity in pixel 7 shouldbeheldconstanbr
consideredlynamic.We proposehefollowing steps:

Firstly, for every pixel i, we determinethe amplitude

A, = maxy firx — ming f;x Of the reconstructedcurve
in pixel i. We arrange amplitudesin decreasingorder,
Ay, > A, > ... > A;,, where N is the total number

of pixels. Secondly we require an (over)estimationof the
percentagel of dynamic pixels in the image. In a cardiac
study this shouldbe easilyobtainedby drawing a zonearound
the heart using a preliminary reconstruction(obtained e.g.
via staticEM). We thenconsiderthe first § - N amongpixels
i1,12, ... asdynamic.fixing theremainingasstatic. Clearly, as
a by-product,the reconstructiorusing hat functionsalsofinds
the pixels outsidethe contour sincethe reconstructiorreturns
flat hatsat value 0. Notice that the outlined methodcould be
appliedto any type of reconstructiomot necessarilypasedon
hat functions. The reasorwhy we apply it to hat functionsis
the superiorspeedf model(A).

If anestimationof § is difficult to obtain, e.g. in a brain
study wherealmostevery pixel might be dynamic,we maystill
choosea thresholdto decidewhich pixels shouldbe kept as
dynamic.In theworstcasethis maybetheentirecontour

VIlI. COMPARTMENTAL MODELLING

It is well-known from PET andplanarscintigraphidmaging
that quantitatie informationaboutdynamicsmay be obtained
by drawing regionsof interestandfitting exponentialmodelsto
theextractedcurves. Thedriving ideabehindthenonlineadeast
squaresnodel (N LS) wasto adoptcompartmentainodelling
directly into the SPECTreconstructiorprocess(cf. [11], see
also[2, 3]). While this is an appealingidea, it become<lear
ratherquickly thattheinstability inherentto fitting exponential
modelswell-known evenin casesvherethe curvesarealready
given (cf. [18]), will beevenmoredisastrousvhenwe haveto



reconstructhesecurves.

This numericalproblem,in tandemwith the more obvious
criticism that compartmentaimodelsare merely heuristic or
even purely descriptve approachesmade us dispensewith
compartmentaimodelsin the dSPECTimage reconstruction
(P). As we shall see,thereis a more subtleway to useprior
information includedin a compartmentamodel of the tracer
dynamics by incorporatingit in a specialdynamicregularizer
We subsequenthdescribethis approachin the caseof a two
compartmenimodel. It will becomeclearin which way the
ideawould have to be changedwhen appliedto modelswith
morecompartments.

Assuming a localized two compartmentdynamic with
constantinput function, the expected discretized dynamic
profilesareof theform

fir = filty) = Aje % 4 Ajpe 2k 4 Ay
with parameters\;; > Az > 0 andA;3 > 0, A + A +

(10)

A;z > 0. In practicethereare two casesof major interest,
profileswith decreasin@ctiity, andthemorecomplicateccase
of increasing-decreasiragtiities.

In order to circumvent the numerical difficulties of the
exponential models, we obsere that every bi-exponential
cunve f;;. satisfiesa differenceequationof theform

fik = ai fik—2 + a2 fik—1 + a3, (11)

wherethe five parametersa;;, A;2, A;3, \i1, A2 per pixel in
(10) correspondo the five piecesof information a;1, a;2, a3
and f;1, fi2 in (11). Clearly (11) also containsoscillatory
solutionswhich are not of the form (10), but in the context of
shapeconstraintsn (P), oscillatoryprofiles f arenotfeasible.
It is thereforereasonabléo usearegularizerof theform

«
S(f;a) = ) Z (fqzk —anfik—2+ai2fik—1+ aq:s)Q- (12)
ik
Remark. Notice that fitting a model (10) to a given curve
fi1,-- -, fis via the equivalentform (11) is known asProry’s

method. In its traditional form, one may ignore the implicit
constraints, which force non-oscillatory solutions, because
experienceshows that even oscillatory curves will generally
follow the overall shapeof the given data. In contrast,in
(P), Rf andnot f is sampled,so Prory’s approachis used
to reconstructthe curves f, andis thereforesignificantlyless
stable.Avoiding oscillatorycurvesvia shapeconstraintsaswe
doit, is thenwell-advised.

In orderto implementthis approachthe basicprogram(P)
is extendedto an optimizationover the joint decisionvariable
(f.a):

minimize
subjectto

F(fiRf —d) + S(fsa)
shapeconstraintsasin (P)
—1<an<0,0<a <2,
azy +4a; >0, an + a2 <1,
a1 +a; >0,a;2 >0

(P)

(P) is difficult to solve in practiceif the numberof dynamic
pixelsis large. A relaxationwhich works sufficiently well in
applicationsis to regardthe variablesa as parametersandto
male a limited numberof consecutie updatef a anda. This
stratgy hasbeenusedin our experiments.

If the influenceof the bolusinput functionis still strongly
felt during the initial time of the scan,the differenceequation
(11), which assumesa constant input function, is only
graduallycorrect,andthe regularizerS(f; a) may have to be
usedwith care. Oneobviousway to proceeds to useS(f;a)
only during the latertimesof the scan,wherethe influenceof
the fastdynamicsstemmingfrom the bolushave settleddown,
andthe eigendynamicof the compartmentasystemprevails.
On the otherhand,if prior informationon the expectedshape
of the bolus function is available, this may be includedinto
(11), resultingin a refined regularizing term S(f;a). We
emphasizehowever, thatevenin the casewhere(11), dueto a
strongbolus, is not entirely correct,the merefact that we are
usingthecompartmentainodelonly asaregularizeranddo not
imposeit by forcing the form (10), makesour approachighly
flexible. Thepresentedlinical studyseemso confirmthis.

VIII. PATIENT STUDY

A renal Tc-99m DTPA GFR on a normal patient was
determinedvia dSPECTusing a SiemensE-camcamerawith
two headsat 90°, eachheadrotating over 90°. Acquisition
was started2 minutesafterinjection, andthe total time of the
scanwas 20 minutes. The reconstructedime profiles shav a
typical increasingdecreasinghapewith a peakactvity after
about3 minutes. Comparisonof the weightedleastsquares
and Poissonmodel shavs that the Poissonmodel produces
smoother curves which resemblethe accumulatedcurves
obtainedby a planarDTPA scanperformedon the sametest
personprior to the dSPECTsession. Performanceof the two
optimizationmethodss presentedn Table2.

Figure | Stopping| Numberof | Computation||Rf — d||2
of Merit | Criterium| Evaluations ~ Time lld]]2
Fi 10-6 680 31 minutes 21%
T 10~6 368 17 minutes 21%
Table2

Performancef thetwo optimizationmethoddor patientstudy

As outlined in Sectionl, the imagesare obtainedusing
a comple procedurewhich starts with a static OS-EM
reconstructionwhich despitethe dynamicallows recognizing
the overall shape. This reconstructiormay alreadybe usedto
determinethe patientcontour andto estimatethe percentage
& of dynamicversusstatic pixels. In a secondstepwe obtain
a reconstructiorvia hat functions. This determineshe peak
in each pixel, and provides two dynamic zones showvn in
Figure4. Thefinal stepconsistof running (P) with a limited
numberof dynamicpixelsto obtaindynamicprofilesof nearly
bi-exponentialshape reflectingthe approximatelycorrecttwo



compartmenimodel. Notice that the shapeof the curveswe
expectis at leastapproximatelyknown, sinceTc99m-DTHA is
usedin planarimaging, and known to producesimilar curves
of bi-exponentialshape.

IX. SIMULATED HEART STUDY

The simulation presentechereis aimedat possiblefuture
clinical testswith Tc-99m Teboroximeor Thallium TI-201 in
orderto assesshe sanguingperfusionrate of the myocardium.
Se€[1] andthereferencegiventherefor relatedcaninestudies.
We assumea myocardium slice with two dynamic zones
shaving differenttime profiles. The chosenideal actiities
correspondo arealisticdoseof a scanof 12 minutesduration,
startingimmediatelyafter injection. The ideal projectiondata
were obtained using a realistic attenuationmap, and were
noisedaccordingto a Poissonstatistics. The actiities were
adjustedto producerealistic projection data as obsened in
comparablelinical situations.

The goal of the simulation was to test the capability of
dSPECT to reconstructthe different time profiles in the
two zonesof the myocardium,to testtheir accurag, andin
particular to identify the cross-wer of thetwo curvesshowvn in
line 2, Figure8. As canbe seenin Figure8 right, dSSPECTwas
in factableto detectthe cross-@er of the curvesfrom the two
zonesof themyocardium.

The simulation was basedon a dynamic phantomimage
shavn in Figure6 line 1 at differenttimes. The phantomheart
was divided into two zonesexhibiting differenttime behaior
shawvn in Figure8 left. The lungsspinalcord andbackground
weregiven constanfctiities. A realisticattenuatiormapwas
usedto generatddeal sinogramdatashownn in Figure 6, line
2 left. The studycorrespondedo a doubleheadcameraat 90
degreesangle,eachheadrotatingover 90 degrees. The image
resolutionis 64 x 64, acamerarosssectionhast4 binsin aline,
andthecameraook 64 stopsonatime scaleof 15minutes.The
tissueattenuatiormapwassupposed#nown onthesames4 x 64
grid, andincludedin the operatorR. Theideal sinogramwas
noisedusing Poissonstatisticsand assuminga realistic count
ratein theprojectiondata(Figure®6, line 2 right).

As afirst stepin thereconstructiomprocessthe program(A)
fitting hatfunctionswasstartedandtheresultwasusedto detect
peaktimesandto distinguishbetweerstaticanddynamicpixels
asoutlinedin SectionsV andVI. The resultsfor F; and F;
areshown in Figure7, line 1 left and middle. Due to strong
attenuationthe region aroundthe spinal cord waserroneously
interpretedcasdynamic.

Finally, program(P) with thetwo compartmentegularizer
S(f;a) from SectionVIl wasstartedbasedon the information
providedby (A). In orderto evaluatethe dynamicinformation
in the reconstructionthe curves for the two different zones
of the heartwere extractedand averagedto be testedagainst
the true dynamicinput (Figure 8 right versusFigure 8 left).
The resultshaws that the peakpositionsaswell asthe overall
shapeof the curveswerecorrectlyrepresentedyhile the peak

activities wereunderestimatetly approximately8%.

X. CONCLUSION

In dSPECTtheproblemof reconstructinghangingactiity
distributions from dynamic and therefore inconsistentdata,
acquiredby a slow rotating camerasystem,is addressedy
an optimization approach,which usesspatial and temporal
regularizersin orderto add available prior informationto the
otherwisehighly undetfitted systemof equations.

Basedon a patientstudy and a simulatedcasestudy we
compareddynamic SPECT reconstructionswith a Gaussian
and Poissonmodel for the emissiondata. Several dynamic
and spatial regularizerswere usedin tandemwith the data
matchingterms, leading to different figures of merit in our
optimizationapproach(P). The testsshowv that both models
are capableto reconstructwithin an acceptablesrror margin,
the changingactuvities from dynamicemissiondataacquired
with slowly rotating SPECTcameras.In the presenteccases,
the Poissorobjectve neededessCPU. The spatialregularizer
which performedbestwas (3), but the flat zone regularizer
(7) alsoproducednterestingresults. The dynamicregularizer
we recommend for studies with increasing decreasing
activities is (12), sinceit producedactiity curvescloseto the
bi-exponentialexpectedn regardof the prior information.
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peak 1

Fig. 4 Line 1 shavs the result of fitting a hat function (left), a
generalizedhatfunction(middle),andidentifying dynamicpixelswith
themethoddescribedn sectionin V. Line 2 shavs resultof 3 x 3 and
5 x 5 medianfiltering appliedto theleft handimagein line 1. Line 1
Fig. 1 Left handpicture shovs the theoreticalsinogramof a dynamic  right shavs the F; reconstructionline 2 right the 7> reconstruction.
pointsourceat (.56, .8285) with dynamicprofile f(t) = e~ /Tt
Middle picture shavs the bowtie obtainedby an experimentwith the
dynamicheart-in-thoraxphantom[19] with the samedynamicprofile.
Righthandpictureshavs afilter ¢, adaptedo this dynamicscale.

Fig. 5 PatientStudy: Peaktimesasa color plot usingF; lef-t and 7
right. Early peaksin blue, late peaksin red. Theresultshavs thatthe
peakactiity occursin thecortex first, andin the medulalater.



Fig. 6 SimulatedHeart Study: Line 1 shavs the dynamic phantom
attimes 10, 20 and40. The heartis divided into two zonesshaving
differentdynamicprofilesshavn in Figure7 line 1 (left). Thelungs,
spine and backgroundhave constantactvities. Line 2 (left) shavs
the ideal sinogram,line 3 (right) the noised sinogramassuminga
Poisonstatisticanda realisticcountrate. The dataarecreatedusinga
correctlyscaledattenuatiormap

Fig. 7 SimulatedHeartStudy: Stepson the way to the reconstruction.

Line 1 shavs detecteddynamiczones:Gausgleft), Poissonmiddle),
obtainedby fitting hatfunctions. Line 1 (right) shaws correctanswer
Dueto strongattenuationthe spinalcord waserroneouslyinterpreted
asadynamiczone. Line 2 shavs hatreconstructionsGaussat times
10, 20,40. Line 3 samefor Poisson.

Fig. 8 SimulatedHeart Study: Line 1 (left) shawvs the true dynamic
curves assumedn the two partsof the heart(lesion versushealthy
tissue).The curveson theright handsideareobtainedby drawing the
correspondingegions in the reconstructecheart (Poissonobjective
with approach(ﬁ’)), and averagingthe individual pixel curves. The
peak positions and shapesare accuratelyrepresented. The peak
actvity for the fasterdynamicis underestimatedy roughly 10%.

Line 2 shaws the F; reconstructiorattimes10and?20.



