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Abstract

Thin films of viscous fluids coating solid surfaces can become unstable due to intermolecular forces, leading to break-up of
the film into arrays of droplets. The long-time dynamics of the system can be represented in terms of coupled equations for the
masses and positions of the droplets. Analysis of the decrease of energy of the system shows that coarsening, decreasing the
number of droplets with increasing time, is favored. Here we describe the two coarsening mechanisms present in dewetting films:
(i) mass exchange leading to collapse of individual drops, and (ii) spatial motion leading to droplet collisions and merging events.
Regimes where each of mechanisms are dominant are identified, and the statistics of the coarsening process are explained.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

For thin films of viscous fluids coating solid surfaces, intermolecular forces between the solid and flu
s van der Waals attraction and Born repulsion, are known to produce complex dewetting instabilities[1–6]. Much

heoretical work has focused on the details of early-stage linear instability[7–10] as well as late-stage nonline
attern formation[2,11–13].

The instabilities cause nearly-uniform fluid layers to break-up, or “dewet”, into arrays of large droplets co
y a remaining nano-scale ultra-thin film (UTF). The dynamics leading to the formation of such well-defin
xisting stable states is common in other systems with phase separation. In analogy to spinodal deco

∗ Corresponding author. Tel.: +1 919 660 2841.
E-mail addresses:glasner@math.arizona.edu (K.B. Glasner), witelski@math.duke.edu (T.P. Witelski).

167-2789/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.physd.2005.06.010



K.B. Glasner, T.P. Witelski / Physica D 209 (2005) 80–104 81

Fig. 1. Numerical simulations of the lubrication model for a dewetting thin film: (left) the evolution of a film at successive times showing droplet
collision and collapse events (both circled), (right) the long-time scaling behavior for coarsening of the number of dropsN(t) in a large system
as a function of time.

described by the Cahn–Hilliard equation[14,15], this evolution in unstable thin films is sometimes called spinodal
dewetting[16–18].

In the late stages of the dewetting process, there is a slow evolution of the drops by means of spatial motion and
mass flux between drops. In a previous article[19], we showed how the partial differential equation governing the thin
film fluid dynamics could be reduced to a system of ordinary differential equations that describe these mechanisms.
Over time, these mechanisms can cause the number of droplets to decrease, and the system to “coarsen”. Since mass
is conserved, this yields a film with fewer, larger drops.

The current paper seeks to quantify the coarsening process and clarify the two mechanisms by which it occurs:
(i) collapse of individual drops and (ii) pairwise collision of drops.Fig. 1(left) illustrates both of these mechanisms
in a numerical simulation of the governing partial differential equation on a finite domain with no-flux boundary
conditions. This paper extends the work initiated by the authors in[19], where only mass exchange driven coarsening,
or droplet “collapse”, was considered. For systems with large numbers of drops, a scaling law for the droplet number
N(t) was found,

N(t) = O(t−2/5). (1.1)

which was confirmed by numerical simulations, seeFig. 1(right).
Our results run parallel to other studies of dynamical coarsening processes, most notably late-stage phase separa-

tion phenomena. This process is described by the Cahn–Hilliard equation[14,15], which is similar to the lubrication-
type equation used to describe spinodal dewetting. The limiting dynamics are the “Ostwald ripening” process
[20–24], which exhibits dynamic scaling as we see in our problem.

Recent experiments of coarsening dewetting films have been conducted by Limary and Green[25]. They measure
dynamic scaling and findN(t) ∼ t−β, whereβ varies from about 0.1 to 0.4. Since their experiment is on a two-
dimensional substrate, the one-dimensional results here cannot be quantitatively compared. However, they do find
a crossover from diffusion-driven to coalescence dominated coarsening, which we explain here.

A review of the lubrication model and its reduction is given in Section2. In Section3, a local analysis of
coarsening mechanisms is presented. Section4 examines the global dynamics of coarsening, including scaling
arguments for the statistical evolution and numerical results confirming our analysis.

2. The lubrication model

hickness
o r–
The dynamics of this physical system can be modeled by a lubrication equation for the evolution of the t
f the fluid film coating the solid substrate,h = h(x, t) [26–28]. In the limit of low Reynolds number, the Navie
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Stokes equations for the incompressible flow of a thin, slowly-varying film of viscous liquid take the form of a
nondimensional Reynolds’ equation,

∂h

∂t
= ∂

∂x

(
h3∂p

∂x

)
, (2.1)

wherep defines the hydrodynamic pressure experienced by the film. The gradient ofp gives the local forces on
the fluid. For very thin films, the influence of gravity can be neglected and the dynamics are dominated by surface
tension at the film’s free surface and intermolecular forces at the fluid-substrate interface. A simple model for the
pressure is then given by

p = Π(h) − ∂
2h

∂x2 . (2.2)

The second term in(2.2)gives the linearized contribution of surface tension to the total pressure for a slowly-varying
curved interface. The combined effects of all intermolecular forces between the solid substrate and a homogeneous
film of thicknessh is given by the disjoining pressureΠ(h), the derivative of the potentialU(h),

Π(h) ≡ dU

dh
. (2.3)

The total energy of the system is given in terms of contributions from this potential and the surface energy,

E =
∫
U(h) + 1

2
h2
x dx. (2.4)

We consider intermolecular potentialsU(h) including both attractive and repulsive effects, which balance to
produce a single minimum ath = ε > 0 [19]. This minimum corresponds to the nondimensional uniform film
thickness which is globally-stable (see[27] for its dimensional meaning). Physically, it describes complete wetting
of the solid substrate by at least a monolayer of the fluid. As will be discussed further, such “ultra-thin film” (UTF) or
“pre-wetting” layers can have a dramatic influence on the dynamics of thin films since they regularize singularities
a of
t n
U

ble
[ ted by
U n
p )
h a
c

F ss
d g
p

ssociated with the motion of contact lines on dry solid substrates[26,29]. Much of the analysis is independent
he details of the potentialU(h), but for definiteness we suppose that it can be written as anε-independent functio
(H) with a minimum atH = 1 corresponding to the equilibrium UTF thickness,

U(h) = U(h/ε). (2.5)

In this model, up to a critical thickness, all homogeneous thin films withh = O(1) can be shown to be unsta
13,30,31]. Nearly-uniform films will break up and develop into sets of near-equilibrium droplets connec
TF layers. Each fluid droplet is described by a localized steady-state solution of(2.1) and (2.2). These have bee
reviously analyzed[13,19], and we briefly review them here. Nontrivial steady-state solutions of(2.1) and (2.2
ave uniform, constant pressure,p = p̄, wherep̄ is between 0 and the maximum ofΠ(h), pmax. That is, there is
ontinuous one-parameter family of droplet solutions,h = h̄(x; p̄), given by the homoclinic solution of

d2h̄

dx2 = Π(h̄) − p̄. (2.6)

or |x| → ∞, the tails of droplet solutions approach the saddle point of(2.6) defining a modified UTF thickne
etermined by a balance of the disjoining pressure and ¯p, h̄(x) → hmin(p̄) = ε+O(ε2). In contrast, the disjoinin
ressure is relatively weak in the interior of the droplet, whereh̄
 O(ε), and to leading order asε→ 0, the profile
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Fig. 2. A stable steady-state droplet solutionh̄(x; p̄) showing the three regions in the asymptotic structure of the solution forε→ 0: (i) droplet
core, (ii) contact line, (iii) outer ultra-thin film. The dashed curve shows the leading order asymptotic solution for the droplet core, the parabola
(2.7), with width 2w̄.

is parabolic(Fig. 2), determined by a balance of surface tension and ¯p,

h̄(x; p̄) ∼



1

2
p̄(w̄2 − x2) |x| < w̄,
hmin(p̄) |x| > w̄,

(2.7)

wherew̄ = w̄(p̄) gives an effective measure of the (half-)width, or radius, of the droplet. The solutionsh = h̄(x; p̄),
parametrized by ¯p, constitute the one-parameter continuous family of steady state droplets, with mass inversely
related to ¯p.

Since closed-form solutions cannot be found for all of the droplet properties for generalΠ(h), it is helpful to
compute leading order results by considering the limit of vanishing ultra-thin films,ε→ 0. As described in[19],
in this limit, the slope at the edge of droplet core, defining the contact angle, is given in terms of the intermolecular
potential asA = √

2|U(1)|. To leading order, the width of the drop is then related toA by

w̄(p̄) ∼ A
p̄
. (2.8)

We can then define the mass of droplet as the mass of the core region,

m̄(p̄) ≡
∫ w̄

−w̄
h̄(x; p̄) dx ∼ 2A3

3p̄2 . (2.9)

Note that the size and mass of droplets are independent ofε and are determined by the droplet pressure ¯p.

2.1. Reduction to the droplet dynamical system

Non-identical droplets separated by finite distances are not steady states; however, such states are generally
close to equilibrium and evolve slowly, on long timescales. Droplets of different sizes have different values of ¯p

and will be out of equilibrium due to mismatches in their surrounding UTF layers. It will be shown that theirhmin
values differ atO(ε2). The quasi-steady dynamics of such droplets can be described in terms of the properties of the
steady-state droplets.Fig. 3shows a typical example of the interaction between droplets, showing two dynamical
f

stability
o ,
eatures: translation and mass exchange.
A derivation of the equations governing the droplet dynamics was obtained by studying the linearized

f a single droplet[19]. The influences of neighboring droplets arise from the fluid fluxesJ−, J+ (left and right
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Fig. 3. Dynamics of two typical adjacent droplets in a dewetting film. The interaction of the droplets generally yields mass exchange and spatial
motion.

respectively) which result from pressure gradients via

J ≡ −h3px. (2.10)

The near-equilibrium form of the solution can then be written in terms of the steady-state droplet with slowly-varying
parameters describing its position,X(t), and its pressureP(t), and perturbations on the order of the flux,

h(x, t) ∼ h̄(x−X(t);P(t)) +O(J). (2.11)

The solvability conditions for this solution yield the evolution equations forX(t), P(t),

dP

dt
= CP (P)(J+ − J−),

dX

dt
= −CX(P)(J+ + J−), (2.12)

whereCP andCX are coefficient functions which depend only on the equilibrium droplet shape:

CX(P) =
∫ w̄
−w̄((h̄− hmin)/h̄3) dx

2
∫ w̄
−w̄((h̄− hmin)2/h̄3) dx

, (2.13)

and

CP (P) = −
(∫ w̄

−w̄
∂h̄

∂p̄
dx

)−1

. (2.14)

The dynamics of a single droplet under(2.12) is given by combinations of the two basic modes of evolution: (i)
translation with fixed mass (constantP) for J+ = J−, and (ii) change of mass at a fixed position (constantX) for
J+ = −J−, seeFig. 4.

More generally, the governing equations for an array ofN droplets,{Xk(t), Pk(t)} for k = 1,2, . . . , N, are given
by

dPk
dt

= CP (Pk)(Jk,k+1 − Jk−1,k),
dXk
dt

= −CX(Pk)(Jk,k+1 + Jk−1,k), (2.15)

whereJk,k+1 is the flux between dropletsk andk + 1.
that

t e
c roplets.
T t
This reduction of the dynamics of the PDE(2.1)to coupled ODEs for the droplets is made possible by noting
he flux is nearly constant in the ultra-thin film layers between droplets[19]. As shown in[19], under appropriat
onditions, the dynamics of the UTF between droplets is quasi-statically slaved to the evolution of the d
hat is,(2.1) and (2.2)can be reduced to an elliptic problem for the “chemical potential”∂xx[V (h)] = 0, subjec
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Fig. 4. Fundamental modes of evolution for a single droplet: (left) translation and (right) change of mass.

to the Dirichlet boundary conditions at the droplet edges,V = V (hmin(Pj)) for j = k, k + 1. The functionV (h) is
given explicitly in terms of the intermolecular potential as

V (h) =
∫
h3U ′′(h) dh. (2.16)

Then the flux,J ≡ −dV/dx, since it is nearly constant in the UTF layers, can be approximated by

Jk,k+1 = − V (hmin(Pk+1)) − V (hmin(Pk))

(Xk+1 − w̄(Pk+1)) − (Xk + w̄(Pk))
. (2.17)

Eqs.(2.15) and (2.17)constitute a closed system of ODEs for the droplet pressures and positions.

2.2. The simplified dynamical model

The above derivation applies to a broad class of pressure potential functionsU(h). Once this function is specified,
the details of the droplet solutions and the other functions in the model can be calculated. To make our study of this
model more explicit, we will focus attention on a particular representative potential,U(H) = (H−3/3) − (H−2/2).
This corresponds to the disjoining pressure,

Π(h) = ε2

h3 − ε
3

h4 , (2.18)

and yieldsA = 1/
√

3 in (2.8). This form of disjoining pressure was considered in[13,19,32]. Similar potentials
with different powers for the repulsive term correspond to the standard 6-12 Lennard–Jones potential and other
commonly used models[13,16,17,26,27,33]. The range of allowable pressures for homogeneous films covers 0≤
p̄ ≤ pmax = 27/(256ε). This range also covers the set of equilibrium droplets with ¯p→ 0 corresponding to very
large drops and ¯p→ pmax = O(ε−1) describing the smallest steady droplets distinguishable from the ultra-thin
film.

From(2.14), we can obtain a good estimate of the pressure coefficient function as

C (P) ∼ 3
P3. (2.19)

re
o
b ne
P
4A3

Apart from the coefficient ofP3 in (2.19)and the condition defining the width(2.8), the leading order structu
f droplets(2.7) is independent of the form of the disjoining pressure forε→ 0. However, the limitε→ 0 must
e considered more carefully for other system properties. From(2.16), for (2.18) the corresponding monoto
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Fig. 5. TheCX(P) drift coefficient function(2.13)and its asymptotic behaviors for large drops (P → 0) (2.22)and small drops (P → pmax).

decreasing chemical potential isV (h) = −ε2(4ε/h+ 3 lnh). From (2.6) the modified ultra-thin film thickness
surrounding a drop is given by

hmin(p̄) ∼ ε(1 + εp̄+ 4ε2p̄2). (2.20)

Combining these results, forε→ 0, we obtainV (hmin(p̄)) ∼ −ε2(4 + 3 lnε) + ε3p̄, consequently, the inter-droplet
flux (2.17)reduces to

Jk,k+1 ∼ −ε3(Pk+1 − Pk)
Xk+1 − (A/Pk+1) −Xk − (A/Pk)

. (2.21)

Finally, the calculation of the drift coefficient(2.13)is more involved (seeAppendix A), but it can be shown that
except for very small droplets, this function can be approximated by

CX(P) ∼ B

ε ln(P/pmax)
> 0, (2.22)

whereB is a negative constant, independent ofε, seeFig. 5.
In the following sections we will use these estimates to rescale and simplify the droplet system(2.15). First we

describe the mechanisms of coarsening, a key element of the dynamics of droplets in the original PDE that must be
added to the droplet ODE system.

3. Mechanisms for coarsening

The system of ODEs(2.15)describing the evolution of droplet arrays was derived for near-equilibrium states,
where the dynamics occur on slow time-scales. This is the case when all of the drops have finite masses and are
well-separated, and consequently all of the fluxes are uniformly small,O(ε3).

There are two situations where the fluxes become large and the validity of the ODEs breaks down:

(i) Droplet collapse: The flux between two drops can become large if one drop’s pressure becomes large. Equilib-
rium droplets have mass decreasing with increasing pressure, see(2.9), up toP ≤ pmax = O(ε−1). A droplet
that is shrinking (seeFig. 4b) hasPk(t) ↗ pmax as it starts to “melt” into the surrounding ultra-thin film and

eventually disappears. As this occurs, the flux briefly becomes large,J = O(ε2) 
 O(ε3). We identify that a
droplet collapse event is occurring if any drop satisfies thecollapse condition:

Pk(t) ≥ (1 − µ)pmax, (3.1)

whereµ > 0 is a small parameter.
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(ii) Droplet collision: If two droplets approach each other then the denominator of the flux between them(2.17)
goes to zero and hence the local flux becomes large; thereafter the two drops will rapidly merge together. We
identify that a droplet collision event is occurring if the adjacent contact lines of any pair of drops satisfy the
collision condition:

|(Xk+1 − w̄(Pk+1)) − (Xk + w̄(Pk))| ≤ δ, (3.2)

whereδ = O(ε) > 0 is a small parameter.

In both of these scenarios, the break down of the validity of(2.15)coincides with acoarsening event, where the
number of drops in the system decreases by one. The details of such coarsening events is a behavior of the original
PDE ((2.1) and (2.2)) that is not captured by the slow-time reduced model(2.15). Having a large local flux means
that the coarsening events evolve on a much faster timescale. We will treat these events as occurring instantaneously
relative to theO(ε−3) timescale of(2.15). Consequently, when one of the coarsening condition(3.1) or (3.2), is
detected in a simulation forN drops, the solution of(2.15)is halted, a modification to the set of drops is made to
account for the effect of the coarsening event and then the ODE system(2.15)is restarted to describe the further
evolution of the remainingN − 1 drops.

This type of piecewise continuous dynamical system on a decreasing set of interacting elements has been called a
coarsening dynamical system[34]. The complete description of the dynamical system is given by the ODEs(2.15),
the coarsening event detection conditions(3.1) and (3.2), and rules (sometimes called extinction orcoarsening rules
[35]) for how the set ofN drops is reduced to a set ofN − 1 drops by each coarsening event.

We now consider the description of the coarsening rules based on the behavior of the ODE system leading up to
the coarsening event and the dynamics of the full PDE for the far-from-equilibrium behavior at the instant of the
coarsening event.

3.1. Single-droplet collapse

We begin by briefly reviewing the description of droplet collapse given in[19] and expanding on the analysis.
Suppose that dropk is initially smaller than both of its neighbors,P (0)> P (0) andP (0)> P (0). From
( d,
t ng
a

w up of the
p ease,
M nded
b
t s,
i aining
N sarily
i suggested
b

tion of
c

k k−1 k k+1
2.21), the fluxes set-up by these pressures will both serve to further increasePk(t). If the drops are widely separate
hen we can neglect the influence of droplet motion on the evolution of the pressure. Consequently, usi(2.19)
nd (2.21)to reduce(2.15)to its dominant term for the evolution ofPk(t) yields

dPk
dt

∝ ε3P4
k , (3.3)

ith a weak dependence on the pressures of the neighboring drops. This equation yields finite-time blow-
ressurePk(t) = O((tc − t)−1/3) → ∞ ast → tc. As this proceeds, the drop’s mass and width steadily decr
k ∼ O((tc − t)2/3) → 0,w̄ ∼ O((tc − t)1/3) → 0. In reality, this blow-up cannot occur as the pressure is bou

y pmax, but it does mean that the drop will satisfy the collapse condition(3.1)at a finite time,tµ < tc. When this
akes place, the drop has effectively vanished into the UTF. Thereafter dropk is removed from the set of drop
ts neighbors, dropsk − 1 andk + 1, are re-assigned to be adjacent drops, and the evolution of the rem

− 1 drops can be resumed with(2.15); this is the coarsening rule for collapse. The collapse of a drop neces
nfluences the other drops in the system through the coupled fluxes and conservation of mass. However, as
y model(3.3), the influence of the rest of the system on the collapsing drop is weak.

Collapse is a coarsening mechanism involving individual drops “dying alone”. In contrast, the descrip
ollisions is more complicated.
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Fig. 6. Numerical simulation of two interacting drops in the lubrication PDE(2.1). As predicted by the ODE model(3.4), collision cannot occur.

3.2. Analysis of two-droplet interactions: no collisions

We show that the two-droplet collision process is necessarily non-local; that is, two droplets cannot collide
without the influence of external fluxes provided by neighboring droplets. The need for these fluxes is made clear
by considering the dynamics of two droplets without any external forcing. In this case, the governing system of
ODEs(2.15)takes the form

dX1

dt
= −CX(P1)J1,2,

dX2

dt
= −CX(P2)J1,2. (3.4a)

dP1

dt
= CP (P1)J1,2,

dP2

dt
= −CP (P2)J1,2. (3.4b)

In the special case of two droplets of equal size, the flux vanishes due to symmetry (J1,2 = 0) and no droplet motion
occurs (in the PDE, motion will occur on exponentially slow timescales).

Consider two quasi-stable drops, initially described by{X1(0), P1(0)} and{X2(0), P2(0)} with X1(0)< X2(0).
Without loss of generality, suppose that the first drop is smaller than the second, so thatP1(0)> P2(0). From(2.21),
the flux between them,J1,2 ∝ −ε3(P2 − P1) is initially positive. Since theCP (P) coefficient function(2.19)is a
positive increasing function, from(3.4b)we see thatP1(t) is increasing (and the first drop gets steadily smaller) while
P2(t) is decreasing (and the second drop gets steadily larger). TheCX(P) coefficient function is a positive increasing
function(2.22), and from(3.4a)we see that both drops will move to the left,X1(t) andX2(t) are both decreasing.
SinceP1(t) > P2(t) the speed of the first drop is always larger than that of the second, hence the separation between
the droplets will steadily increase. Consequently, collisions cannot occur with only two drops, seeFig. 6.

3.3. Collisions

We now focus attention on the spatial interactions that lead to collision events. Whereas(3.3) is a simplified
model of(2.15)focusing on the evolution of droplet pressures and neglecting their motions, we now consider the
opposite extreme. That is, assume the system is in a regime where the droplet pressures change slowly compared to
the droplet positions. This implies that the possibility of collapse events is neglected in favor of the dominant role
of collision interactions. The system conditions defining this regime will be describing in more detail in Section4.

3) and
t oring
d

To study how collisions can occur, consider a system of four drops: a pair that will collide (drops 2 and
heir nearest neighbors (drops 1 and 4), seeFig. 7. Define the distance separating the contact lines of neighb
rops as

Dk,k+1 ≡ (Xk+1 − w̄(Pk+1)) − (Xk + w̄(Pk)). (3.5)
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Fig. 7. A schematic figure of a system of four drops used to study collision interactions.

Clearly all of theD’s are initially positive and in this notation the collision condition(3.2) is thatDk,k+1 ≤ δ for
some pair of drops.

Assuming that the pressures are allO(1) and evolve slowly in time, they will have a negligible influence on the
evolution of theD’s. Then the evolution equations for theDk,k+1’s can be obtained from the evolution equations
for theXk ’s (2.15),

dD1,2

dt
= β1,2 − α1,2

D1,2
+ α2,3

D2,3
(3.6a)

dD2,3

dt
= − β1,2

D1,2
+ β2,3 − α2,3

D2,3
+ α3,4

D3,4
(3.6b)

dD3,4

dt
= − β2,3

D2,3
+ β3,4 − α3,4

D3,4
, (3.6c)

where the numerators on the right-hand side are given by pressure-dependent parameters

αk,k+1 = ε3CX(Pk)(Pk+1 − Pk), βk,k+1 = ε3CX(Pk+1)(Pk+1 − Pk). (3.7)

SinceCX(P) is positive, these parameters are positive or negative together according to the sign of (Pk+1 − Pk).
Careful examination of the form of system(3.6) allows us to determine how collision of drops 2 and 3 can

occur in finite time, that isD2,3 → 0 ast → tc. First, consider the simplest possibility, where the influence of the
neighboring drops is negligible. Then the leading order dynamics for(3.6b)ast → tc are given by

dD2,3

dt
∼ β2,3 − α2,3

D2,3
→ D2,3 ∼ O(

√
2(α2,3 − β2,3)(tc − t)). (3.8)

A physically acceptable solution (i.e. withD2,3 real-valued) requires thatα2,3 > β2,3. But sinceCX(P) is a positive
increasing function of the pressure, for all values ofPk, Pk+1, we get

βk,k+1 − αk,k+1 = ε3(CX(Pk+1) − CX(Pk))(Pk+1 − Pk) ≥ 0; (3.9)

h wed that
t

ns can
g ynamics.
ence(3.8)cannot be the case. This is consistent with the result from the previous section, where we sho
wo drops cannot collide without external influences.

While “isolated collision” cannot occur, we now show that the mutual coupling of two pairwise interactio
enerate collisions. Consider an interaction of drops 1–3, with drop 4 having a weak influence on the d
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Then(3.6)reduces to the phase plane system,

dD1,2

dt
= β1,2 − α1,2

D1,2
+ α2,3

D2,3

dD2,3

dt
= − β1,2

D1,2
+ β2,3 − α2,3

D2,3
. (3.10)

It can be shown that in order forD2,3 → 0 in finite timeD1,2 must also go to zero andβ1,2 must be positive.
Such a pairwise collision{D1,2,D2,3} → 0, also requires thatα2,3 < 0. Then from(3.7), we find thatP2 > P1 and
P2 > P3. That is, collision can occur when two larger drops are attracted toward a smaller drop between them,
seeFig. 7. A similar three-element “pinch” collision scenario was described between kinks and anti-kinks in a
Cahn–Hilliard equation in[34].

Similarly, if β1,2 < 0 thenD2,3 → 0 requires thatα3,4 < 0. Further, forD3,4 → 0, β2,3 must be positive.
Consequently, drops 2–4 can collide if their pressures satisfyP2 < P3, P3 > P4. This could be expected from the
spatial invariance of the problem.

This ODE argument suggests that collision events involving three drops merging into one should be commonly
seen in numerical simulations of the lubrication PDE(2.1). Actually, only two-drop collisions are generically seen
in the PDE, seeFigs. 1 and 10. To reconcile these observations it is crucial to incorporate the influence of the
collision condition(3.2) in interpreting of the results from the ODE model(2.15). Consider the case where drops
1, 2, and 3 collide as described by(3.10). To leading order ast → tc, the solution of this system takes the form

D1,2(t) ∼ ρ1,2
√
tc − t, D2,3(t) ∼ ρ2,3

√
tc − t, (3.11)

whereρ1,2 andρ2,3 are positive constants. Ast → tc, the ratio ofD2,3,D1,2 approaches a constant,

r = D2,3

D1,2
, (3.12)

which can be obtained from(3.10)as the positive solution of the quadratic equation

(β1,2 − α1,2)r2 + (α2,3 + β2,3)r − (β2,3 − α2,3) = 0. (3.13)

This ratio is a function of the three droplet pressures,r = r(P1, P2, P3) and is positive ifP1 andP3 are both less
thanP2 (as was found necessary for collisions above).Fig. 8shows a plot of the contour lines ofr.

Solutions(3.11)are defined fort ≤ tc, however, the collision condition(3.2)enforces a cut-off on the evolution
a
2
2

F
s

t an earlier timetδ < tc, when one of the separation distances satisfiesD(tδ) = δ. Which pair of drops, 1 and 2 or
and 3, satisfy this condition attδ depends on the ratior; if r > 1 then drops 1 and 2 collide, ifr < 1 then drops
and 3 collide,r = 1 is the degenerate symmetric case when both pairs collide. FromFig. 8, we see that the case

ig. 8. Contour lines of the asymptotic collision distance ratio,r = D2,3/D1,2 (3.12), as a function ofP1, P3 for a fixed value ofP2. This
tructure of the solution is generic for all values ofP2.
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Fig. 9. Plots of droplet histories in thextplane for two different versions of the collision events suggested by(3.6): (a) a nearly symmetric 3-drop
interaction, and (b) a more asymmetric quasi-2-drop collision. The solid stripes indicate the positions of droplet cores, with supports given on
|x−Xk(t)| ≤ w̄(Pk) for k = 1,2,3,4.

r > 1 occurs ifP1 > P3 and converselyr < 1 if P3 > P1, therefore, we conclude that droplet 2 will collide with
the smallerof its two neighboring drops.Fig. 9 shows droplet path-histories for two typical collision events for
the solution of(2.15)starting with initial conditions for four drops with the general form shown inFig. 7. The two
simulations are identical except for a 10% change in the mass of drop 3. In both cases drops 2 and 3 collide so
r < 1, however, we note the influence of the value ofr on the qualitative form of the collision:

• In Fig. 9a, wherer is near one, the two pairs of drops come together in a nearly-symmetric “3-drop pinch.”
• In Fig. 9b, wherer � 1, there is a large degree of asymmetry between the droplet pairs. Indeed, it appears as if

droplet 1 has a relatively weak interaction with drops 2 and 3, yielding a “quasi-2-drop collision.”

The qualitative character of the collision will also depend on droplet positions in as far as it will affect how
closely the asymptotic regime(3.12)is approached in(3.10)before the collision condition applies.Fig. 10shows
the details of the coarsening events fromFig. 1obtained from the numerical solution of the original lubrication PDE.
We observe a collision event att ≈ 660,000 that is very similar to the collisions described by the ODE system in
Fig. 9. The other coarsening event, att ≈ 500,000, is a droplet collapse. It is interesting to note that this event also
has a similar structure: two larger droplets approach a smaller middle droplet in a more-or-less symmetric manner.
Hence, in general there can be a competition between collision and collapse as a mechanism for coarsening, and
which will dominate may not be immediately obvious from the qualitative form of the initial data. This will be
explored more fully in Section4.

A question of interest is whether four-drop collisions are also possible in(3.6). That is, can the mutual interaction
ofD1,2,D2,3,D3,4 force all three to zero in finite time? In(3.6a), we needα2,3 < 0 to drive collision. In(3.6c), we
needβ2,3 > 0; however, from(3.7) these two conditions yield a contradiction for the relation betweenP2 andP3.
Consequently, four-drop collisions cannot take place and only the scenarios described above can occur.

It is important to note that once one pair of drops has collided in(3.11), the further dynamics will be rad-
ically altered. In particular, unless we are in the exactly symmetric case ofr = 1, the other pairwise collision
will not take place, as seen inFigs. 9 and 10. How the dynamics proceed after the collision attδ is examined
next.

3.4. The coarsening rule for collisions: merging

t o
d

The ODE models described above give the near-equilibrium evolution leading up to a collision event(3.2) at
ime tδ. At that point, the local solution is far from equilibrium, and analysis of PDE ((2.1) and (2.2)) is needed t
escribe the ensuing droplet merging process.
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Fig. 10. Droplet histories in thext plane (corresponding toFig. 1) from numerical simulations of the full PDE, notice that the collision event
(left) resembles the asymmetric “quasi-2-drop” collision inFig. 9b, while the collapse event (right) is more symmetric.

Fig. 11 shows details of the stages of evolution involved in the collision event from the simulation shown
in Fig. 1. The first frame shows slow evolution that is well-described by(2.15) until the adjacent edges of the
drops get sufficiently close. Then the evolution becomes much more rapid as the two drops merge together to
briefly form a convex “two-droplet complex” which reduces the surface energy of the system, relative to that of
the two adjacent equilibrium drops. This transient structure is unstable and rapidly equilibrates to yield a single
droplet.

F collided
“ et.
ig. 11. Details of the collision and merging process: (a) two near-equilibrium droplet evolving toward collision, (b) the formation of the
two-drop complex” and its rapid convexification, (c) symmetrization and contraction to yield a single merged near-equilibrium dropl
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Getting the precise details of this merging process would generally require numerical solutions of the PDE, but
a lot of insight into the expected behavior can be obtained without computations. The problem has conservation
of mass, hence the mass of the merged drop,mk,k+1, should be given by the total of the masses of the two drops,
mk,k+1 = mk +mk+1. Therefore(2.9)yields a relation between the pressures before and after the collision,

Pk,k+1 =
(

1

P2
k

+ 1

P2
k+1

)−1/2

. (3.14)

It is less straightforward to obtain the position of the merged drop,Xk,k+1, since there is no exact conservation
law for the center of mass. However, this position can be estimated using the analysis of the dynamics of a general
convex drop relaxing to an equilibrium droplet profile done by one of the authors[32]. There it was found that
the motion of the droplet edges (or contact lines) was much slower than the dynamics within the merged droplet
core. InFig. 11, we observe that the solution becomes convex before there is significant motion of the outer contact
lines. The final stage is the convergence to the parabolic droplet profile(2.7). Given this description of the merging
process, we can model the position of the merged droplet as being approximately symmetric with respect to the
outer contact lines of the two colliding drops,

Xk,k+1 = 1
2[Xk − w̄(Pk) +Xk+1 + w̄(Pk+1)]. (3.15)

Together, Eqs.(3.14) and (3.15)relate the state of the droplets just before collision,t−δ , to the properties of the
merged droplet just after the collision,t+δ . By mapping the merged state onto one of the two drops involved in
the collision{Pk,k+1, Xk,k+1} → {Pk,Xk}, and eliminating the other, we obtain a reduced system ofN − 1 drops
governed by(2.15)for t > tδ.

In summary, the coarsening rules given here and in Section3.1 prescribe how the droplet dynamical system
(2.15)must be modified to avoid the break-downs in validity signaled by the coarsening conditions(3.1) and (3.2).
This augmented coarsening dynamical system gives a model for the evolution of the droplets for all times, until
the final one-drop stable steady state is reached. For the remainder of this article, we will examine the larger-scale
implications of the two coarsening mechanisms.

3.5. Energy considerations

T . For the
u at
t is favors
c

ts. For a
c of equal
a

F mpanying
g

The energy of the system(2.4) is dissipated as a generalized gradient flow with the rate of dissipation

dE

dt
= −

∫
h3p2

x dx ≤ 0. (3.16)

he contributions to the total energy from droplets are positive and dominated by the surface gradients
ltra-thin film, the energy is dominated by the potential and is negative,U(hmin) ∼ U(ε) < 0. A consequence is th

he energy is decreased whenever the fraction of the domain covered by the ultra-thin film is increased; th
oarsening.

Both mechanisms for coarsening lead to a decrease in the fraction of the domain containing drople
ollapse event, the net change to the system is the loss of a single droplet and the gain of additional UTF
rea,

&Ecollapse(Pk) ≈ −1
3P

2
k w̄

3(Pk) + 2U(ε)w̄(Pk) < 0. (3.17)

or a collision, the net change to the system involves replacing two drops with one merged drop and an acco
ain of some UTF freed-up by the consolidation,

&Ecollision(Pk, Pk+1) ≈ −1
3(P2

k w̄
3(Pk) + P2

k+1w̄
3(Pk+1) − P2

k,k+1w̄
3(Pk,k+1))

+ 2U(ε)(w̄(Pk) + w̄(Pk+1) − w̄(Pk,k+1)) < 0. (3.18)
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Fig. 12. Evolution of the energy for the numerical solution of the PDE, corresponding to the dynamics shown inFigs. 1 and 10including a
collision and a collapse event.

In both cases, both the decrease in the number of drops and the increase in UTF area decrease the total energy.
However, there is a qualitative difference between the energetics of these events. In a collapse, the decrease of
energy occurs via a smooth and continuous near-equilibrium process, as described by(3.3) with &Ecollapse∼
−O((tc − t)−1/3) for t → tµ � tc. In contrast, on the timescale of the coarsening dynamics, the change in energy
for collisions happens nearly instantaneously, as described in the previous section. The evolution of the energy for
the original PDE ((2.1) and (2.2)) must be continuous for all times (seeFig. 12). But, a consequence of this rapid
decrease in energy for the PDE when collisions occur is that the energy for the ODE coarsening model(2.15)will
include jumps of size&Ecollision at collision timestδ.

As a result, coarsening events and their types can be identified from the evolution of the energy(2.4). We will
see that energetics are not sufficient to predict the dynamics of coarsening in the system, but scaling analysis can
provide insight on the behavior of large arrays of droplets.

4. Coarsening dynamics: collapse versus collision

Instabilities of thin films on large domains lead to the formation of large numbers of droplets upon dewetting. To
describe the global behavior of such systems, we must understand the nature of the long term coarsening process.
It is important to analyze how both of the coarsening mechanisms are influenced by the global properties of the
system.

In particular, we consider a problem starting with a total fluid massM, on a domain of lengthL, containing
N drops. This state can result from the dewetting of a homogeneous film with thicknessHc = M/L. We define
characteristic length and mass scales for typical drops in this system as

Lc = L

N
, Mc = M

N
. (4.1)

Using(2.9), we can obtain a characteristic drop pressure in terms of the characteristic mass,

Pc =
√

2A3
. (4.2)

T nce
b

3Mc

hese scales will be used to obtain a reduced model from(2.15)and identify the parameters that control the bala
etween collision- and collapse-controlled coarsening.
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4.1. The rescaled system for the dilute limit

We begin by assuming that the drops are spaced far enough apart, so that their widths are negligible,w̄(Pc) � Lc.
We call this thedilute limit. In the “dense” case, when this assumption is not true, the drops may be far from
equilibrium as condition(3.2)may apply, with many collisions occurring in rapid succession. For near-equilibrium
droplet arrays in the dilute limit, we may approximate the flux by the simpler expression,

Jk,k+1 = −ε3 Pk+1 − Pk
Xk+1 −Xk . (4.3)

Using(4.1) and (4.2), we rescale the pressures and positions for theN dropletsk = 1,2, . . . , N, and the time as

Pk(t) = PcPk(τ), Xk(t) = LcXk(τ), t = 4A3Lc

3ε3P3
c
τ, (4.4)

and using(2.19), (2.22), and (4.3), system(2.15)becomes

dPk
dτ

= −P3
k

(
Pk+1 − Pk
Xk+1 − Xk − Pk − Pk−1

Xk − Xk−1

)
, (4.5a)

dXk
dτ

= − K

ln(RPk)

(
Pk+1 − Pk
Xk+1 − Xk + Pk − Pk−1

Xk − Xk−1

)
. (4.5b)

The two control parameters in the system are

K = − 4A3B

3εP2
cLc

> 0, R = Pc

pmax
< 1, (4.6)

where the constantB comes from(2.22).
Using(2.9)one can show that

I
s r of
d t
t ange
d

mall
e
t arithmic
d

r of
d
N r
e ce
o plet
d

K = O
(
Hc

ε

)
. (4.7)

n other words, the “coarsening number”K is proportional to the ratio of the mean film thicknessHc to the UTF
caleε. Since mass is conserved,K is independent of time; in particular, it does not depend on the numbe
roplets in the system,N(t). Because it appears as a prefactor in(4.5b),Kmeasures the relative importance of drif

o mass-exchange effects. Therefore dewetting of a relatively thin layer of fluid will lead primarily to mass-exch
ynamics, whereas a thick film will evolve into droplets controlled primarily by the drift mechanism.

The other scaling parameter,R, is a ratio of typical droplet pressure to the reference pressure of vanishingly s
quilibrium dropspmax = O(ε−1). SincePc depends on the number of droplets (Pc = O(

√
N)), R does change

hroughout the coarsening process. However, its effects on the overall dynamics are weak, because of the log
ependence in(4.5b). More is said about this point in Section4.3.

Our interest is in how the form of(4.5)affects the nature of the coarsening process, that is, how the numbe
rops decreases with time. From(4.1) and (4.2)we see that the characteristic scalesLc, Pc depend on time through
(t). However, we note thatN(t) is constant over each time-interval when(4.5)applies and decreases by one fo
ach coarsening event described in Section3. Therefore, for systems with large numbers of drops, the influen
f coarsening on(4.5) is a change in the characteristic scales which is slowly-varying compared to the dro
ynamics whenN 
 1.
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4.2. Global instabilities and the onset of coarsening

In Section3, we examined coarsening events as isolated local occurrences in systems (this is sometimes called
nucleation[36]). Another useful point of view is the use of linearized analysis to study global instabilities which may
lead to coarsening[34]. Here we will identify the fastest growing modes of(4.5)and connect them with coarsening
by collision or collapse.

Formally, any array of drops of uniform size,Pk = 1, with any set of positionsXk is an equilibrium of(4.5).
These states are meta-stable and evolve according to exponentially slow dynamics[37] not described in this model.
Consider the linearized evolution of perturbations to these states. For simplicity, let the base solution be a set of
identical, equally-spaced drops with̄Pk = 1 andX̄k+1 − X̄k = 1. Let the perturbed solutions bePk(τ) = P̄k +
εP̂k(τ), Xk(τ) = X̄k + εX̂k(τ). Linearizing(4.5)about the base state forε→ 0 yields

dP̂k
dτ

= −(P̂k+1 − 2P̂k + P̂k−1), (4.8a)

dX̂k
dτ

= − K

lnR
(P̂k+1 − P̂k−1). (4.8b)

Note that the equation for the pressure perturbations is decoupled from(4.8b)and can be solved in the form

P̂k(τ) = eikσeλτ, λ(σ) = 2 − 2 cosσ. (4.9)

All of the eigenvalues are non-negative and lie in the range 0≤ λ ≤ 4, hence this is a strongly unstable state. This
could be expected since(4.8a)describes a spatial discretization of an ill-posed backward heat equation of the form
∂tP̂ = −∂zzP̂ [38]. For a system ofN drops, the most unstable mode hasσ ≈ π/(2N) with

P̂k(τ) ≈ (−1)ke4τ . (4.10)

That is, alternating drops will grow/shrink, seeFig. 13a. From(4.8b), we note that there is no relative motion
between drops for this linearized mode, i.e.X̂k = 0, sinceP̂k+1 = P̂k−1.

This instability mode can be expected to lead to coarsening by collapse. It sets up the conditions needed for
collapse described in Section3.1, every other droplet is surrounded by larger neighbors. However, as described in
Section3.3, these are also the conditions required for collisions. Further considerations are needed to determine

tion
se will
which mode of coarsening will really occur.
If |K/ ln(R)| � 1 then the time-scale for all modes of spatial motion will be slow compared to the evolu

of the pressure perturbations. In this case, then spatial motion of the drops is largely negligible and collap
indeed be the dominant mode of coarsening.

Fig. 13. Schematic of the fastest growing global instability modes: (a) the primary instability, connected to coarsening by collapse(4.10), and
(b) the dominant secondary instability, connected to coarsening by collision(4.13).
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On the other hand, if|K/ ln(R)| 
 1 then droplet motion can become dominant away from the base equilibrium
state described above. In this case, the evolution of the pressures will occur slowly compared to changes inXk(τ),
and we can neglect the evolution of thePk ’s for the purpose of linear stability analysis. The equilibria of Eq.(4.5b)
by itself are states which have droplets with alternating high and low pressuresP̄k = P±. For simplicity, consider
solutions where all of the drops are initially equally-spaced withX̄k+1 − X̄k = 1. Expanding(4.5b)about this state
yields

dX̂k
dτ

= γ(−1)k(X̂k+1 − 2X̂k + X̂k−1), (4.11)

whereγ = −K|P+ − P−|/ ln(RPk) > 0. A similar “alternating” linear operator was examined in[34]. The pa-
rameterγ isO(1) and depends weakly onk if |P+ − P−| is small; we shall treat it as a constant. To estimate the
dominant eigenvalue, consider the inner product (treating boundary conditions appropriately),

∣∣∣∣
(

dX̂

dτ
, X̂

)∣∣∣∣ = γ
∣∣∣∣∣
N∑
k=1

(−1)k(X̂kX̂k+1 + X̂kX̂k−1 − 2X̂2
k)

∣∣∣∣∣ = 2γ

∣∣∣∣∣
N∑
k=1

(−1)kX̂2
k

∣∣∣∣∣ ≤ 2γ|(X̂, X̂)|. (4.12)

From this, the Rayleigh quotient gives the upper boundλ ≤ 2γ for the eigenvalues. This upper bound is actually
realized for the dominant instability mode[34]

X̂(τ) = {1,0,−1,0, . . .} e2γτ . (4.13)

This mode describes a set of simultaneous symmetric three-drop pinch collisions, where pairs of larger drops (P−)
impinge on their smaller neighbors (P+), seeFig. 13b.

An illustration of the different modes of coarsening behavior is given inFig. 14. Tracks of the droplet evolutions
obtained from(2.15)are shown for a large system at three different values of the coarsening number. WhenK is
small, the spatial motion of drops is relatively weak and coarsening by collapse of every other drop proceeds as
expected, seeFig. 14a. WhenK is large, the drops move rapidly compared to the evolution of their pressures and
collisions/merging is strongly favored, seeFig. 14c. For intermediate values ofK, there is a continuous transition
between the collision- and collapse-dominated coarsening regimes;Fig. 14b shows the dynamics with an equal
number of both types of coarsening events. While we do not yet have a complete theory to describe the competition
b eters
a ening
m
I

W ell-
d ition
t

4

mate the
l

etween the two coarsening modes at moderateK, we ran a numerical study over a large range of param
nd random initial conditions in(2.15) to track the fraction of events governed by each of the two coars
echanisms.Fig. 15shows the fraction of collisions that occurred in 1000 runs over a range of values forK andε.

nterestingly, the collision fraction can be approximately fit to a combination of the parameters,

Fcollide(K, ε) ≈ 0.63

√
ln

(
K

9
√| ln ε|

)
. (4.14)

e interpret the lnε factor as representing an averaged influenced of theR parameter. The figure suggests a w
efined cut-off for collision events, forK < 9

√| ln ε|, all coarsening was given by collapse events. The trans
o collision dominated behavior was less sharp, but could be estimated asK > 110

√| ln ε|.

.3. Long-term scaling behavior of coarsening

To describe the long-term dynamics of coarsening, we make use of a probabilistic argument to esti
ong-time form of thenumber densityof droplets in the system,

n(t) = N(t)

L
(4.15)
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Fig. 14. Droplet evolution tracks for a system of 100 drops withε = 0.01 and at three different values ofK: (a)K = O(0.2/ε), coarsening
dominated by collapse events, (b)K = O(0.5/ε), a balance between collapses and collisions, (c)K = O(1.5/ε), collision dominated coarsening.

ast → ∞. In [19], it was found that collapse-dominated coarsening follows a power-law scalingN(t) = O(t−2/5).
Here, we extend this result to obtain the dependence of the scaling coefficient on the system parameters, and
consider the behavior for collision-dominated coarsening. This will be accomplished by considering the timescale
of coarsening events in the rescaled system ((4.5a) and (4.5b)), and then restoring the original scalings.

Fig. 15. Transition between collision- and collapse-dominated coarsening: the fraction of collisions as a function of the coarsening numberK

andε sampled from 1000 runs with 100 drops each, on a range ofK andε = 10−j for j = 1–4.
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First, consider collapse-dominated coarsening (K/ ln(R) small), where theXk vary slowly, so(4.5b) can be
neglected and equations(4.5a)control the dynamics. Assume a very large array of drops,N 
 1, and that each
collapse event occurs independently of others. Since the collapse process is local, the time it takes a typical droplet
to collapse, must be independent of the total number of drops. Consequently, the rate of decrease ofn for each
coarsening event must take the form,

1

n

dn

dτ
= − 1

τc
(4.16)

whereτc is the typical or average time between collapse events. The crucial observation is thatτc is defined with
respect to the rescaled system, and is therefore anO(1) number independent of the number of dropletsN. Reducing
(4.5a)to a collapse model of the form(3.3), we can estimateτc ≈ 1/6. Using(4.1), (4.2) and (4.4)to restore scalings
and explicitly express theirn-dependence, this equation yields

dn

dt
≈ −5.5836ε3H−3/2

c n7/2, (4.17)

with the solution

n(t) ≈ (n(0)−5/2 + 13.959ε3H−3/2
c t)−2/5. (4.18)

Hence fort → ∞, we obtain the power-law scaling in time, with the dependence on the coarsening number(4.7)
andε,

n(t) ∝
(
K

ε

)3/5

t−2/5. (4.19)

Fig. 16shows the collapse of results from simulations of coarsening at different values ofK as predicted by(4.19).
A similar argument can be applied to collision-dominated coarsening, but there are some notable differences. We

assume that droplet motion dominates the evolution(4.5b), so thePk are held constant and(4.5a)is neglected. While
collision events require the interaction of three drops, on the system-scale, they can still be modeled as independent

le of
local events whenN 
 3. Consequently, a similar collision coarsening rate law on the characteristic time-sca
(4.5b)can be written as

1

N

dN

dτ
≈ − K

σc| lnR | , (4.20)

Fig. 16. (Left) Plot ofN(t) from simulations of(2.15)at several values ofK = O(0.2/[2jε]), for j = 0,1,2, . . . ,5, and (right) the same data
rescaled according to(4.19).
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Fig. 17.N(t) for the three simulations shown inFig. 14 for K values in the collision, collapse and mixed coarsening regimes (solid dots)
compared with the scaling law predicted by(4.22)(dotted lines).

whereσc is anO(1) collision time constant that could be bounded based on the analysis given in Section3.3.
This relation is on weaker footing than(4.16) sinceR evolves as coarsening proceeds, so the rate is not really
independent ofN, but the dependence is weak as it occurs through a logarithmic factor, so we will accept the
need for logarithmic corrections to our expected power-law result. Similarly restoring the scalings in this equation
yields

dn

dt
∝ −

(
K

σc| lnR |
)
ε3H−3/2

c n7/2. (4.21)

This leads to the approximate scaling law (apart from logarithmic corrections) for collision-dominated coarsening

n(t) ∝ (ε3K)1/5t−2/5. (4.22)

It is interesting to note that both coarsening mechanisms yield the same 2/5 power-law for one-dimensional problems,
but with different dependence onK, ε. Fig. 17shows thatN(t) for the three simulations fromFig. 14in the collision,
collapse, and mixed coarsening regimes all approximately follow this scaling law (withn(t) = N(t)/L).

5. Conclusions

The dynamics of the dewetting Eqs.(2.1) and (2.2)are remarkably rich. In contrast to the usual Cahn–Hilliard
equation, isolated droplets (or “domains”) can move substantially, allowing for collisions as an alternative coarsening
mechanism. Additionally, the interaction of droplets is non-trivial: two droplets cannot directly merge in isolation,
but can interact at a distance, whereas three drops may attract one another up to the point of binary collisions.
As droplets become more mobile, the character of the system undergoes a transition from collision-dominated to
mixed behavior at a very specific value of the control parameterK; one may regard this as a “second-order phase
transition” of this many-particle system.

It may be somewhat coincidental that both coarsening mechanisms give the same exponent 2/5 in one dimension.
Indeed, Limary and Green[25] argue that the experimentally observed difference in scaling exponents might result
f oretical
s ompare
w

rom a crossover from one type of coarsening mechanism to the other. We anticipate that forthcoming the
tudies of late stage dewetting on two-dimensional substrates will provide a more realistic opportunity to c
ith experiments.
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Appendix A. Calculation of the drift coefficient CX(p̄)

We describe the details of the calculation of the drift coefficient functionCX(p̄) (2.13). This coefficient can be
expressed in terms of two integrals of the form

Ik(p̄) ≡
∫ ∞

0

(h̄− hmin)k

h̄3
dx, (A.1)

asCX(p̄) = 1
2I1(p̄)/I2(p̄). These integrals are defined over a range of pressures 0≤ p̄ < pmax. We will consider

the analysis for the limits ¯p→ 0 andp̄→ pmax, corresponding to very large and very small droplets, respectively.
Sinceh̄(x) is the homoclinic solution of(2.6) (Fig. 18), we can equivalently express these integrals as

Ik(p̄) =
∫ hmax

hmin

(h̄− hmin)k

h̄3
√

2R(h̄)
dh̄ (A.2)

whereh̄(x) satisfies

1

2

(
dh̄

dx

)2

= R(h̄), (A.3)

with

R(h̄) ≡ U(h̄) − U(hmin) − p̄(h̄− hmin). (A.4)

The minimum of the droplet profilehmin is a hyperbolic saddle point defined byU ′(hmin) = p̄ andhmax, the

maximum ofh̄(x), is defined byR(hmax) = 0. For large and small droplets these quantities have the limits:

hmin(p̄) ∼
{
ε(1 +O(εp̄)) p̄→ 0,

hpeak−O(ε
√
ε[pmax − p̄]) p̄→ pmax,

(A.5)

Fig. 18. The phase plane for Eq.(2.6)at a value of ¯p in the range 0< p̄ < pmax. The droplet solution is given by the homoclinic orbit tohmin(p̄)
(solid curve).
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hmax(p̄) ∼


p̄−1(−U(ε) + εp̄+O([εp̄]2)) p̄→ 0,

hpeak+O(ε
√
ε[pmax − p̄]) p̄→ pmax,

(A.6)

wherehpeak= O(ε) is the value ofhcorresponding to the maximum pressure,U ′(hpeak) = pmax. The elliptic center
point of (2.6), hcen = O(ε), is the other real root ofU ′(h̄) = p̄ and has the limiting behaviors,

hcen(p̄) ∼


ε(εp̄+ (εp̄)m/n)−1/n p̄→ 0,

hpeak+O(ε
√
ε[pmax − p̄]) p̄→ pmax.

(A.7)

The dominant contributions to the value of(A.2) can be expected to come from the behavior of the integrand
near the roots ofR(h̄). The local structure ofR(h̄) at its roots is given by

R(h̄) ∼




1

2
U ′′(hmin)(h̄− hmin)2 h̄→ hmin,

[p̄− U ′(hmax)](hmax − h̄) h̄→ hmax.

(A.8)

To evaluateI2(p̄), we note that as̄h→ hmin the integrand vanishes, hence the integral depends only weakly
on the structure ofR(h̄) there. Consequently, we use(A.8) for h̄→ hmax to provide a global estimate,R(h̄) ≤
[p̄− U ′(hmax)](hmax − h̄), and estimate the integral by

I2(p̄) ≈ 1√
2|p̄− U ′(hmax)|

∫ hmax

hmin

(h̄− hmin)2

h̄3
√
hmax − h̄

dh̄. (A.9)

Integrals of this form can be obtained in closed form as

∫ b
a

(x− a)2
x3

√
b− x dx = −6b− 3a

4b2

√
b− a+ 8b2 − 8ab+ 3a2

4b5/2 arctanh(
√

1 − a/b). (A.10)

U

w
nt.

C along
w

w
s

sing the asymptotics forhmin, hmax, the limiting behaviors of(A.9) are given by

I2(p̄) ≈



−A2 ln(εp̄) − B2 p̄→ 0,

C2[ε(pmax − p̄)]3/4 p̄→ pmax,
(A.11)

here the constants areO(1) and depend only on the structure of the potential functionU(H).
To estimateI1(p̄), we note that for̄h→ hmin the ratio (̄h− hmin)/

√
2R(h̄) approaches a positive consta

onsequently, forhmin → 0, the 1/h̄3 factor makes the integrand relatively large there. This contribution,
ith the contribution for̄h→ hmax lead to the estimate,

I1 ≈ 1√
U ′′(hmin)

∫ hcen

hmin

dh̄

h̄3
+ 1√

2|p̄− U ′(hmax)|
∫ hmax

hmin

h̄− hmin

h̄3
√
hmax − h̄

dh̄, (A.12)

herehcen yields an effective cut-off for the influence of the behavior nearhmin. The first integral in(A.12) is
traightforward; the second is of the form

∫ b
a

x− a
x3

√
b− x dx = 2b− 3a

4ab2

√
b− a+ 4b− 3a

4b5/2 arctanh(
√

1 − a/b). (A.13)
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Using the asymptotics forhmin, hmax, the limiting behaviors of(A.12) are given by

I1(p̄) ≈


ε−1[A1 + B1εp̄+ C1εp̄ ln(εp̄)] p̄→ 0,

D1ε
−1[ε(pmax − p̄)]1/4 p̄→ pmax.

(A.14)

Therefore, the limiting behaviors ofCX(p̄) are

CX(p̄) ≈


O([ε ln(εp̄)]−1) p̄→ 0,

O([ε3(pmax − p̄)]−1/2) p̄→ pmax.
(A.15)

Using a calculation similar to(A.9) for I2(p̄), we can also re-derive the result for the droplet mass. The mass of
a droplet “core region” can be over-estimated by

M ≈ 2w̄hmin + 2
∫ ∞

0
(h̄− hmin) dx. (A.16)

Using(A.3) and (A.8)this can be written as

M ≈ 2w̄hmin + 2√
2[p̄− U ′(hmax)]

∫ hmax

hmin

h̄− hmin√
hmax − h̄

dh̄. (A.17)

Like (A.10) and (A.13)this integral can be found explicitly,∫ b
a

x− a√
b− x dx = 4

3
(b− a)4/3, (A.18)

consequently, we obtain that the droplet mass as

M ∼ 2

3

|2U(ε)|3/2
p̄2 +O(ε/p̄) p̄→ 0, (A.19)

in agreement with the result(2.9).
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