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Abstract

Thin films of viscous fluids coating solid surfaces can become unstable due to intermolecular forces, leading to break-up of
the film into arrays of droplets. The long-time dynamics of the system can be represented in terms of coupled equations for the
masses and positions of the droplets. Analysis of the decrease of energy of the system shows that coarsening, decreasing tt
number of droplets with increasing time, is favored. Here we describe the two coarsening mechanisms present in dewetting films:
(i) mass exchange leading to collapse of individual drops, and (ii) spatial motion leading to droplet collisions and merging events.
Regimes where each of mechanisms are dominant are identified, and the statistics of the coarsening process are explained.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

For thin films of viscous fluids coating solid surfaces, intermolecular forces between the solid and fluid, such
as van der Waals attraction and Born repulsion, are known to produce complex dewetting instfbilfiegluch
theoretical work has focused on the details of early-stage linear instgi@Hity0] as well as late-stage nonlinear
pattern formation2,11-13]

The instabilities cause nearly-uniform fluid layers to break-up, or “dewet”, into arrays of large droplets connected
by a remaining nano-scale ultra-thin film (UTF). The dynamics leading to the formation of such well-defined co-
existing stable states is common in other systems with phase separation. In analogy to spinodal decompositior
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Fig. 1. Numerical simulations of the lubrication model for a dewetting thin film: (left) the evolution of a film at successive times showing droplet
collision and collapse events (both circled), (right) the long-time scaling behavior for coarsening of the number of(dropa large system
as a function of time.

described by the Cahn—Hilliard equatifd®,15], this evolution in unstable thin films is sometimes called spinodal
dewetting[16—18]

In the late stages of the dewetting process, there is a slow evolution of the drops by means of spatial motion and
mass flux between drops. In a previous artjt®, we showed how the partial differential equation governing the thin
film fluid dynamics could be reduced to a system of ordinary differential equations that describe these mechanisms.
Over time, these mechanisms can cause the number of droplets to decrease, and the system to “coarsen”. Since ma:
is conserved, this yields a film with fewer, larger drops.

The current paper seeks to quantify the coarsening process and clarify the two mechanisms by which it occurs:
(i) collapse of individual drops and (ii) pairwise collision of dropgy. 1(left) illustrates both of these mechanisms
in a numerical simulation of the governing partial differential equation on a finite domain with no-flux boundary
conditions. This paper extends the work initiated by the authdt®inpwhere only mass exchange driven coarsening,
or droplet “collapse”, was considered. For systems with large numbers of drops, a scaling law for the droplet number
N(r) was found,

N(1) = 0@~ %/%). (1.1)

which was confirmed by numerical simulations, &g 1(right).

Our results run parallel to other studies of dynamical coarsening processes, most notably late-stage phase separa
tion phenomena. This process is described by the Cahn—Hilliard eq{tdid®], which is similar to the lubrication-
type equation used to describe spinodal dewetting. The limiting dynamics are the “Ostwald ripening” process
[20—-24] which exhibits dynamic scaling as we see in our problem.

Recent experiments of coarsening dewetting films have been conducted by Limary anfP&f€emey measure
dynamic scaling and find/(r) ~ —#, whereg varies from about 0.1 to 0.4. Since their experiment is on a two-
dimensional substrate, the one-dimensional results here cannot be quantitatively compared. However, they do find
a crossover from diffusion-driven to coalescence dominated coarsening, which we explain here.

A review of the lubrication model and its reduction is given in Seconn Section3, a local analysis of
coarsening mechanisms is presented. Sectieramines the global dynamics of coarsening, including scaling
arguments for the statistical evolution and numerical results confirming our analysis.

2. The lubrication model

The dynamics of this physical system can be modeled by a lubrication equation for the evolution of the thickness
of the fluid film coating the solid substrate~= h(x, r) [26—28] In the limit of low Reynolds number, the Navier—
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Stokes equations for the incompressible flow of a thin, slowly-varying film of viscous liquid take the form of a
nondimensional Reynolds’ equation,

oh d 9,
B2 (32 2.1)
ot ox 0x

wherep defines the hydrodynamic pressure experienced by the film. The gradiprgiveds the local forces on

the fluid. For very thin films, the influence of gravity can be neglected and the dynamics are dominated by surface
tension at the film'’s free surface and intermolecular forces at the fluid-substrate interface. A simple model for the
pressure is then given by

h
p=1(h)— 372 (2.2)

The second term i(R.2) gives the linearized contribution of surface tension to the total pressure for a slowly-varying
curved interface. The combined effects of all intermolecular forces between the solid substrate and a homogeneou
film of thicknessh is given by the disjoining pressufé(k), the derivative of the potentidl (),

) = ?TZ‘ (2.3)

The total energy of the system is given in terms of contributions from this potential and the surface energy,
1,
E= [ U(h)+ Ehx dx. (2.4)

We consider intermolecular potentialgh) including both attractive and repulsive effects, which balance to
produce a single minimum dt = ¢ > 0 [19]. This minimum corresponds to the nondimensional uniform film
thickness which is globally-stable (si¥] for its dimensional meaning). Physically, it describes complete wetting
of the solid substrate by at least a monolayer of the fluid. As will be discussed further, such “ultra-thin film” (UTF) or
“pre-wetting” layers can have a dramatic influence on the dynamics of thin films since they regularize singularities
associated with the motion of contact lines on dry solid substfa629] Much of the analysis is independent of
the details of the potentidl (), but for definiteness we suppose that it can be written asiatlependent function
U(H) with a minimum atH = 1 corresponding to the equilibrium UTF thickness,

U(h) = UhJe). (2.5)

In this model, up to a critical thickness, all homogeneous thin films iwith O(1) can be shown to be unstable
[13,30,31] Nearly-uniform films will break up and develop into sets of near-equilibrium droplets connected by
UTF layers. Each fluid droplet is described by a localized steady-state solutidripaind (2.2) These have been
previously analyze(l3,19], and we briefly review them here. Nontrivial steady-state solutiorf2.4) and (2.2)
have uniform, constant pressuge= p, wherep is between 0 and the maximum Bf(k), pmax. That is, there is a
continuous one-parameter family of droplet solutions; z(x; p), given by the homoclinic solution of

d?h —

Fei I1(h) — p. (2.6)
For |x| — oo, the tails of droplet solutions approach the saddle poirfRd) defining a modified UTF thickness
determined by a balance of the disjoining pressureaidx) — Amin(p) = € + 0(€?). In contrast, the disjoining
pressure is relatively weak in the interior of the droplet, whexe O(¢), and to leading order as— 0, the profile
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Fig. 2. A stable steady-state droplet solutfc(m; p) showing the three regions in the asymptotic structure of the solution-fer0: (i) droplet
core, (i) contact line, (iii) outer ultra-thin film. The dashed curve shows the leading order asymptotic solution for the droplet core, the parabola
(2.7), with width 2w.

is parabolig(Fig. 2), determined by a balance of surface tension and —

1 -
i 5y~ 4 3P =) < e

hmin(f’) x| > w,

wherew = w(p) gives an effective measure of the (half-)width, or radius, of the droplet. The soldtiens(x; p),
parametrized by, constitute the one-parameter continuous family of steady state droplets, with mass inversely
related top.

Since closed-form solutions cannot be found for all of the droplet properties for gehérglit is helpful to
compute leading order results by considering the limit of vanishing ultra-thin fdms,0. As described if19],
in this limit, the slope at the edge of droplet core, defining the contact angle, is given in terms of the intermolecular
potential asA = +/2[U/(1)]. To leading order, the width of the drop is then related toy

()~ 2. (2.8)
p

We can then define the mass of droplet as the mass of the core region,

243

£ (2.9)

ﬂaz/ﬁ@am~
—w
Note that the size and mass of droplets are independeramd are determined by the droplet pressuire —

2.1. Reduction to the droplet dynamical system

Non-identical droplets separated by finite distances are not steady states; however, such states are generally
close to equilibrium and evolve slowly, on long timescales. Droplets of different sizes have different vapies of —
and will be out of equilibrium due to mismatches in their surrounding UTF layers. It will be shown thaktheir
values differ aD(¢2). The quasi-steady dynamics of such droplets can be described in terms of the properties of the
steady-state dropletbig. 3shows a typical example of the interaction between droplets, showing two dynamical
features: translation and mass exchange.

A derivation of the equations governing the droplet dynamics was obtained by studying the linearized stability
of a single droplef19]. The influences of neighboring droplets arise from the fluid flukesJ/,. (left and right,
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Fig. 3. Dynamics of two typical adjacent droplets in a dewetting film. The interaction of the droplets generally yields mass exchange and spatial
motion.

respectively) which result from pressure gradients via

The near-equilibrium form of the solution can then be written in terms of the steady-state droplet with slowly-varying
parameters describing its positioxi(t), and its pressur®(t), and perturbations on the order of the flux,

h(x, 1) ~ h(x — X(£); P(t)) + O(J). (2.11)
The solvability conditions for this solution yield the evolution equationsX¢), P(z),

dp dx

o = PPy — Jo), o = Ex(P)g A ), (2.12)

whereCp andCy are coefficient functions which depend only on the equilibrium droplet shape:

TP ((h = hanin)/R3) dx

ex(h) = 2 ["((h — hmin)2/h3) dx’ 13
and
w ar -1
Cp(P) = — </__ggdx> ) (2.14)

The dynamics of a single droplet und@:.12)is given by combinations of the two basic modes of evolution: (i)
translation with fixed mass (constap for J,. = J_, and (ii) change of mass at a fixed position (cons¥rfor
Jy = —J_, seeFig. 4

More generally, the governing equations for an arrai dfoplets,{ X (¢), Pr(¢)} fork =1,2,..., N, are given
by
dp dx
ditk = Cp(Pe)(Jkk+1 — Jk—1.k) ditk = —Cx(Po)(Jkk+1 + Jk—1.4), (2.15)

whereJy x+1 is the flux between dropletsandk + 1.

This reduction of the dynamics of the PE1)to coupled ODEs for the droplets is made possible by noting that
the flux is nearly constant in the ultra-thin film layers between dropl&k As shown in[19], under appropriate
conditions, the dynamics of the UTF between droplets is quasi-statically slaved to the evolution of the droplets.
That is,(2.1) and (2.2)an be reduced to an elliptic problem for the “chemical potentigl[V (k)] = 0, subject
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Fig. 4. Fundamental modes of evolution for a single droplet: (left) translation and (right) change of mass.

to the Dirichlet boundary conditions at the droplet edgéss V (hmin(P;)) for j = k, k + 1. The functionV (k) is
given explicitly in terms of the intermolecular potential as

V(h) = / h3U” (k) dh. (2.16)

Then the flux,/ = —dV/dx, since it is nearly constant in the UTF layers, can be approximated by

V(hmin(Pr+1)) — V(Amin(Pr))
(Xit1 — w(Prt1)) — (Xi + w(Pr))’
Egs.(2.15) and (2.17¢onstitute a closed system of ODEs for the droplet pressures and positions.

Jek+1=— (2.17)

2.2. The simplified dynamical model

The above derivation applies to a broad class of pressure potential fungipn®nce this function is specified,
the details of the droplet solutions and the other functions in the model can be calculated. To make our study of this
model more explicit, we will focus attention on a particular representative potetid), = (H3/3) — (H2/2).
This corresponds to the disjoining pressure,

e &

(2.18)
and yieldsA = 1/+/3 in (2.8). This form of disjoining pressure was considered1i8,19,32] Similar potentials
with different powers for the repulsive term correspond to the standard 6-12 Lennard-Jones potential and other
commonly used model[d3,16,17,26,27,33]The range of allowable pressures for homogeneous films covers 0
P < pmax = 27/(256¢). This range also covers the set of equilibrium droplets with- O corresponding to very
large drops angh = pmax = O(e 1) describing the smallest steady droplets distinguishable from the ultra-thin
film.
From(2.14) we can obtain a good estimate of the pressure coefficient function as

3 3
Cp(P) ~ P°. 2.19
M~ T (2.19)
Apart from the coefficient oP3 in (2.19)and the condition defining the wid{B.8), the leading order structure

of droplets(2.7) is independent of the form of the disjoining pressuredes 0. However, the limit — 0 must
be considered more carefully for other system properties. Kebr6) for (2.18) the corresponding monotone
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Fig. 5. TheCx(P) drift coefficient function(2.13)and its asymptotic behaviors for large dro@s-{ 0) (2.22)and small dropsk — pmax)-

decreasing chemical potential 1) = —e?(4¢/h + 3Inh). From (2.6) the modified ultra-thin film thickness
surrounding a drop is given by

hmin(p) ~ €(1+ €p + 4€*p?). (2.20)
Combining these results, fer— 0, we obtainV (hmin(p)) ~ —€%(4 + 3In€) + €3p, consequently, the inter-droplet
flux (2.17)reduces to

—3(Pei1— Pr)

X1 — (A Pey1) — Xk — (A/Pi)
Finally, the calculation of the drift coefficierfi®.13)is more involved (se@ppendix A), but it can be shown that
except for very small droplets, this function can be approximated by

B
—_—— >
€In(P/ pmax)

whereB is a negative constant, independent ofeeFig. 5.
In the following sections we will use these estimates to rescale and simplify the droplet ¢gst&nFirst we

k41~ (2.21)

Cx(P) ~ 0, (2.22)

describe the mechanisms of coarsening, a key element of the dynamics of droplets in the original PDE that must be

added to the droplet ODE system.

3. Mechanisms for coarsening

The system of ODE£2.15)describing the evolution of droplet arrays was derived for near-equilibrium states,
where the dynamics occur on slow time-scales. This is the case when all of the drops have finite masses and ar

well-separated, and consequently all of the fluxes are uniformly smf).
There are two situations where the fluxes become large and the validity of the ODEs breaks down:

(i) Droplet collapseThe flux between two drops can become large if one drop’s pressure becomes large. Equilib-

rium droplets have mass decreasing with increasing pressur€.9%eip to P < pmax = O(¢~1). A droplet
that is shrinking (se€ig. 4b) hasPy(r) /' pmax as it starts to “melt” into the surrounding ultra-thin film and
eventually disappears. As this occurs, the flux briefly becomes ldrgeO(€?) 3> 0(®). We identify that a
droplet collapse event is occurring if any drop satisfiexctiiapse condition

Pi(?) > (1 — p) pmax. (3.1)
whereu > 0 is a small parameter.
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(ii) Droplet collision If two droplets approach each other then the denominator of the flux betweer(2HEf
goes to zero and hence the local flux becomes large; thereafter the two drops will rapidly merge together. We
identify that a droplet collision event is occurring if the adjacent contact lines of any pair of drops satisfy the
collision condition

[(Xk+1 — w(Prt1)) — (Xi + w(Pr))| <6, (3.2)

whered = O(¢) > 0 is a small parameter.

In both of these scenarios, the break down of the validit2af5) coincides with acoarsening eventvhere the
number of drops in the system decreases by one. The details of such coarsening events is a behavior of the original
PDE ((2.1) and (2.2)that is not captured by the slow-time reduced md@el5) Having a large local flux means
that the coarsening events evolve on a much faster timescale. We will treat these events as occurring instantaneously
relative to theO(e~3) timescale 0f(2.15) Consequently, when one of the coarsening conditgh) or (3.2), is
detected in a simulation fa¥ drops, the solution of2.15)is halted, a modification to the set of drops is made to
account for the effect of the coarsening event and then the ODE sy2t&F)is restarted to describe the further
evolution of the remainingy — 1 drops.

This type of piecewise continuous dynamical system on a decreasing set of interacting elements has been called a
coarsening dynamical systdB%]. The complete description of the dynamical system is given by the QRES),
the coarsening event detection conditi¢®4) and (3.2)and rules (sometimes called extinctiorcoarsening rules
[35]) for how the set ofN drops is reduced to a set &f — 1 drops by each coarsening event.

We now consider the description of the coarsening rules based on the behavior of the ODE system leading up to
the coarsening event and the dynamics of the full PDE for the far-from-equilibrium behavior at the instant of the
coarsening event.

3.1. Single-droplet collapse

We begin by briefly reviewing the description of droplet collapse givell®} and expanding on the analysis.
Suppose that drok is initially smaller than both of its neighbor#®y(0) > P,_1(0) and P¢(0) > P;+1(0). From
(2.21) the fluxes set-up by these pressures will both serve to further incPe@¥df the drops are widely separated,
then we can neglect the influence of droplet motion on the evolution of the pressure. Consequentl(2.uSjng
and (2.21)o reducg2.15)to its dominant term for the evolution & (¢) yields

dPe

o oe 63P,f, (3.3)

with a weak dependence on the pressures of the neighboring drops. This equation yields finite-time blow-up of the
pressureP(r) = O((tc — 1)~ Y3) — oo ast — t.. As this proceeds, the drop’s mass and width steadily decrease,
My ~ O((tc — 1)%/3) — 0,w ~ O((tc — 1)1/3) — 0. In reality, this blow-up cannot occur as the pressure is bounded
by pmax, but it does mean that the drop will satisfy the collapse cond{foh) at a finite timey,, < zc. When this
takes place, the drop has effectively vanished into the UTF. Thereaftekdsogmoved from the set of drops,
its neighbors, dropg — 1 andk + 1, are re-assigned to be adjacent drops, and the evolution of the remaining
N — 1 drops can be resumed with.15} this is the coarsening rule for collapse. The collapse of a drop necessarily
influences the other drops in the system through the coupled fluxes and conservation of mass. However, as suggeste
by model(3.3), the influence of the rest of the system on the collapsing drop is weak.

Collapse is a coarsening mechanism involving individual drops “dying alone”. In contrast, the description of
collisions is more complicated.
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Fig. 6. Numerical simulation of two interacting drops in the lubrication RRE). As predicted by the ODE modg3.4), collision cannot occur.

3.2. Analysis of two-droplet interactions: no collisions

We show that the two-droplet collision process is necessarily non-local; that is, two droplets cannot collide
without the influence of external fluxes provided by neighboring droplets. The need for these fluxes is made clear
by considering the dynamics of two droplets without any external forcing. In this case, the governing system of
ODEs(2.15)takes the form

dx dx

L Cx(P) 2 2 = —Cx(P2)J1o (3.4a)
dr dr

dP dP:

7; = Cp(P1)J1.2, 7: = —Cp(P2)J12. (3.4b)

In the special case of two droplets of equal size, the flux vanishes due to symiietr O) and no droplet motion
occurs (in the PDE, motion will occur on exponentially slow timescales).

Consider two quasi-stable drops, initially described Ky(0), P1(0)} and{X2(0), P»(0)} with X1(0) < X2(0).
Without loss of generality, suppose that the first drop is smaller than the second, B(@)at P»(0). From(2.21)
the flux between themiy » o« —e3(P, — Py) is initially positive. Since theC p(P) coefficient function(2.19)is a
positive increasing function, frof3.4b)we see thaP; (¢) is increasing (and the first drop gets steadily smaller) while
P>(1) is decreasing (and the second drop gets steadily largerC ¥ te) coefficient function is a positive increasing
function(2.22) and from(3.4a)we see that both drops will move to the left; (r) and X»(¢) are both decreasing.
SincePy(r) > Po(¢) the speed of the first drop is always larger than that of the second, hence the separation between
the droplets will steadily increase. Consequently, collisions cannot occur with only two dropsg sée

3.3. Collisions

We now focus attention on the spatial interactions that lead to collision events. WIig/@ds a simplified
model of(2.15)focusing on the evolution of droplet pressures and neglecting their motions, we now consider the
opposite extreme. That is, assume the system is in a regime where the droplet pressures change slowly compared
the droplet positions. This implies that the possibility of collapse events is neglected in favor of the dominant role
of collision interactions. The system conditions defining this regime will be describing in more detail in Skection

To study how collisions can occur, consider a system of four drops: a pair that will collide (drops 2 and 3) and
their nearest neighbors (drops 1 and 4), Bieg 7. Define the distance separating the contact lines of neighboring
drops as

Dy i+1 = (Xikt1 — w(Pry1)) — (Xx + w(Pr)). (3.5)
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Fig. 7. A schematic figure of a system of four drops used to study collision interactions.

Clearly all of theD’s are initially positive and in this notation the collision conditi($2) is that Dy x4+1 < § for
some pair of drops.

Assuming that the pressures are@(ll) and evolve slowly in time, they will have a negligible influence on the
evolution of theD’s. Then the evolution equations for tli®. ;1 1's can be obtained from the evolution equations
for the X;'s (2.15),

dD12  Pr2—o12 | 023

3.6a
dt Dq2 Do 3 ( )
dD —a
23 _ P12 n B23—a23 4 934 (3.6b)
dt D12 D23 D34
dD -
34 _ _ P23 n P34 %34 (3.6¢)
dr Do 3 D34
where the numerators on the right-hand side are given by pressure-dependent parameters
kst = €Cx(P)(Prs1 — Pr). Bri+1 = €Cx(Per1)(Pry1 — Pr). (3.7)

SinceCx(P) is positive, these parameters are positive or negative together according to the gtgm 6t (Py).

Careful examination of the form of systef8.6) allows us to determine how collision of drops 2 and 3 can
occur in finite time, that i, 3 — 0 asr — .. First, consider the simplest possibility, where the influence of the
neighboring drops is negligible. Then the leading order dynamic&féb)as: — 1. are given by

dD23  fa3—az
dr Do 3

> Doz~ O(/2(az3 — B2.3)tc — 1)) (3.8)

A physically acceptable solution (i.e. withy 3 real-valued) requires thab 3 > 82 3. But sinceCx(P) is a positive
increasing function of the pressure, for all valuesPpf P41, we get

Bt — ki1 = €(Cx(Pit1) — Cx(P))(Prs1 — Pi) = 0; (3.9)

hence(3.8) cannot be the case. This is consistent with the result from the previous section, where we showed that
two drops cannot collide without external influences.

While “isolated collision” cannot occur, we now show that the mutual coupling of two pairwise interactions can
generate collisions. Consider an interaction of drops 1-3, with drop 4 having a weak influence on the dynamics.
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Then(3.6)reduces to the phase plane system,

dD12  Pr2—a12 | o23 dD23  Pr2 | P23—o23
dr W D33 dr W D33 '

It can be shown that in order fdP, 3 — O in finite time D12 must also go to zero angy » must be positive.

Such a pairwise collisiofD1 2, D2 3} — 0, also requires thaty 3 < 0. Then from(3.7), we find thatP> > P; and

P> > P3. That is, collision can occur when two larger drops are attracted toward a smaller drop between them,
seeFig. 7. A similar three-element “pinch” collision scenario was described between kinks and anti-kinks in a
Cahn—Hilliard equation ifi34].

Similarly, if 812 < 0 then D23 — 0 requires thatvz 4 < 0. Further, forD3 4 — 0, 823 must be positive.
Consequently, drops 2—4 can collide if their pressures salisfy P3, P3 > P4. This could be expected from the
spatial invariance of the problem.

This ODE argument suggests that collision events involving three drops merging into one should be commonly
seen in numerical simulations of the lubrication PREL). Actually, only two-drop collisions are generically seen
in the PDE, sed-igs. 1 and 10To reconcile these observations it is crucial to incorporate the influence of the
collision condition(3.2) in interpreting of the results from the ODE mod2l15) Consider the case where drops
1, 2, and 3 collide as described (8:10) To leading order as— ¢, the solution of this system takes the form

(3.10)

D12(f) ~ p124/tc — 1, D2 3(1) ~ p2,33/tc — 1, (3.11)
wherep1 2 and pz 3 are positive constants. As— ¢, the ratio ofD; 3, D1 2 approaches a constant,
D
- 2,3’ (3.12)
D12
which can be obtained froif8.10)as the positive solution of the quadratic equation
(B2 — a12)r? + (2.3 + P2.3)r — (2,3 — @2,3) = 0. (3.13)

This ratio is a function of the three droplet pressures, r(P1, P2, P3) and is positive ifP; and P are both less
than P, (as was found necessary for collisions abo¥). 8 shows a plot of the contour lines of
Solutions(3.11)are defined for < ¢, however, the collision conditiof8.2) enforces a cut-off on the evolution
at an earlier times < zc, when one of the separation distances satigiigs) = §. Which pair of drops, 1 and 2 or
2 and 3, satisfy this condition at depends on the ratiq if » > 1 then drops 1 and 2 collide, if< 1 then drops
2 and 3 collider = 1 is the degenerate symmetric case when both pairs collide. Fign8, we see that the case

P,

Py

7 increghing

0 P,
Py

Fig. 8. Contour lines of the asymptotic collision distance ratie;s D2 3/D12 (3.12) as a function ofP1, P3 for a fixed value ofP,. This
structure of the solution is generic for all valuesrt
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Fig. 9. Plots of droplet histories in tixéplane for two different versions of the collision events suggestda 16y (a) a nearly symmetric 3-drop
interaction, and (b) a more asymmetric quasi-2-drop collision. The solid stripes indicate the positions of droplet cores, with supports given on
|x — Xp(1)] < w(Py)fork=1,2 3, 4.

r > 1 occurs ifP; > P3 and conversely < 1 if P3 > Pj, therefore, we conclude that droplet 2 will collide with

the smallerof its two neighboring dropg-ig. 9 shows droplet path-histories for two typical collision events for

the solution of(2.15)starting with initial conditions for four drops with the general form showFim 7. The two
simulations are identical except for a 10% change in the mass of drop 3. In both cases drops 2 and 3 collide so
r < 1, however, we note the influence of the value ofi the qualitative form of the collision:

e In Fig. 9, wherer is near one, the two pairs of drops come together in a nearly-symmatdmp pinch’
¢ In Fig. %, wherer « 1, there is a large degree of asymmetry between the droplet pairs. Indeed, it appears as if
droplet 1 has a relatively weak interaction with drops 2 and 3, yieldirguasi-2-drop collisiori

The qualitative character of the collision will also depend on droplet positions in as far as it will affect how
closely the asymptotic regim@.12)is approached i3.10)before the collision condition applieBig. 10shows
the details of the coarsening events frbig. 1obtained from the numerical solution of the original lubrication PDE.
We observe a collision event atz 660,000 that is very similar to the collisions described by the ODE system in
Fig. 9. The other coarsening eventat 500,000, is a droplet collapse. It is interesting to note that this event also
has a similar structure: two larger droplets approach a smaller middle droplet in a more-or-less symmetric manner.
Hence, in general there can be a competition between collision and collapse as a mechanism for coarsening, and
which will dominate may not be immediately obvious from the qualitative form of the initial data. This will be
explored more fully in Sectiod.

A question of interest is whether four-drop collisions are also possilfg6) That is, can the mutual interaction
of D12, D 3, D3 4 force all three to zero in finite time? [8.6a) we needxs 3 < 0 to drive collision. In(3.6¢), we
needp, 3 > 0; however, from(3.7) these two conditions yield a contradiction for the relation betwkeand Ps.
Consequently, four-drop collisions cannot take place and only the scenarios described above can occur.

It is important to note that once one pair of drops has collide@Bihl) the further dynamics will be rad-
ically altered. In particular, unless we are in the exactly symmetric cage=01, the other pairwise collision
will not take place, as seen figs. 9 and 10How the dynamics proceed after the collisionsats examined
next.

3.4. The coarsening rule for collisions: merging
The ODE models described above give the near-equilibrium evolution leading up to a collisior{3®2¢at

time ;. At that point, the local solution is far from equilibrium, and analysis of PZEL) and (2.2)is needed to
describe the ensuing droplet merging process.



92 K.B. Glasner, T.P. Witelski / Physica D 209 (2005) 80-104

900000

600000

300000

0
0 50 100

T

Fig. 10. Droplet histories in thet plane (corresponding teig. 1) from numerical simulations of the full PDE, notice that the collision event
(left) resembles the asymmetric “quasi-2-drop” collisiorFig. 9, while the collapse event (right) is more symmetric.

Fig. 11 shows details of the stages of evolution involved in the collision event from the simulation shown
in Fig. 1 The first frame shows slow evolution that is well-described®yt5) until the adjacent edges of the
drops get sufficiently close. Then the evolution becomes much more rapid as the two drops merge together to
briefly form a convex “two-droplet complex” which reduces the surface energy of the system, relative to that of
the two adjacent equilibrium drops. This transient structure is unstable and rapidly equilibrates to yield a single
droplet.

30 10

10 20 30 40
(c) x

Fig. 11. Details of the collision and merging process: (a) two near-equilibrium droplet evolving toward collision, (b) the formation of the collided
“two-drop complex” and its rapid convexification, (c) symmetrization and contraction to yield a single merged near-equilibrium droplet.
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Getting the precise details of this merging process would generally require numerical solutions of the PDE, but
a lot of insight into the expected behavior can be obtained without computations. The problem has conservation
of mass, hence the mass of the merged d#gp,+1, should be given by the total of the masses of the two drops,
myk+1 = mi + mi+1. Thereforg(2.9)yields a relation between the pressures before and after the collision,

1 1 -1/2
Poiyi1=|—+—— . 3.14
- <P,3 P> .

It is less straightforward to obtain the position of the merged dip,+1, since there is no exact conservation

law for the center of mass. However, this position can be estimated using the analysis of the dynamics of a general
convex drop relaxing to an equilibrium droplet profile done by one of the aufBa@ts There it was found that

the motion of the droplet edges (or contact lines) was much slower than the dynamics within the merged droplet
core. InFig. 11, we observe that the solution becomes convex before there is significant motion of the outer contact
lines. The final stage is the convergence to the parabolic droplet p@file Given this description of the merging
process, we can model the position of the merged droplet as being approximately symmetric with respect to the
outer contact lines of the two colliding drops,

Xikr1 = 3[Xk — w(Pk) + Xis1 + w(Pieya)]- (3.15)

Together, Eqs(3.14) and (3.15)elate the state of the droplets just before collisign, to the properties of the
merged droplet just after the coIIisiorjf. By mapping the merged state onto one of the two drops involved in
the collision{ P k+1, Xx.k+1} — {Px, Xk}, and eliminating the other, we obtain a reduced systen of 1 drops
governed by2.15)for ¢t > t;.

In summary, the coarsening rules given here and in Se@&ibprescribe how the droplet dynamical system
(2.15)must be modified to avoid the break-downs in validity signaled by the coarsening con@&ibpand (3.2)
This augmented coarsening dynamical system gives a model for the evolution of the droplets for all times, until
the final one-drop stable steady state is reached. For the remainder of this article, we will examine the larger-scale
implications of the two coarsening mechanisms.

3.5. Energy considerations
The energy of the syste(R.4)is dissipated as a generalized gradient flow with the rate of dissipation

dE _ —/h3p§ dr < 0. (3.16)
dr

The contributions to the total energy from droplets are positive and dominated by the surface gradients. For the
ultra-thin film, the energy is dominated by the potential and is negdfi{/enin) ~ U(¢) < 0. A consequence is that
the energy is decreased whenever the fraction of the domain covered by the ultra-thin film is increased; this favors
coarsening.

Both mechanisms for coarsening lead to a decrease in the fraction of the domain containing droplets. For a
collapse event, the net change to the system is the loss of a single droplet and the gain of additional UTF of equal
area,

AEcoliapsd Pk) ~ — 3 PPW3(P) + 2U(e)w(Px) < O. (3.17)

Foracollision, the net change to the system involves replacing two drops with one merged drop and an accompanying
gain of some UTF freed-up by the consolidation,

AEcollision(Pk, Pk+l) ~ _%(PkZIES(Pk) + P1¢2+1153(Pk+1) - Pk2,k+1u_)3(Pk,k+l))

+ 2U(€)(w(Pr) + w(Prs1) — w(Pir+1)) < O. (3.18)
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Fig. 12. Evolution of the energy for the numerical solution of the PDE, corresponding to the dynamics shgigs ih and 10ncluding a
collision and a collapse event.

In both cases, both the decrease in the number of drops and the increase in UTF area decrease the total energ
However, there is a qualitative difference between the energetics of these events. In a collapse, the decrease ¢
energy occurs via a smooth and continuous near-equilibrium process, as descrif8) with A Ecojjapse~
—O((te — 1)~ Y3) fort — 1, S te. In contrast, on the timescale of the coarsening dynamics, the change in energy
for collisions happens nearly instantaneously, as described in the previous section. The evolution of the energy for
the original PDE (2.1) and (2.2) must be continuous for all times (sE&. 12). But, a consequence of this rapid
decrease in energy for the PDE when collisions occur is that the energy for the ODE coarseninri&jeill
include jumps of size\ Ecgjiision at collision timess;.

As a result, coarsening events and their types can be identified from the evolution of the (@&xgire will
see that energetics are not sufficient to predict the dynamics of coarsening in the system, but scaling analysis ca
provide insight on the behavior of large arrays of droplets.

4. Coarsening dynamics: collapse versus collision

Instabilities of thin films on large domains lead to the formation of large numbers of droplets upon dewetting. To
describe the global behavior of such systems, we must understand the nature of the long term coarsening proces
It is important to analyze how both of the coarsening mechanisms are influenced by the global properties of the
system.

In particular, we consider a problem starting with a total fluid mds®n a domain of length, containing
N drops. This state can result from the dewetting of a homogeneous film with thickhessM/L. We define
characteristic length and mass scales for typical drops in this system as

LC - MC - . (41)
Using(2.9), we can obtain a characteristic drop pressure in terms of the characteristic mass,

2A3

R (4.2)

PC=

These scales will be used to obtain a reduced model ffoirb)and identify the parameters that control the balance
between collision- and collapse-controlled coarsening.
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4.1. The rescaled system for the dilute limit

We begin by assuming that the drops are spaced far enough apart, so that their widths are nadligibte, L.
We call this thedilute limit. In the “dense” case, when this assumption is not true, the drops may be far from
equilibrium as conditiort3.2) may apply, with many collisions occurring in rapid succession. For near-equilibrium
droplet arrays in the dilute limit, we may approximate the flux by the simpler expression,

3 Pry1— P

_ 4.3
Xi+1— Xk 43

Jipr1 = —¢€

Using(4.1) and (4.2)we rescale the pressures and positions foNldeopletsk = 1, 2, ..., N, and the time as

4A3L,
Pi(t) = PcPi(7), Xi(t) = LeXi(7), t= 33p3 " (4.4)
S
and using2.19), (2.22), and (4.3pystem(2.15)becomes
dPx Prt1—Pr Pr— Pr-1
Tk _ — , 4.5
dz P (Xk+1 — X X — X1 (4.52)
dx K — — Pr—
aXe (Pk+1 Pc | P — Pk 1>‘ (4.5b)
dr INRP) \ Xip1 — X A — X
The two control parameters in the system are
4A8B P
K=-——>—>0 R=—<1, (4.6)
3ePSLc Pmax

where the constarf@ comes from(2.22)
Using(2.9) one can show that

K=o (H) . 4.7)

€

In other words, the “coarsening numbég’is proportional to the ratio of the mean film thickndgsto the UTF

scalee. Since mass is conservel, is independent of time; in particular, it does not depend on the number of
droplets in the systen (). Because it appears as a prefactq@irbb) K measures the relative importance of drift

to mass-exchange effects. Therefore dewetting of a relatively thin layer of fluid will lead primarily to mass-exchange
dynamics, whereas a thick film will evolve into droplets controlled primarily by the drift mechanism.

The other scaling paramet#, is a ratio of typical droplet pressure to the reference pressure of vanishingly small
equilibrium dropspmax = O(¢~1). Since P, depends on the number of droplef & O(+/N)), R does change
throughout the coarsening process. However, its effects on the overall dynamics are weak, because of the logarithmic
dependence if4.5b) More is said about this point in Sectidi3.

Our interest is in how the form d#.5) affects the nature of the coarsening process, that is, how the number of
drops decreases with time. Frgr1) and (4.2We see that the characteristic scalgs P. depend on time through
N(¢). However, we note tha¥(z) is constant over each time-interval wh@h5) applies and decreases by one for
each coarsening event described in Sec8omherefore, for systems with large numbers of drops, the influence
of coarsening orf4.5) is a change in the characteristic scales which is slowly-varying compared to the droplet
dynamics wherv > 1.
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4.2. Global instabilities and the onset of coarsening

In Section3, we examined coarsening events as isolated local occurrences in systems (this is sometimes callec
nucleatior{36]). Another useful point of view is the use of linearized analysis to study global instabilities which may
lead to coarseninfg4]. Here we will identify the fastest growing modes(df5)and connect them with coarsening
by collision or collapse.

Formally, any array of drops of uniform siz€; = 1, with any set of positiong}, is an equilibrium of(4.5).

These states are meta-stable and evolve according to exponentially slow dyj¥athieg described in this model.
Consider the linearized evolution of perturbations to these states. For simplicity, let the base solution be a set of
identical, equally-spaced drops with = 1 and X;41 — Xy = 1. Let the perturbed solutions 15,(7) = P +

ePi(7), X(r) = X + eXi(x). Linearizing(4.5) about the base state for—- 0 yields

dp . L
Tf = —(Pr+1 — 2P + Pr-1), (4.8a)
dX,
— = Pip1— P 4.8b
& = in R( k1 — Pr—1). (4.8b)
Note that the equation for the pressure perturbations is decoupled4r8ly)and can be solved in the form
Pi(z) = éloer, A(0) = 2 — 2 coso. (4.9)

All of the eigenvalues are non-negative and lie in the range)0< 4, hence this is a strongly unstable state. This
could be expected sin¢é.8a)describes a spatial discretization of an ill-posed backward heat equation of the form
9; P = —0,. P [38]. For a system ol drops, the most unstable mode lsas: 7/(2N) with

Pi(x) ~ (—1)e™. (4.10)

That is, alternating drops will grow/shrink, sé&g. 13. From(4.8b) we note that there is no relative motion
between drops for this linearized mode, . = 0, sincePi;1 = Pr_1.

This instability mode can be expected to lead to coarsening by collapse. It sets up the conditions needed for
collapse described in Secti@nal, every other droplet is surrounded by larger neighbors. However, as described in
Section3.3, these are also the conditions required for collisions. Further considerations are needed to determine
which mode of coarsening will really occur.

If |K/In(R)| « 1 then the time-scale for all modes of spatial motion will be slow compared to the evolution
of the pressure perturbations. In this case, then spatial motion of the drops is largely negligible and collapse will
indeed be the dominant mode of coarsening.

(a)

(b)

Fig. 13. Schematic of the fastest growing global instability modes: (a) the primary instability, connected to coarsening by(4dl@paad
(b) the dominant secondary instability, connected to coarsening by col(%ib8)
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On the other hand, ifK/ In(R)| >> 1 then droplet motion can become dominant away from the base equilibrium
state described above. In this case, the evolution of the pressures will occur slowly compared to ch&p@és in
and we can neglect the evolution of tRg's for the purpose of linear stability analysis. The equilibria of @g5b)
by itself are states which have droplets with alternating high and low presBuresP... For simplicity, consider
solutions where all of the drops are initially equally-spaced with; — X = 1. Expanding4.5b)about this state
yields

B D (R 2R+ e, @11)
wherey = —K|P; — P_|/In(RPx) > 0. A similar “alternating” linear operator was examined[34]. The pa-
rametery is O(1) and depends weakly daif [P — P_| is small; we shall treat it as a constant. To estimate the
dominant eigenvalue, consider the inner product (treating boundary conditions appropriately),

(5)r Sy

k=1
From this, the Rayleigh quotient gives the upper bound 2y for the eigenvalues. This upper bound is actually
realized for the dominant instability mod@4]

N
S0 (XX + X X1 — 2X2) < 2y|(X, X)|. (4.12)

k=1

X(x) =1{1,0,-1,0,...}€". (4.13)

This mode describes a set of simultaneous symmetric three-drop pinch collisions, where pairs of largér_grops (
impinge on their smaller neighbor®(), seeFig. 1.

Anillustration of the different modes of coarsening behavior is givefign 14 Tracks of the droplet evolutions
obtained from(2.15)are shown for a large system at three different values of the coarsening numberkKvi#hen
small, the spatial motion of drops is relatively weak and coarsening by collapse of every other drop proceeds as
expected, sekig. 14a. WhenK is large, the drops move rapidly compared to the evolution of their pressures and
collisions/merging is strongly favored, seg&y. 14c. For intermediate values &, there is a continuous transition
between the collision- and collapse-dominated coarsening regkigesi4 shows the dynamics with an equal
number of both types of coarsening events. While we do not yet have a complete theory to describe the competition
between the two coarsening modes at modekgteve ran a numerical study over a large range of parameters
and random initial conditions iX2.15)to track the fraction of events governed by each of the two coarsening
mechanismgrig. 15shows the fraction of collisions that occurred in 1000 runs over a range of valuEssioe.
Interestingly, the collision fraction can be approximately fit to a combination of the parameters,

Feolide(K, €) ~ 0.63 (4.14)

In K

9/[Inel /)
We interpret the I factor as representing an averaged influenced oRtparameter. The figure suggests a well-
defined cut-off for collision events, f& < 9./[In¢|, all coarsening was given by collapse events. The transition
to collision dominated behavior was less sharp, but could be estimaied-as10,/[Tn €|.

4.3. Long-term scaling behavior of coarsening
To describe the long-term dynamics of coarsening, we make use of a probabilistic argument to estimate the

long-time form of thenumber densitpf droplets in the system,

n(r) = @ (4.15)
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Fig. 14. Droplet evolution tracks for a system of 100 drops with 0.01 and at three different values B (a) K = 0(0.2/¢), coarsening
dominated by collapse events, )= 0(0.5/¢), a balance between collapses and collisionsk(e) O(1.5/¢), collision dominated coarsening.

ast — oo. In[19], it was found that collapse-dominated coarsening follows a power-law sddé(ing= O(r=%/°).

Here, we extend this result to obtain the dependence of the scaling coefficient on the system parameters, an
consider the behavior for collision-dominated coarsening. This will be accomplished by considering the timescale
of coarsening events in the rescaled systéhbé) and (4.5h) and then restoring the original scalings.

A collision dominated

0.5

Collision Fraction

{:}f
-
w3
collapse dominated -
0 =

1 10 100 1000

K/+/|1ne€|

Fig. 15. Transition between collision- and collapse-dominated coarsening: the fraction of collisions as a function of the coarseniri§ number
ande sampled from 1000 runs with 100 drops each, on a rangearide = 10~/ for j = 1-4.
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First, consider collapse-dominated coarsenilg I0(R) small), where thex} vary slowly, so(4.5b) can be
neglected and equatioié.5a)control the dynamics. Assume a very large array of drapsy 1, and that each
collapse event occurs independently of others. Since the collapse process is local, the time it takes a typical droplet
to collapse, must be independent of the total number of drops. Consequently, the rate of dectefaseeath
coarsening event must take the form,

1dn = _1 (4.16)
n dr Tc
wherer is the typical or average time between collapse events. The crucial observationzisithdéfined with
respect to the rescaled system, and is therefo@(@pnumber independent of the number of dropit&®educing
(4.5a)to a collapse model of the for(8.3), we can estimate; ~ 1/6. Using(4.1), (4.2) and (4.4ip restore scalings
and explicitly express them-dependence, this equation yields

d
oT’Z ~ —558363H; 32172, (4.17)

with the solution
n(t) ~ (n(0)"%2 + 139593 H 3/%1)~%/5. (4.18)

Hence forr — oo, we obtain the power-law scaling in time, with the dependence on the coarsening rduilper
ande,

3/5
n(r) o« (Hf) =2/, (4.19)

Fig. 16shows the collapse of results from simulations of coarsening at different vallfeaspredicted by4.19)

A similar argument can be applied to collision-dominated coarsening, but there are some notable differences. We
assume that droplet motion dominates the evolu@obb) so theP;, are held constant ar{d.5a)is neglected. While
collision events require the interaction of three drops, on the system-scale, they can still be modeled as independent
local events whewV >> 3. Consequently, a similar collision coarsening rate law on the characteristic time-scale of
(4.5b)can be written as

1dN K
e PO , (4.20)
N dt oclInR |
10%
0.1
102
N(t) n(t)
e
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Fig. 16. (Left) Plot ofN(z) from simulations of2.15)at several values d€ = 0(0.2/[2/¢]), for j =0,1,2, ..., 5, and (right) the same data
rescaled according t@.19)
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Fig. 17. N(¢) for the three simulations shown Ifig. 14 for K values in the collision, collapse and mixed coarsening regimes (solid dots)
compared with the scaling law predicted (@22)(dotted lines).

whereo¢ is an O(1) collision time constant that could be bounded based on the analysis given in Se8tion
This relation is on weaker footing thgd.16) sinceR evolves as coarsening proceeds, so the rate is not really
independent ofN, but the dependence is weak as it occurs through a logarithmic factor, so we will accept the
need for logarithmic corrections to our expected power-law result. Similarly restoring the scalings in this equation
yields

dn K 3,7-3/2. 7
— o — | ———— ) a2, 4.21
a & (oc|InR|>€ c " (4.21)

This leads to the approximate scaling law (apart from logarithmic corrections) for collision-dominated coarsening
n(f) o« (eK)Y52/5, (4.22)

Itisinteresting to note that both coarsening mechanisms yield the same 2/5 power-law for one-dimensional problems,
but with different dependence @ e. Fig. 17shows thaiv(¢) for the three simulations frofsig. 14in the collision,
collapse, and mixed coarsening regimes all approximately follow this scaling lawr{(xjth- N(z)/L).

5. Conclusions

The dynamics of the dewetting Eq2.1) and (2.2)re remarkably rich. In contrast to the usual Cahn—Hilliard
equation, isolated droplets (or “domains”) can move substantially, allowing for collisions as an alternative coarsening
mechanism. Additionally, the interaction of droplets is non-trivial: two droplets cannot directly merge in isolation,
but can interact at a distance, whereas three drops may attract one another up to the point of binary collisions.
As droplets become more mobile, the character of the system undergoes a transition from collision-dominated to
mixed behavior at a very specific value of the control parani€teme may regard this as a “second-order phase
transition” of this many-particle system.

It may be somewhat coincidental that both coarsening mechanisms give the same exponent 2/5 in one dimensior
Indeed, Limary and Gred@5] argue that the experimentally observed difference in scaling exponents might result
from a crossover from one type of coarsening mechanism to the other. We anticipate that forthcoming theoretical
studies of late stage dewetting on two-dimensional substrates will provide a more realistic opportunity to compare
with experiments.
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Appendix A. Calculation of the drift coefficient Cx(p)

We describe the details of the calculation of the drift coefficient funafigfp) (2.13) This coefficient can be
expressed in terms of two integrals of the form

0o () _ \k
Ik(ﬁ)z/o (hhwwc, (A1)

asCx(p) = 311(p)/I2(p). These integrals are defined over a range of pressure$ & pmax. We will consider
the analysis for the limity — 0 andp — pmax, corresponding to very large and very small droplets, respectively.
Sinceh(x) is the homoclinic solution of2.6) (Fig. 18) we can equivalently express these integrals as
hmax ],7_ hmi ko _
( mln) d

Wn=J 3 2k (A2)

whereh(x) satisfies

1 /dn\? _

> (dx) = R(h), (A.3)
with

R(h) = U(h) — U(hmin) — p(h — hmin). (A.4)

The minimum of the droplet profilémin is a hyperbolic saddle point defined B (Amin) = p and Amax, the
maximum ofi(x), is defined byR(hmax) = 0. For large and small droplets these quantities have the limits:

€1+ O(ep)) p—0,
hmin(p) ~ _
hpeak— O(e/e[pmax— P) P = Pmax.

(A.5)

Fig. 18. The phase plane for §§.6)at a value ofp in the range O< p < pmax. The droplet solution is given by the homoclinic orbitigin(p)
(solid curve).
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pH=U(e) +ep+ O([ep)?) p— 0.
hmax(p) ~ _ (A-6)
hpeak+ O(e/€[ pmax — P)) D —> DPmax

wherehpeak= O(€) is the value oh corresponding to the maximum pressuw§/ipear) = pmax- The elliptic center
point of (2.6), hcen = O(¢), is the other real root df’’ (k) = p and has the limiting behaviors,

e(ep + (ep)m/m)~/m p—0,
hced(p) ~ _ (A7)
hpeak+ O(ev/€e[pmax—P) P — Pmax-

The dominant contributions to the value @f.2) can be expected to come from the behavior of the integrand
near the roots oR(h) The local structure oR(k) at its roots is given by

1 _ _
— *U//(hmin)(h - hmin)2 h — hnmin,
R(h) ~ 2 (A.8)

[7 — U'(hmax)](hmax — E) }7_> hmax-

To evaluatel>(p), we note that a® — hmin the integrand vanishes, hence the integral depends only weakly
on the structure oR(k) there. Consequently, we u$d.8) for 1 — hmax to provide a global estimateR(k) <
[P — U'(hmax)](hmax — h), and estimate the integral by

/hmax (l;_ hmin)z
\/ U/Ulm;;) hmm h3 l’lmax - h

Integrals of this form can be obtained in closed form as

I(p) ~ dh. (A.9)

2 6b — 3a 8b2 — 8ab + 3a?
/ r—a)® a) = \/b—a+4b—5/2+arctanhg/l—a/b). (A.10)

Using the asymptotics farmin, 2max. the limiting behaviors ofA.9) are given by

—AzIn(ep) — B2 p— 0,
L(p) ~ (A.12)

Cole(pmax — 1;)]3/4 P —> Pmax
where the constants af®(1) and depend only on the structure of the potential funaiQi).
To estimatel1(p), we note that fohn — hmjn the ratio h hmin)/ v/ 2R(h) approaches a positive constant.

Consequently, fohmin — 0, the ]/h3 factor makes the integrand relatively large there. This contribution, along
with the contribution forh — hmax lead to the estimate,

/hcen dh /hmax l’l hmln
m b 12 20— U/(hmax) hon 13\ Temax —

wherehcen Yields an effective cut-off for the influence of the behavior nieai. The first integral in(A.12) is
straightforward; the second is of the form

L~

di? (A.12)

b x—a 2b —3a 4b — 3a
dx = Vb — ————arctanh{/1 — a/b). A.13
/a x3Vb—x 4gb? at 4p5/2 a/b) ( )
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Using the asymptotics farmin, Amax the limiting behaviors ofA.12) are given by

€ A1+ Biep + Ciepin(ep)] p — O,
ORI ) 3 (A14)
Die Y e(pmax— P)1Y P — Pmax-

Therefore, the limiting behaviors @fy (p) are

O(leIn(ep)] ™) p—0,
Cx(p) ~ B (A.15)
O([(pmax— P Y2 p — Pmax

Using a calculation similar tA.9) for I>(p), we can also re-derive the result for the droplet mass. The mass of
a droplet “core region” can be over-estimated by

0o _
0
Using(A.3) and (A.8)this can be written as
_ 2 hmax p— pin
M ~ 2Whmin + M dh. (A.17)

v 2[[) - U’(hm;xj] hmin -V hmax_ h
Like (A.10) and (A.13)his integral can be found explicitly,

b
xX—a 4
————dvr=-(b—a)"?, A.18
= (A18)
consequently, we obtain that the droplet mass as

2 12U(e€)|3/2 _

in agreement with the resyf2.9).

M
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