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Context

Inertiel Confinement Fusion (ICF).

Framework: Laser-Plasma interaction.
Laser intensity I = 3× 1015–1016 W/cm2

Plasma temperature Te = 1–2 keV = 1.2–2.3× 107◦K
Typical time 50–100ps
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Model

A mechanism to generate Magnetic Field

Faraday’s Law F. L.
∂tB = −∇× Eelec

Generalized Ohm’s Law G. O. L.
Eelec = −ue × B−∇W/(2e)

−(∇ · (neU))/(nee) + Rie/(nee)

Magnetic Field Evolution Equation
∂tB−∇× (V × B)− µ0

−1∇× (σ−1
0 ∇× B)

= ∇× ((ene)
−1∇ · (ne U))

Source term

∇× ((ene)
−1∇ · (ne U)) = 0 =⇒ B = constante
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The model

Source term

∇× ((ne)
−1∇ · (ne U)) = ∇× (U · ∇ ln ne)

+∇× (∇ · (U−UI))

∇× (U · ∇ ln ne)& ∇ρ×∇Te = 0 for times << 100ps and
isotropic initial conditions

∇× (∇ · (U−UI)) 6= 0 if U is anisotropic tensor

Source term

Ten-moments approximation takes into account the
anisotropy of electron pressure
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Model

Ten-moments approximation: derivation procedure

Electrons Kinetic equation
in the high frequency laser field
in presence of the quasi-static electric field Eelec

and magnetic field B

Average this equation over laser period
Laser’s contribution contained in the tensor

W = ε0〈EL ⊗ EL〉/nc

where EL is the laser electric field
nc is the critical density

Take the consecutive moments over the electron distribution
function f

assume the quasi-neutrality of the plasma
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Model

Ten-moments approximation: Notations and equations

ne

neue

P
U
V
E

=
=
=
=
=
=

∫
f dv∫
f vdv∫

f (v − ue)⊗ (v − ue)dv
P/ne −W

ue + j/(nee) ' ue

ρV ⊗ V + neU

∂tρ +∇ · (ρV) = 0

∂t(ρV) +∇ · E = −ne∇W/2

∂tE +∇ · (ρH⊗ V)S +∇ ·Q = −ne(∇W ⊗ V)S

+2νTneW + SBU − SI − SB
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Model

Ten-moments approximation to Euler system

∂tE +∇ · (ρH⊗ V)S +∇ ·Q = −ne(∇W ⊗ V)S

+ 2νTneW + SBU − νP(P− PI)− SB

(1)

Set B = 0 and W = 0

Tend νP −→ +∞ and make expansion of (1) respect to νP

=⇒ P = PI

Take 1
2trace of the result

Set E = ρ(V2
1 + V2

2)/2 + 3neU/2 and p = neU
Euler energy equation

∂tE +∇ · ((E + p)V) = 0
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Model

Equations of the model: EMHD model

∂tB +∇ · (B(V + VN + VH))− µ0
−1∇× (σ−1

0 ∇× B)

= ∇× ((ene)
−1∇ · (ne U))

∂tρ +∇ · (ρV) = 0

∂t(ρV) +∇ · E = −ne∇W/2

∂tE +∇ · (ρH⊗ V)S +∇ ·Q = −ne(∇W ⊗ V)S

+2νTneW+SBU−SI−SB

B. Dubroca et al., Physics of Plasmas, 11, 3830 (2004)

Work in preparation
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Model: closure relations

Unknowns of the model

B, ρ, V, U and Q

In 2D geometry
number of unknowns = 17
number of equations = 8

=⇒ Crucial necessity
to close the model

Closure relations

On electronic pressure P = kBTe = U+W

On heat flux tensor Q = Qiso + Qani

where Qiso = −6(κ∇U⊗ I)S/5
Qani = −4δkBT(∇⊗Π)S/(5nemeνie)

with Π = (U−UI)
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Input parameters for simulations

Laser

Laser intensity I = 3× 1015 W/cm2

Radius of the speckle R = 10µm
Laser wavelength λ0 = 0.35 µm

Plasma

Electronic Density ne = 9× 1021cm−3

Plasma temperature Te = 2.3× 107◦K
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A picture

Structure of generated magnetic field after 50 ps
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Model properties

Definition

The set of the physically admissible states of the above model is
Epas =

{
U = (ρ ρV E B)t /ρ ≥ 0,

and Ξ = E− ρV ⊗ V verifies (Ξ ξ, ξ) ≥ 0 ∀ ξ}

Proposition

Epas is a close cone and convex

C. D. Levermore et al., SIAM J. of Appl. Math., 59, 1, 72
(1996)
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Model properties

Compact form

∂tU + ∂xFx(U) + ∂yFy (U)+G(U , ∂2
xxU , ∂2

yyU , ∂2
xyU)

= S(U)+R(U)+C(U)

Parabolicity

black + magenta = Parabolic
Problem ill-posed without the terms SBU, Qani

Anisotropic filamentation instability

Hyperbolicity

black + violet = Hyperbolic
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Model properties

Hyperbolicity: waves

0 n

V · n + c

V · n− c

V · n− c/
√

3

V · n + c/
√

3

V · n

t

Hyperbolicity: waves nature

V · n± c genuinely nonlinear
V · n, V · n± c/

√
3 linearly degenerated
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Numerical approximation: main ideas

Approximation in time

Non-linear implicit scheme designed on
A Newton-Krylov method
Using a non-linear GMRES

Approximation in space

Approximate Riemann solver HLLC for Hyperbolic part
Second order accuracy extension by slope limiters (MUSCL)

Centred schemes for diffusion terms

Mesh

Cartesian uniform mesh in 2D
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Numerical approximation: Precisely

Continuous compact form

∂tU + ∂xFx(U) + ∂yFy (U)+G(U , ∂2
xxU , ∂2

yyU , ∂2
xyU)

= S(U)+R(U)+C(U) = RHS(U(t))

Discrete compact form in the cell l,m

∂tUl,m(t)+
Fl+1/2,m(t)−Fl−1/2,m(t)

∆x

Fl,m+1/2(t)−Fl,m−1/2(t)

∆y
+Gl,m(U(t)) = RHS l,m(U(t))
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Numerical approximation: Implicit method

Non-linear equation

Discrete compact form in the cell l,m re-written as

∂tUl,m(t) = Θl,m(U(t))

Implicit Euler method time discretizatisation

Un+1
l,m − Un

l,m −∆tΘ(Un+1) = 0

Non-linear equation follows

F(Un+1) = 0

That must be solved to obtain Un+1
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Numerical approximation: Implicit method

Newton method to solve Non-linear equation

At each time solve F(U) = 0 by a Newton method
=⇒ linear system

A(Uk)(Uk+1 − Uk) = −F(Uk)

where A(Uk) = F′(Uk)

Non-linear GMRES coupled to JFNK method
JFNK = Jacobian Free Newton Krylov

No explicit storage of jacobian matrix A
Know how to compute the matrix-vector product Az

finite difference to compute Az

Az = A(Uk)z =
F(Uk + εz)− F(Uk)

ε
with ε = O(ε

1/2
machine)

For one fixed ε, use preconditioners
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Numerical approximation: function F(U)

Discrete compact form in the cell l,m

∂tUl,m(t)+
Fl+1/2,m(t)−Fl−1/2,m(t)

∆x

Fl,m+1/2(t)−Fl,m−1/2(t)

∆y
+Gl,m(U(t)) = RHS l,m(U(t))
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Numerical approximation: F(U)

Fl±1/2,m(t) and Fl,m±1/2(t)

Finite volume method

1D Riemann problem by coordinate interface

Approximate Riemann solver HLLC for ten-moments

HLLC for ten-moments properties

Positively conservative
Exact resolution of 1-shock and 5-shock
Exact resolution of contact discontinuity
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Numerical test

HLLC solver: contact discontinuity

ρ V1 V2 P11 P12 P22 P33

left state 1 0 3 2 0 2 2

right state 0.1 0 3 2 0 2 2

-0,4 -0,2 0 0,2 0,4
Position

0

0,2

0,4

0,6

0,8

1

Density

Exact
HLLE order 1
HLLC order 1

Stationary contact discontinuity problem at t = 0.2, 100 cells on
(−0.5, 0.5) and CFL = 0.5
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Numerical test

HLLC solver: Sod’s shock tube problem

ρ V1 V2 P11 P12 P22 P33

left state 1 0 0 105 0 105 105

right state 0.125 0 0 104 0 104 104

-0,4 -0,2 0 0,2 0,4
Position

0

0,2

0,4

0,6

0,8

1

Density

Exact
HLLE ordre 1
HLLC ordre 1

Sod’s shock tube problem at t = 0.1, 100 cells on (−0.5, 0.5) and
CFL = 0.5
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Numerical tests

Magnetic field generation: feedbacks neglected

∂tB +∇ · (BVmag)−µ0
−1∇× (σ−1

0 ∇× B)

= ∇× ((ene)
−1∇ · (ne U))

∂tρ +∇ · (ρV) = 0

∂t(ρV) +∇ · E = −ne∇W/2

∂tE +∇ · (ρH⊗ V)S+∇ ·Qiso = −ne(∇W ⊗ V)S

+2νTneW−SI
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Numerical tests

Movie on magnetic field generation: feedbacks neglected

Laser

I = 3× 1015 W/cm2

R = 10µm
λ0 = 0.35 µm

Plasma
ne = 9× 1021cm−3

Te = 2.3× 107◦K
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Numerical tests

Magnetic field generation: feedbacks accounted for

∂tB−µ0
−1∇× (σ−1

0 ∇× B) = ∇× ((ene)
−1∇ · (ne U))

∂tρ = 0

∂t(ρV) = 0

∂tE+∇ ·Qiso = 2νTneW−SI − SB

where SB = 2nee(U× B)S/me is the rotation of U
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Numerical tests

Magnetic field structure: feedbacks accounted for

0 30 60
0

30

60

magnetic field (T)

µm

µm

time 17.1 ps

−7.32

−5.86

−4.39

−2.93

−1.46

1.1e−16

1.46

2.93

4.39

5.86

7.32

Magnetic field develops small scale perturbations, this is an
anisotropic filamentation-type instability, after 17 ps.The

computation cell length is 1 µm
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Numerical tests

Instability analysis: U splitting

U = Λ + Π

where

Λ =

 U
0
0

0
U
0

0
0
U

 , Π =

 Π⊥
Π∧
0

Π∧
−Π⊥

0

0
0
0


Adequate form for reduced model

∂tB− η(∂2
x + ∂2

y )B
∂tΠ⊥
∂tΠ∧

=
=
=
−νPΠ⊥ +
−νPΠ∧ +

1
e (∂2

x − ∂2
y )Π∧ − 2

e ∂2
xyΠ⊥

(νT − 1
2νP)W − 2e

me
Π∧B

2e
me

Π⊥B
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Numerical tests

Instability analysis

Wave form for analysis A exp(ωt) cos(kxx + kyy)

Dispersion relation
(ω + νp)(ω + η|k|2) = −(2νT

νP
− 1) W

me
|k|2 cos 2θ

Asymptotically ω ∼ |k|2
=⇒ grid size is unstable
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Numerical tests

Instability analysis: stabilisation

Following terms stabilize the model
SBU = 2δviscU(∇⊗ (∇× B))S/(eµ0)
Qani = −4δkBTe(∇⊗Π)S/(5nemeνie)

New dispersion relation follows:
(ω+νp+δκ|k|2)(ω+η|k|2) =

[
(2νT

νP
−1) W

me
−δvisc

U
me

c2

ω2
Pe

|k|2
]
k2

Asymptotically ω ∼ |k|2 − |k|4
=⇒ cutoff that must be respected by the mesh size
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Numerical tests

Magnetic field structure: feedbacks accounted for,
stabilisation

0 1 2 3 4 5

k*lambda_Bendib

-4

-2

0

2

4

ln
(m

ax
(B

)) 
/ 1

0*
*1

2 
(s

**
(-1

))

Bendib
Theorical formula
Code

Comparison maximum growth rate of magnetic field between
kinetic theory, theorical formula and Code. The computation cell

length is 0.2 µm. |k| = 2π/λ

A. Bendib et al., Physical Review E., 55, 7522 (1997)
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Numerical tests

Magnetic field structure: feedbacks accounted for,
stabilisation
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Magnetic field structure after 50 ps and the corresponding
maximum growth rate. The computation cell length is 0.2 µm
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Conclusion and Perspectives

Conclusion

Obtaining of a model EMHD capable of predicting and of
reproducing the generation of auto-generated magnetic fields

Validation
we reproduce the analytical solutions

Complicated and complex problem
equations are stiff and can be unstable =⇒ need of robust

schemes in time and in space

Perspectives

Study mathematically the stability of the model problem with
abstract theory of PDE

Improve the closure on heat fluxes

Introduce the equation of laser propagation
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