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Semiconductor Devices
Considering semiconductor devices the Poisson-Nernst-Planck (PNP)
equations on a bounded domain Ω are given by

λ2∆V = n − p − C

∂tn = div Jn − R

∂tp = − div Jp − R

Jn = µn (∇n − n∇V )

Jp = µp (−∇p − p∇V ) .

Boundary conditions

n = nD (x) , p = pD (x) , V = U (x , t) + UT log
( nD

2σ2

)
on ΓD

∂V

∂ν
= 0, Jn · ν = Jp · ν = 0 on ΓN

Initial Conditions

n (x , 0) = nI (x) p (x , 0) = pI (x)
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Indirect Measurements

Measurements used in practice on a contact Γ1 ⊂ ∂ΩD :

• Current measurements

IΓ1 =

∫
Γ1

(Jn + Jp) dν

• Capacitance measurements

CapΓ1 =
d

dU

(∫
Γ1

∇Vdν

)
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Geometry of an Ion Channel

Ion channels are

• proteins with a hole, which allow ions to move through the
impermeable cell membrane.

• selective - they conduct ions of one type much better than others.
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Ion Channels

A simplified model of an ion channel is given by the PNP equations

λ2 ∆V =
∑

k

zkρk

−∇ · (mj ρj∇µj) = 0 j = 1, . . .M.

• V . . . electric potential

• ρk . . . density of ionic species

• M . . . number of ionic species, M ≥ 4

• zk . . . relative charge

• µj . . . potential
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Ion Channels

The potentials µj are calculated as the variation of the energy functional

µk =
∂

∂ρk
E [ρ1, . . . , ρM ;V ]

which is given by

E [ρ1, . . . , ρM ;V ] =

∫
Ω

(
−λ2|∇V |2 + zkV ρk + ckρk log ρk + µk

0ρk

)
dx +

+ E ex [ρ1, . . . , ρM ] .

• µk
0 . . . external force via potential

• E ex . . . direct and chemical interactions
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Ion Channels

Boundary conditions are

V = U, ρj = ηj on ΓD , j = 1, . . . ,M − 1

∂µM

∂ν
= 0 on ΓD

∂V

∂ν
= 0,

∂µj

∂ν
= 0 on ΓN , j = 1, . . . ,M.

The total number of confined particles NM , which is needed to specify
ρM is given by ∫

Ω

ρM dx = NM .
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Ion Channels

An output measurement of a channel is the current flowing out at one
side

I =
M−1∑
k=1

∫
Γ0

zk Jk · dν.

Here Jk denotes the flux of species k given by

Jk = −ρk∇µk = −ck∇ρk − zkρk∇V − ρk

(
∇µ0

k +∇µex
k

)
Given the measured current flow the following inverse problems arise:

• Identification of the confining external potential µ0
M .

• ”Design” of the confining external potential µ0
M to obtain special

selectivities.
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Semiconductors versus Ion Channels

Semiconductors Ion Channels

two species (electrons and holes) more than 4 different species

same type of boundary different types of boundary
conditions for all species conditions for each species

additional excess
electrochemical potentials

capacitance and current measurements current measurements

variation of applied voltage variation of concentration
at the Dirichlet boundaries at the Dirichlet boundaries

⇒ M. Burger, R.S. Eisenberg, H.W. Engl, ”Inverse problems related to
ion channel selectivity”, submitted
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Linearization
Unipolar transient PNP equations

λ2∆V − n = −C

nt = div (µn (∇n − n ∇V )) .

We introduce the variables µ and J given by

µ = log n − V ≈ log ñ +
n

ñ
− 1− V

J = n ∇µ ≈ ñ τ ∇µ

and replace the time derivative by finite differences. This gives

λ2∆V − n = −C

−V +
n

ñ
− µ = − log ñ + 1

−n + τ div J = −ñ

−τ∇µ+
J

µ̄nñ
= 0.

11 / 33



Linearization

Discretizing the linearized system in time, with time steps τ , we obtain

λ2∆
(
Vk+1

)
− nk+1 = −C

−Vk+1 +
nk+1

nk
− µk+1

n = − log nk +1

− nk+1 +τ div Jk+1
n = − nk

Jk+1
n

µ̄n nk
− τ∇µk+1

n = 0

Dirichlet boundary conditions

nk+1 (x , t) =
1

2

(
C (x) +

√
C (x)2 + 4σ4

)
Vk+1 (x , t) = U (x , t) + ln

(
1

2σ2

(
C (x) +

√
C (x)2 + 4σ4

))
µk+1 (x , t) = log nk+1(x , t)− Vk+1(x , t)
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Existence and Uniqueness

Mixed Formulation

Let f ∈ V ′, g ∈ Q ′ be given, find u ∈ V and p ∈ Q solutions of

a(u, v) + b(v , p) = 〈f , v〉 ∀ v ∈ V

b(u, q)− c(p, q) = 〈g , q〉 ∀ q ∈ Q.

Here a, b and c are continuous bilinear forms on V × V , V × Q and
Q × Q respectively.
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Existence and Uniqueness

Under the assumptions that

• a is bounded and coercive, i.e.

|a(u, v)| ≤ ‖a‖‖u‖V ‖v‖V ∀ u, v ∈ V

∃ α > 0 a(v , v) ≥ α‖v‖2
V ∀ v ∈ V

• b is bounded, i.e. |b(v , q)| ≤ ‖b‖‖v‖V ‖q‖Q

• b satisfies the inf-sup condition, i.e.

∃ β > 0 sup
v∈V

b(v , µ)

‖v‖V
≥ β‖µ‖Q

• c is bounded and coercive, i.e.

|c(µ, v)| ≤ ‖c‖‖µ‖Q‖v‖Q ∀µ, q ∈ Q

∃ γ > 0 c(q, q) ≥ γ‖q‖2
Q ∀q ∈ Q

the system has a unique solution.
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Existence and Uniqueness

The linearized PNP equations can be rewritten as

ã ((µn, Jn) , (ψ2, ϕ2)) + b̃ ((ψ2, ϕ2) , (V , n)) = F1

b̃ ((µn, Jn) , (ϕ1, ψ1))− c̃ ((V , n) , (ϕ1, ψ1)) = F2.

We can verify these conditions for

n ∈ L2 (Ω) V ∈ H1 (Ω)

µ ∈ L2 (Ω) J ∈ H (div,Ω)

⇒ existence and uniqueness of a solution.
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Identification Problems

Consider identification of the doping profile C = C (x) from transient
current measurements.

Abstract Formulation

F (C ) = Y δ

with

F : D → Y
C 7→ IΓ1(U)

Applying Tikhonov regularization to the abstract problem gives

Q(C ) =
∑

k

∥∥F (C )− Y δ
k

∥∥2
+ α ‖C − C∗‖2 → min

C

where the index k denotes the time steps.
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Adjoint Equations
The adjoint equations (calculated via the corresponding Lagrange
functional) are given by

λ2∆ θk+1− γk+1 = 0

− θk+1 +
1

nk
γk+1− ρk+1 =

nk+2 − nk+1

(nk+1)
2 γk+2 − ρk+2 +

Jk+2

µ̄n (nk+1)
2 ω

k+2

− γk+1 +τ divωk+1 = 0

−τ∇ ρk+1 +
1

µ̄n nk
ωk+1 = 0.

with the Dirichlet boundary conditions

ρk+1(Γ1) = Jk+1
n −f k+1 ρk+1(Γ2) = 0

θk+1 (Γ1) = θk+1 (Γ2) = 0

ωk+1 (Γ1) = ωk+1 (Γ2) = 0

and homogenous Neumann boundary conditions on the rest of the
boundary.
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Discretization for one-dimensional
Problems

For the discretization in space we use

• piecewise linear basis functions for V and J and

• piecewise constant ones for n and µ.

The weak formulation of the linearized PNP system is given by
−λ2K −M1 0 0
−MT

1 An −M2 0
0 −MT

2 0 τD
0 0 τDT Bn




V
n
µ
J

 =


f1
f2
f3
f4

 .

K stiffness matrix
M1, M2 mass matrices (depending on the basis functions)
An, Bn matrices which depend on the solution of the last time step
D ”differentiation” matrix
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Problem Setup: Unipolar Diode

Predefined doping profile

C (x) =

{
Cmax · 1.0 cm−3 x ≤ 0.5

0 cm−3 x > 0.5

Length L = 10−4cm
Time steps τ = 0.5
Number of time steps tk = 200
Applied voltage U (t) = 10−2 (t + sin(t))
Discretization parameter h ≈ λ
Stabilization parameter ε ≈ λ

Software package Matlab
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Reconstructed Doping Profile with 5 %
noise

Cmax = 1016, Noise 5 % and C(x) ≥ 0
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Reconstructed Doping Profile with 5 %
noise

Cmax = 1017, Noise 5 % and C(x) ≥ 0
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Identification Problems for Bipolar
Semiconductor Devices

Linearized PNP Equations for bipolar device

λ2∆ Vk+1− nk+1 +pk+1 = −C

−Vk+1 +
nk+1

nk
− µk+1

n = − log nk +1

Vk+1 +
pk+1

pk
− µk+1

p = − log pk +1

− nk+1 +τ div Jk+1
n = − nk +τ

nk pk−σ4

τn (pk +σ2) + τp (nk +σ2)

− pk+1 +τ div Jk+1
p = − pk +τ

nk pk−σ4

τn (pk +σ2) + τp (nk +σ2)

1

µ̄n nk
Jk+1
n −τ∇µk+1

n = 0

1

µ̄p pk
Jk+1
p −τ∇µk+1

p = 0.
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Problem Setup: Bipolar Diode

Predefined doping profile

C (x) =

{
1016 cm−3 x ≤ 0.5

−1016 cm−3 x > 0.5

Length L = 10−3cm
Time steps τ = 10
Number of time steps tk = 100
Applied voltage U (t) = 10−3 (t + sin(t))
Discretization parameter h ≈ λ
Stabilization parameter ε ≈ λ2

Software package Matlab
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Reconstructed Doping Profile
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Discretization of the two dimensional
problem

The solution of the linearized PNP equations is in the following Sobolev
spaces

V ∈ H1 (Ω) n ∈ L2 (Ω) ,

µn ∈ L2 (Ω) Jn ∈ H (div ; Ω) .

Discretization

• n, µn . . . piecewise constant basis functions

• V . . . piecewise linear basis function

• Jn . . . low order Raviart-Thomas elements
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Approximation of H (div; K )

Some notations:

• Let Ω =
⋃m

r=1 Kr , where Kr denote triangles

• n : dimension of space

• Pk (K ): space of polynomial of degree ≤ k

Raviart-Thomas Elements
The Raviart-Thomas space is given by

RTk = (Pk (K ))n + x Pk (K ) .

For any q ∈ RTk (K ) we have

div q ∈ Pk (K ) ,

q · n |∂K∈ Rk (∂K ) .
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Low Order Raviart-Thomas Elements

The space RT0 is given by

q1 (x , y) = a + cx ,

q2 (x , y) = b + cy .

q · n

Used in

• electromagnetics

• fluid dynamics
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Forward Solver for a MESFET

MESFET - Metal-Semiconductor Field Effect Transistor

• made of n-type III-V compound semiconductors, such as gallium
arsenide (GaAs) or silicon carbide (SiC)

• used for high frequency applications (radar) or microwave integrated
circuits

n+n+

n

Source Gate Drain
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Problem Setup: GaAs MESFET

Predefined doping profile

C (x) =

{
1016 cm−3 x ∈ n+region

0.3 · 1016 cm−3 x ∈ n region

Length L = 10−4cm
Time steps τ = 0.01
Number of time steps tk = 100
Applied voltage USource = 0.4

UGate = 0
UDrain = −1.1

Number of triangles nK = 9728
Computation time 196 s

Software package NGSolve V4.5
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Numerical Simulation of a MESFET

30 / 33



Numerical Simulation of a MESFET
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Numerical Simulation of a MESFET
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Further Work

What’s still left to do (or what we are just working on)

• Backward Solver for two dimensional problems using NGSolve

• Development of efficient numerical methods for two-dimensional
identification problems using NGSolve

• Two dimensional solver for ion channels
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