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Universit́ePaulSabatier, Mathématiquespourl’Industrie et la Physique,118routedeNarbonne,31062Toulouse,France�

Artelys S.A.,215,rueJean-JacquesRousseau,92136Issy-les-Moulineaux,France�
VancouverHospital& HealthSciencesCenter, Vancouver, BC, CanadaV5Z IM9�

Universityof MassachusettsMedicalSchool,Dep.of NuclearMedicine,55 LakeAve. North,Worcester, MA 01655

Abstract

Dynamic Single PhotonEmissionComputedTomography
(dSPECT)is a techniquewhich visualizeschangingactivity
distributionsin the humanbody, usingdynamicemissiondata
acquiredduringa singlerotationof a standardSPECTcamera
system. The reconstructionprocessin dSPECTis basedon
nonlinearregularizationand optimizationtechniques,and we
presently comparea number of possible problem oriented
figures of merit based on different spatial and temporal
regularizationtechniques.Theaccuracy of dSPECTin termsof
temporalandspatialresolutionis testedin asimulateddynamic
cardiacstudyandadynamicrenalpatientstudy.

I . INTRODUCTION

Dynamic functional imagingwith SPECTcamerasystems
has beenrecognizedas a promising new option for medical
diagnostics, and several approachesto visualizing and
quantifying dynamicparametersof time-varying processesin
the body have recentlybeenproposed(see[1, 2, 3, 4, 5, 6]).
Dynamic Single Photon Emission Computed Tomography
(dSPECT)is onesuchmodality, whosemostimportantaspect
is its ability to reconstructtime-varying activity distributions
from dynamic data acquired on a standardprotocol with
a single rotation of the camerasystem(cf. [10]). Image
reconstructionin dSPECTis basedon nonlinearregularization
and optimization techniques (cf. [7, 8]), but dynamic
versionsof the EM-algorithmhave alsobeenfoundandtested
(see [5, 9]). The way dSPECTdealswith the problem of
inconsistentprojectionswasvalidatedin a numberof studies,
includingsimulations,phantomandpatientexperiments.

It shouldbeemphasizedthatcastingdynamicSPECTasan
ill-posed inverseproblempoints to several solution strategies
via regularizing techniques,but doesnot stipulatea unique
possiblefigure of merit. We thereforecomparea Poissonand
a Gaussianobjective, both to be employed in tandemwith
suitableproblemorientedregularizers.We validateour choices
usinga simulateddynamiccardiacstudyanda dynamicrenal
patientstudy.

The choiceof the acquisitionprotocol may have a strong

influenceon theperformanceof thedSPECTmethod.Optimal
acquisition protocols in clinically relevant situations have
recentlybeenproposedin [10].

I I . METHODS

Image reconstructionin dSPECTis no longer basedon
filtered backprojectionor the well-known iterative methods.
Instead,a large scalenonlinearoptimization problem of the
form
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is solved.Here� �����56	 isanappropriatefigureof meritfunction
which attributesa costto a possibledynamicimage
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attenuateddynamicRadontransform,and

5879���:���
is the

forwarderrorbetweentheobserveddata
�

andthehypothetical
projectiondata
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. The constraintsin
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are referredto as

shapeconstraints, sincethey determinethe overall profile or
shapeof thepixel curves.Thecaseabove is whenevery single
dixel (dynamicpixel) ; hasincreasingactivity duringtheinitial
times < of thescan,

3=� < �?>@� , reachesits peakactivity attime< 7A> � , anddecaysduring the remainingtimes
> � � < �CB

,
(
B

is the numberof stopsor times). The peaktime
> �

for the
activity curve in pixel ; mayvary from pixel to pixel.

We mention a different type of shapeconstraintsusing
secondorder information. For instance,we may assumethe
time profile in the ; th pixel to beconcavebetweentimes < 743
and < 7EDF�

,
DG�

the inflection point, and convex during the
remaining times < 7HDF���!�!�!��B

, a shapeoften encountered
in applications, and built into constraints through second
differences.Setting
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, we let
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to beusedalongwith positivity constraints,
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Returning to
�Y�
	

above, the peak positions
>��

for the
pixels ; aredeterminedautomaticallyby anextra optimization
step,performedprior to the actual imagereconstruction

�Y�
	
.

The presentpaperwill also contribute a new methodof peak



detection, which has several new featurescomparedto the
methodZ [8] we previously applied. In particular, the new
approachgivesa rapidestimationof theshapeof theexpected
time profiles,andis usedto establishgoodinitial estimatesfor
the main optimizationroutine,an importantaspect,aswe are
facinglargescaleoptimizationproblems.

A first figure of merit function tested in a number of
situationsincludesthe negative log-likelihood of a weighted
Gaussianlaw

� �[��������\�4��	=7^]_�`�a
MN�cbd� �Y���\�4��	 `

�fehg ���N	Y
(1)

where
g �Y�N	

is a properly chosenregularizing or smoothing
termderivede.g. from a prior Bayesianmodelof the spaceof
dynamic images

�
. Typical exampleswill be presentedand

discussedin thenext section.
An alternativefigureof merit is obtainedif theemissiondata�

aremodelledby aPoissonstatistic.Thenthecostshouldbe

� �i�Y������2����	=7
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eqg �Y�N	 (2)

where ; is summationover pixels (voxels), r over bins, and< over angularpositions(stops). The left-handterm in � � is,
up to constants,thenegative log-likelihoodof thePoissonlaw,
while

g
is a smoothingtermarisingfrom a Bayesianapproach

asbefore.
A forerunnerof dSPECT, first publishedin [11], assumed

a two-compartmentmodel of the underlyingtracerdynamics
of a Tc99m-basedfatty acid heartstudy. Here the nonlinear
optimizationmodelwas

��s8tuB.	 minimize � �Y����L�\����	
subjectto
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where the figure of merit could be chosenas above. It was
shown in [6, 12] that this model is numericallydifficult, and
in many casesperforms weaker than

���
	
, even when the

hypothesisof anunderlyingtwo-compartmentmodelis correct.
Notice that subjectto someimportantmodifications,

�Ys8t�B�	
has recently been revived in a number of approaches(cf.
[2, 3]). In theseapproaches,themajordifferencesfrom [11] are
in particularthechoiceof thespatialbasisfunctions,themodel
of the blood input function, andthe fact that pixels ; , prior to
reconstruction,were divided into a static and a dynamicpart
in orderto reducethenumberof unknown parameters

v��'�
and} �%�

to befitted.

I I I . SPATIAL AND DYNAMIC REGULARIZERS

The need to enhanceimage reconstructionmethodsby
regularizationtechniquesis widely recognized(cf. for instance
[13]). It appliesto static SPECTor PET image processing

just as to other reconstructiontechniquesoriginating from
mathematicallyill-posed problems. This points to a major
drawbackof most iterative techniques,like the EM-algorithm
(andits variations),sincethey arebasicallyin conflict with the
needof spatial regularization. Namely, thesemethodshinge
on the possibility to processpixels separately in the M-step
(andits counterparts),while spatialregularizationrequiresjust
the opposite,that is, mixing pixelswhenapplyinglocal filters.
In our opinion, this is a strong point for using optimization
techniques,even thoughsomeideasto includespatialfiltering
into EM-like iterations do exist (seee.g.[9]).

In dSPECT, we find it useful to insist on two types of
regularization, spatial filtering, as alreadyapparentin static
SPECT or PET, and dynamic filtering applied to the time
seriesin eachdynamicpixel. We shall subsequentlycomment
on someof the regularizersusedin dSPECTreconstructions.
For spatial regularizers, a rich literature in the domain of
imageprocessingis of courseavailable. We refer to [13] for a
presentationform an ECT point of view. On the other hand,
dynamicfiltering is a new issuein ECT, andsuccessfulfigures
will have to beestablishedempirically.

A spatialfilter usefulto SPECTanddSPECTbasedonideas
from [14] is g �Y�N	=7��_ `c��� � `

�� 7��_ `G�@�u���� `
�� !

(3)

Here ��� � is a spatial high passfilter with cutoff frequency�
. The secondequality indicatesthat this regularizermay be

conveniently implementedvia 2D FFT and using Parseval’s
identity: choosea 2D lag window function �@� �Y�6	 having�@� ��3�	�743 and �@� �Y�6	�7 ] for � � � ( � .

The rationale of (3) is in the Fourier slice theorem:� �*� �L�N� � ��i	��Y�Y�N	�7 ��N�Y�-�i	 , (cf. [16], where
� ��� � � is the 1D

Fourier transformwith respectto the
�
-variable). It tells us

that in theabsenceof tissueattenuation,any detail apparentin
the image

�
shouldalsobe visible in someof the projections���N� � ��i	 . Or put differently, any detail smaller than

_��u� �
in a candidateimage

�
, (
�

is the known spatial bandwidth
of the sinogram),should be attributed to a noise source,as
it could not originate from the data. Following the idea of
regularization,we do not simply suppresshigh frequenciesin
the reconstructedimages.Instead,a high cost(3) is attributed
to thesehigh frequencies,andthe optimizerwill thereforetry
to avoid them.

Naturally, in caseswhereattenuationmay not be ignored,
the Fourier slice theoremis only approximatelycorrect, and
someof the detailsof

�
will be smoothedaway in

���
dueto

tissueattenuationandscatter. We thenhave to beconservative
whenchoosingthecutoff bandwidth

�
, which shouldbemildly

above theknown bandwidthof the sinogram.For all that, this
filter workswell in practice,andwestronglyrecommendits use
here.

A variantto (3) isg ���N	\7 �_ `c� � �Y���N	 `
�� 7 � _ `c� � � � ��� ���z� `

�� 
(4)



where � � is now a 1D spatialhigh passfilter appliedto the
spatial� spectrumof thesinogram.Here� � is thecorresponding
1D cutoff function, � � ��3�	 7�3 , � � �Y�6	
7 ] for � � � ( � . Even
thoughmathematicallyequivalent to (3) in the un-attenuated
case,the two regularizersbehave slightly different in practice
(see[12] for moredetails).

It wasshown in [15] that the 2D spectrumof the dynamic
attenuatedRadontransform,

���
, is concentratedon aregionof

bowtie shapeasshown in Figure1. This fact waspreviously
known (cf. [17, 16]) in the static case. Using a 2D cutoff
function �@� k � adaptedto the bowtie shape,we are led to
considera regularizingtermof theformg �Y�N	\7 �_ `G�@� k � � ��� `

�� !
(5)

Here �@� k � ��3�	�7�3
and ��� k � �Y�6	�7 ] for

�
outsidea bowtie

of vertical thickness
_��

at
��3J 3�	

andof horizontalwidth
_ �

,
where

�
is againthespatialbandwidthof thesinogram(see[15]

for details).
A numericalexperimentto comparethespatialregularizers

(3) and(5) is presentedin Table1 below. Weconsiderthefigure
of merit

]_ ` ������� `
�� e � �_ `¡� �¢k � � ��� `

�� e � �_ `G� � � �� `
�� 

(6)

where
�

was chosenas the classicalstatic Radontransform,
discretizedover ]¡£ 3S¤ using ¥i¦ stopsand ¥S¦ camerabins for a¥i¦¨§=¥i¦ imagegrid. NoticethattheHessianof (6) is
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Here
¬ � k � is a matrix representingthecutoff function � � k � of

bowtie shapein thesinogramspace,
¬ � is thematrix for the2D

cutoff � � in imagespace,and
� �

is the2D FFT.

Hessian
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Table1
Extremaleigenvaluesof regularizedobjective

The interpretationof Table 1 is as follows. Line 1 shows
that the Radontransform,even thoughtheoreticallyinjective,
is rank deficient in practice due to the symmetriesin the

geometry. Lines 2 and 3 give the extremal eigenvaluesof
the regularizersin case � � 7 � � 7 ] . Line 4 shows that
regularizer(5) barely improves the condition numberif used
without regularizer (3). Lines 5 to 7 show that regularizer
(3) makesthe Hessianinvertible. The value � � 7 ] 3 | seems
optimal here. Lines 9 - 11 show that the regularizer (5), if
usedin tandemwith (3), improvestheconditionnumberof the
Hessian

� © � e ] 3 | ³ � .
As introducedand used in our experiments,the spectral

filters(3),(4) and(5) usetheEuclideannorm,which is certainly
the natural candidate. Notice however that in the caseof
Tychonov regularization,

g �Y�N	"7¶µ� ` � ` �� , the 2-norm does
often have too stronga smoothingeffect. As a remedy, the
following 1-normtermg �Y�N	=7 �_ `¡·¢¸ � ` � (7)

hasbeenproposed.It hasbeenverifiedexperimentallythat (7)
tendsto privilege flat zonesin reconstructedimages. It may
thereforebeenvisagedto usethe1-normfor thespectralfilters
as well. Notice that in eachcase,the implementationof the
spatialgradient · ¸ � usesfinite differenceapproximationsof
thepartialderivatives.In thecaseof (7),wehaveusedtheusual
schemeshown in Figure2.

Temporalfiltersareneededin dSPECTreconstructions,and
may be basedon the samephilosophy: usewhatever type of
prior informationavailableto avoid unrealisticreconstructions�

, bearingin mindthatin anill-posedproblemmany unrealistic
candidates

�
will matchtheavailabledatawithin anacceptable

tolerancein thesensethat they saturatethenoiselevel: ` ���\�� ` �8¹»º Qi¼*�Y��	 (seeSectionIV). Herewe shall limit ourselves
to two examples,leaving themorestraightforwardadoptionsof
theabovespatialfilters to thereader.

Our first example is motivated by a dynamic physical
phantom[19] built at the Vancouver Hospital. The phantom
heart consistsof several small cylindrical containerswith a
drainandan inflow. Eachcontaineris equippedwith a mixing
propellerto guaranteea homogeneousflow. Tuning the motor
which steersthe pump may, in principle, producearbitrary
activity profiles in the containers. Considerthe situation of
washout,where the containeris initially filled with activity�N��3X	

. Pumpingfresh water at flow rate
� �x½*	

meansthat the
remainingactivity in thecontainerof volume ¾ at time

½
is

�N�%½*	�7"�N��3X	À¿�Á�Â � Ã
¤
� �%Än	
¾
��Ä !

The idea is now to avoid highly irregular curves
�N�x½*	

by
penalizingirregularbehavior of themotor. In a sense,themost
naturalprofile is flow with constantrate,

��ÅY�%½*	 7A3
. In terms

of
�

, this leadsto
��Å � ¾ 7q� �Y��Å � �N	�Å�7»� ��m%oSpª�N	�Å Åu7K3 . In the

continuousmodel, the dynamicregularizercould thereforebe
chosenas g ���N	27^�_

©
¤ m'oipª�N�%½*	 Å Å

�
��½�

(8)



Æ
the total time of the scan. Discretizinginto time steps< 7] �!�!�![�B via finite differencesleadsto theregularizer

g �Y�N	=7 �_
Ç
��È��

0
1GÈÉ� m'oipª��� k 1 V � e m%oSpª��� k 16MO��� _ m'oipª���%1

�
!

(9)
The rationaleof (8), (9) is that if every cell acts similar to
themacroscopiccontainersof thephantomheart,theoptimizer���
	

will privilegeuniform flow, andthis will have the desired
smoothingeffect.

As a secondexampleone may usethe dynamicanalogue
of the spatial Fourier high pass filter (3). As already
observed in [15], this requiresan additional step if applied
to decreasing-onlyprofiles, which are discontinuoussignals
in the spaceof periodic functions. Fourier filters, if applied
directly to thesecurves, would bear the risk of blurring the
signalat the initial times,dueto the inherentdiscontinuity. To
overcomethis problem,[15] proposesto flip thediscontinuous
signal, and to apply a 1D Fourier filter to the doubled,and
thereforecontinuous,time curves. The ideasare detailedin
thatreference.

IV. NOISE LEVEL AND STOPPING

A practical questionrelated to the use of any of these
regularizers is the correct choice of the penalty constant� . A good rule of thumb is to use � to steer the mean
square error ` �L���Ê� ` �� towards its expected valuej 1 º QS¼��Y� j 1 	 ¹ j 1 � j 1 , wherethe latterassumesa Poisson
statisticfor theemissiondata.This workswell in practice,and
thecorrectvalue � for agivensettingis easilyfound.

V. PEAK DETECTION

Since we are interestedin studies representingwash-in
andwashoutperiodsof a dynamictracer, the useof the shape
constrained model

���
	
requires, prior to reconstruction,

locatingthepeakposition
>@�

in eachindividualpixel ; . In some
cases,a rough estimateof the peaktime may be obtainedby
inspectingthe projectiondata,but this is not alwaysa reliable
indicator, in particularwhen attenuationis sizableand tends
to affect the shapeof the profiles. Herewe proposea method
of peakdetection,which in our testingproved extremely fast
and efficient. Using a variant of model

���
	
, we fit to each

activity curve in eachpixel ; a hat-shapedcurve asdisplayed
in Figure 3 (left), using four unknown parameters,Ë ��� 7
left-end activity, Ë �y� 7

peak position, Ë �y| 7
peak height,

and Ë � ´ 7 right-endactivity. Writing
� �%1 7ÍÌ 1 � Ë � 	 , whereË �~7Î� Ë �����!�!�!� Ë � ´ 	 , andwhere

Ì�1
samplesthecontinuoushat

functionat time < , wesolve theoptimizationproblem

��Ï¢	 minimize
�� ` ��Ì-� Ë 	X��� ` �

e8g �YÌ-� Ë 	 	
subjectto Ë ���l(�3# Ë �y|�( Ë ���� Ë ��|
( Ë � ´ (W3

for thedecisionvariableË 7�� Ë � 	 . Here
g �Y�N	Ð7 g ��ÌX� Ë 	d	 is a

spatiallyregularizingterm asusedbefore. Solving
��Ï�	

serves

four differentpurposes.Along with the peakposition,we get
anestimationof thepeakactivity, andwe maychoosethehat-
shapeddynamic image

�Ñ7ÒÌ-� Ë 	 as a first indicator for the
overall dynamicsin the image. Finally, we may usethe hat
shapedfunctionsasindicatorswhetherapixel is reallydynamic.

A natural extension of the hat-shapeis the extended
hat shown in Figure 3 (right), featuring eight determining
parameters.In additionto thepropertiesof thesimplehat, the
extendedhathastheadvantagethat it maybeusedto generate
good initial guessesfor the dynamicprofiles expectedin the
final dSPECTreconstructionprocess

�Y�
	
.

VI. DETECTING DYNAMIC PIXELS

In many cases,the truly dynamic region is only a small
part of the image,and it is possibleto identify pixels whose
activity will be merelystatic. This will reducethe numberof
unknown parametersin thefinal reconstructionprocedure

�Y�
	
.

We subsequentlyoutline oneway in which the reconstruction
basedon hat-shapedfunctions(Figure3, left) may be usedto
decidewhethertheactivity in pixel ; shouldbeheldconstantor
considereddynamic.We proposethefollowing steps:

Firstly, for every pixel ; , we determine the amplitudeÓ �E7 Ô\QSÁ@1.���%1"��Ô\Õ'RJ1.�*�'1
of the reconstructedcurve

in pixel ; . We arrange amplitudes in decreasingorder,Ó �c,Ö( Ó ��{×(Ø!�!�!8( Ó �cÙ
, where

s
is the total number

of pixels. Secondly, we require an (over)estimationof the
percentageÚ of dynamic pixels in the image. In a cardiac
study, this shouldbeeasilyobtainedby drawing a zonearound
the heart using a preliminary reconstruction(obtained e.g.
via staticEM). We thenconsiderthe first Ú � s amongpixels; �  ; � �!�!�! asdynamic,fixing theremainingasstatic.Clearly, as
a by-product,the reconstructionusinghat functionsalsofinds
the pixelsoutsidethe contour, sincethe reconstructionreturns
flat hatsat value0. Notice that the outlinedmethodcould be
appliedto any type of reconstructionnot necessarilybasedon
hat functions. The reasonwhy we apply it to hat functionsis
thesuperiorspeedof model

��Ï�	
.

If an estimationof Ú is difficult to obtain, e.g. in a brain
study, wherealmosteverypixel mightbedynamic,wemaystill
choosea thresholdto decidewhich pixels shouldbe kept as
dynamic.In theworstcase,this maybetheentirecontour.

VII. COMPARTMENTAL MODELLING

It is well-known from PETandplanarscintigraphicimaging
that quantitative informationaboutdynamicsmay be obtained
by drawing regionsof interestandfitting exponentialmodelsto
theextractedcurves.Thedriving ideabehindthenonlinearleast
squaresmodel

��s8tuB.	
wasto adoptcompartmentalmodelling

directly into the SPECTreconstructionprocess(cf. [11], see
also[2, 3]). While this is an appealingidea, it becomesclear
ratherquickly that theinstability inherentto fitting exponential
models,well-known evenin caseswherethecurvesarealready
given, (cf. [18]), will beevenmoredisastrouswhenwe have to



reconstructthesecurves.
ThisÛ numericalproblem,in tandemwith the moreobvious

criticism that compartmentalmodelsare merely heuristic or
even purely descriptive approaches,made us dispensewith
compartmentalmodels in the dSPECTimage reconstruction���
	

. As we shall see,thereis a moresubtleway to useprior
information includedin a compartmentalmodel of the tracer
dynamics,by incorporatingit in a specialdynamicregularizer.
We subsequentlydescribethis approachin the caseof a two
compartmentmodel. It will becomeclear in which way the
idea would have to be changedwhenappliedto modelswith
morecompartments.

Assuming a localized two compartmentdynamic with
constant input function, the expected discretized dynamic
profilesareof theform�*�'1\7K�*� �%½F1J	�7/v�����5 M#w &x, 1 e v��y�z5 M#w & { 1 e v��y|

(10)

with parameters
} �c�8( } ����(Ü3

and
v.��|�(Ü3

,
v.�c� e v.��� ev��y|»(Ò3

. In practicethereare two casesof major interest,
profileswith decreasingactivity, andthemorecomplicatedcase
of increasing-decreasingactivities.

In order to circumvent the numerical difficulties of the
exponential models, we observe that every bi-exponential
curve

� �%1
satisfiesa differenceequationof theform���%1Ý7CÞ6������� k 16M�� e Þ6�y�i��� k 16MN� e Þ6��|S (11)

where the five parameters
v.�c�[�v.���i�v.��|i } �c�� } �y�

per pixel in
(10) correspondto the five piecesof information

Þ6�����Þ6���S�Þ6��|
and

�����[������
in (11). Clearly (11) also containsoscillatory

solutionswhich arenot of the form (10), but in the context of
shapeconstraintsin

���
	
, oscillatoryprofiles

�
arenot feasible.

It is thereforereasonableto usearegularizerof theformg �Y�Nß[Þ@	27à�_ � k 1
� �'1 �áÞ ��� � � k 16M�� e Þ ��� � � k 16MO� e Þ �y| � ! (12)

Remark. Notice that fitting a model (10) to a given curve�*���[�!�!�!�����'0
via the equivalentform (11) is known asProny’s

method. In its traditional form, one may ignore the implicit
constraints, which force non-oscillatory solutions, because
experienceshows that even oscillatory curves will generally
follow the overall shapeof the given data. In contrast, in���
	

,
�L�

and not
�

is sampled,so Prony’s approachis used
to reconstructthe curves

�
, and is thereforesignificantly less

stable.Avoidingoscillatorycurvesvia shapeconstraints,aswe
do it, is thenwell-advised.

In orderto implementthis approach,thebasicprogram
�Y�
	

is extendedto an optimizationover the joint decisionvariable�����Þ@	
:

�Éâ�2	
minimize � ���Nß¡��������	

eqg �Y�Nß[Þ@	
subjectto shapeconstraintsasin

�Y�
	� ] ��Þ6������3#�3�"Þ6�y�
� _ Þ � ��� e ¦ Þ6�c��(43J-Þ��c�
e Þ6�y�
� ] Þ��c� e Þ6�y�
(43#ÉÞ6��� (43

�Éâ�
	
is difficult to solve in practiceif the numberof dynamic

pixels is large. A relaxationwhich works sufficiently well in
applicationsis to regardthe variables

Þ
asparameters,andto

makea limited numberof consecutiveupdatesof
Þ

and � . This
strategy hasbeenusedin ourexperiments.

If the influenceof the bolus input function is still strongly
felt during the initial time of the scan,the differenceequation
(11), which assumesa constant input function, is only
graduallycorrect,and the regularizer

g ���Nß¡Þ@	
may have to be

usedwith care. Oneobviousway to proceedis to use
g �Y�Nß[Þ�	

only during the later timesof the scan,wherethe influenceof
the fastdynamicsstemmingfrom thebolushave settleddown,
and the eigendynamicof the compartmentalsystemprevails.
On the otherhand,if prior informationon the expectedshape
of the bolus function is available, this may be included into
(11), resulting in a refined regularizing term

g ���Nß¡Þ@	
. We

emphasize,however, thatevenin thecasewhere(11), dueto a
strongbolus, is not entirely correct,the merefact that we are
usingthecompartmentalmodelonly asaregularizeranddonot
imposeit by forcing theform (10), makesour approachhighly
flexible. Thepresentedclinical studyseemsto confirmthis.

VIII . PATIENT STUDY

A renal Tc-99m DTPA GFR on a normal patient was
determinedvia dSPECTusinga SiemensE-camcamerawith
two headsat ã 3i¤ , eachheadrotating over ã 3i¤ . Acquisition
wasstarted2 minutesafter injection,andthe total time of the
scanwas20 minutes. The reconstructedtime profilesshow a
typical increasingdecreasingshapewith a peakactivity after
about3 minutes. Comparisonof the weightedleast squares
and Poissonmodel shows that the Poissonmodel produces
smoother curves which resemble the accumulatedcurves
obtainedby a planarDTPA scanperformedon the sametest
personprior to the dSPECTsession.Performanceof the two
optimizationmethodsis presentedin Table2.

Figure
of Merit

Stopping
Criterium

Numberof
Evaluations

Computation
Time

` �L�2�4� ` �
` � ` �� � ] 3 M�ä 680 31 minutes 21%� � ] 3 M�ä 368 17 minutes 21%

Table2
Performanceof thetwo optimizationmethodsfor patientstudy

As outlined in Section I, the imagesare obtainedusing
a complex procedure which starts with a static OS-EM
reconstructionwhich despitethe dynamicallows recognizing
the overall shape.This reconstructionmay alreadybe usedto
determinethe patientcontour, and to estimatethe percentageÚ of dynamicversusstaticpixels. In a secondstepwe obtain
a reconstructionvia hat functions. This determinesthe peak
in each pixel, and provides two dynamic zones shown in
Figure4. Thefinal stepconsistsof running

�Y�
	
with a limited

numberof dynamicpixelsto obtaindynamicprofilesof nearly
bi-exponentialshape,reflectingthe approximatelycorrecttwo



compartmentmodel. Notice that the shapeof the curveswe
expectå is at leastapproximatelyknown, sinceTc99m-DTPA is
usedin planarimaging,andknown to producesimilar curves
of bi-exponentialshape.

IX. SIMULATED HEART STUDY

The simulationpresentedhereis aimedat possiblefuture
clinical testswith Tc-99mTeboroximeor Thallium Tl-201 in
orderto assessthesanguineperfusionrateof themyocardium.
See[1] andthereferencesgiventherefor relatedcaninestudies.
We assumea myocardium slice with two dynamic zones
showing different time profiles. The chosenideal activities
correspondto a realisticdoseof a scanof 12 minutesduration,
startingimmediatelyafter injection. The ideal projectiondata
were obtained using a realistic attenuationmap, and were
noisedaccordingto a Poissonstatistics. The activities were
adjustedto producerealistic projection data as observed in
comparableclinical situations.

The goal of the simulation was to test the capability of
dSPECT to reconstruct the different time profiles in the
two zonesof the myocardium,to test their accuracy, and in
particular, to identify thecross-overof thetwo curvesshown in
line 2, Figure8. As canbeseenin Figure8 right, dSPECTwas
in factableto detectthecross-over of thecurvesfrom the two
zonesof themyocardium.

The simulation was basedon a dynamic phantomimage
shown in Figure6 line 1 at differenttimes. Thephantomheart
wasdivided into two zonesexhibiting different time behavior
shown in Figure8 left. The lungsspinalcordandbackground
weregivenconstantactivities. A realisticattenuationmapwas
usedto generateideal sinogramdatashown in Figure 6, line
2 left. The studycorrespondedto a doubleheadcameraat 90
degreesangle,eachheadrotatingover 90 degrees.The image
resolutionis ¥i¦u§)¥S¦ , acameracrosssectionhas64binsin aline,
andthecameratook64stopsonatimescaleof 15minutes.The
tissueattenuationmapwassupposedknownonthesame¥i¦u§)¥S¦
grid, andincludedin the operator

�
. The ideal sinogramwas

noisedusingPoissonstatisticsandassuminga realistic count
ratein theprojectiondata(Figure6, line 2 right).

As afirst stepin thereconstructionprocess,theprogram
��Ï¢	

fitting hatfunctionswasstartedandtheresultwasusedto detect
peaktimesandto distinguishbetweenstaticanddynamicpixels
as outlined in SectionsV andVI. The resultsfor � � and � �
areshown in Figure7, line 1 left andmiddle. Due to strong
attenuation,the region aroundthespinalcordwaserroneously
interpretedasdynamic.

Finally, program
���
	

with thetwo compartmentregularizerg �Y�Nß¡Þ@	
from SectionVII wasstartedbasedon the information

providedby
��Ï¢	

. In orderto evaluatethedynamicinformation
in the reconstruction,the curves for the two different zones
of the heartwere extractedand averagedto be testedagainst
the true dynamic input (Figure 8 right versusFigure 8 left).
The resultshows that the peakpositionsaswell asthe overall
shapeof thecurveswerecorrectlyrepresented,while thepeak

activitieswereunderestimatedby approximately8%.

X. CONCLUSION

In dSPECT, theproblemof reconstructingchangingactivity
distributions from dynamic and therefore inconsistentdata,
acquiredby a slow rotating camerasystem,is addressedby
an optimization approach,which usesspatial and temporal
regularizersin order to addavailableprior information to the
otherwisehighly under-fittedsystemof equations.

Basedon a patientstudy and a simulatedcasestudy, we
compareddynamic SPECT reconstructionswith a Gaussian
and Poissonmodel for the emissiondata. Several dynamic
and spatial regularizerswere used in tandemwith the data
matching terms, leading to different figures of merit in our
optimizationapproach

�Y�
	
. The testsshow that both models

arecapableto reconstruct,within an acceptableerror margin,
the changingactivities from dynamicemissiondataacquired
with slowly rotatingSPECTcameras.In the presentedcases,
thePoissonobjective neededlessCPU.Thespatialregularizer
which performedbest was (3), but the flat zone regularizer
(7) alsoproducedinterestingresults.The dynamicregularizer
we recommend for studies with increasing decreasing
activities is (12), sinceit producedactivity curvescloseto the
bi-exponentialsexpectedin regardof theprior information.
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Fig. 1 Left handpictureshows the theoreticalsinogramof a dynamic
point sourceat ç�èêé*ëÀì¡èêí�î*í*é�ï with dynamicprofile ð�çxñGï�ò�ó�ô@õ�öy÷cø6ùûú@ü'ý .
Middle pictureshows the bowtie obtainedby an experimentwith the
dynamicheart-in-thoraxphantom[19] with thesamedynamicprofile.
Right handpictureshows a filter þ#ÿ�� � adaptedto this dynamicscale.

Fig. 2 Finitedifferenceschemefor gradientapproximation.
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Fig. 3 Hat-shapedfunction (left) with 4 degrees of freedom,
generalizedhat(right) with 8 degreesof freedom.

Fig. 4 Line 1 shows the result of fitting a hat function (left), a
generalizedhatfunction(middle),andidentifyingdynamicpixelswith
themethoddescribedin sectionin V. Line 2 shows resultof

�����
and�����

medianfiltering appliedto theleft handimagein line 1. Line 1
right shows the 	�
 reconstruction,line 2 right the 	� reconstruction.

Fig. 5 PatientStudy: Peaktimesasa color plot using 	�
 lef-t and 	�
right. Early peaksin blue,latepeaksin red. Theresultshows that the
peakactivity occursin thecortex first, andin themedulalater.



Fig. 6 SimulatedHeart Study: Line 1 shows the dynamicphantom
at times10, 20 and40. The heartis divided into two zonesshowing
differentdynamicprofilesshown in Figure7 line 1 (left). The lungs,
spineand backgroundhave constantactivities. Line 2 (left) shows
the ideal sinogram,line 3 (right) the noisedsinogramassuminga
Poisonstatisticanda realisticcountrate.Thedataarecreatedusinga
correctlyscaledattenuationmap

Fig. 7 SimulatedHeartStudy:Stepson theway to thereconstruction.
Line 1 shows detecteddynamiczones:Gauss(left), Poisson(middle),
obtainedby fitting hat functions.Line 1 (right) shows correctanswer.
Dueto strongattenuation,thespinalcordwaserroneouslyinterpreted
asa dynamiczone.Line 2 shows hat reconstructions:Gaussat times
10,20,40. Line 3 samefor Poisson.
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Fig. 8 SimulatedHeartStudy: Line 1 (left) shows the true dynamic
curves assumedin the two partsof the heart (lesion versushealthy
tissue).Thecurveson theright handsideareobtainedby drawing the
correspondingregions in the reconstructedheart (Poissonobjective
with approachç �� ï ), andaveragingthe individual pixel curves. The
peak positions and shapesare accuratelyrepresented. The peak
activity for the fasterdynamic is underestimatedby roughly 10%.
Line 2 shows the � ÷ reconstructionat times10and20.


