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Goal

To introduce a simple hybrid model for vehicular traffic flow that
combines a macroscopic description away from the junctions,

traffic lights etc . . . and a microscopic view near these

obstacles, both in Lagrangian moving cells.
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Goal

To introduce a simple hybrid model for vehicular traffic flow that
combines a macroscopic description away from the junctions,

traffic lights etc . . . and a microscopic view near these

obstacles, both in Lagrangian moving cells.

� Macroscopic Model: “Aw-Rascle” macroscopic model
[Aw and Rascle, SIAM J. Appl. Math., 60 (2000)]
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Goal

To introduce a simple hybrid model for vehicular traffic flow that
combines a macroscopic description away from the junctions,

traffic lights etc . . . and a microscopic view near these

obstacles, both in Lagrangian moving cells.

� Macroscopic Model: “Aw-Rascle” macroscopic model
[Aw and Rascle, SIAM J. Appl. Math., 60 (2000)]

� Microscopic Model: A Follow the Leader type model
[Aw, Klar, Materne and Rascle , SIAM J. Appl. Math., 63
(2002)]
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Motivation

� The difficulties when building a hybrid model: compexity of
the interfaces description, compatibility between the models
to be coupled, . . .
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Motivation

� The difficulties when building a hybrid model: compexity of
the interfaces description, compatibility between the models
to be coupled, . . .

[Hennecke et al, 2000], [Magne et al, 2000], [Helbing et al,

2002], [Bourel et al, 2003], [Berghout et al, 2005], [Leclercq,

2005], [Leclercq and Moutari, 2006 (Preprint)].



» Outline

Introduction

» Goal

» Motivation

Models

Link between the models

Hybridization

Synchronization

BV Estimates

Simulation

Conclusion

Multiscale Modeling and Applications – Cargese, August 7-12 2006 – ← → A Hybrid Lagrangian Model for Vehicular Traffic Flow — Page 5

Motivation

� The difficulties when building a hybrid model: compexity of
the interfaces description, compatibility between the models
to be coupled, . . .

[Hennecke et al, 2000], [Magne et al, 2000], [Helbing et al,

2002], [Bourel et al, 2003], [Berghout et al, 2005], [Leclercq,

2005], [Leclercq and Moutari, 2006 (Preprint)].

� In [Aw, Klar, Materne and Rascle , SIAM J. Appl. Math., 63
(2002)], a relation between the “Aw-Rascle” (AR)
macroscopic model and a microscopic Follow the Leader
type model is established.
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Motivation

� The difficulties when building a hybrid model: compexity of
the interfaces description, compatibility between the models
to be coupled, . . .

[Hennecke et al, 2000], [Magne et al, 2000], [Helbing et al,

2002], [Bourel et al, 2003], [Berghout et al, 2005], [Leclercq,

2005], [Leclercq and Moutari, 2006 (Preprint)].

� In [Aw, Klar, Materne and Rascle , SIAM J. Appl. Math., 63
(2002)], a relation between the “Aw-Rascle” (AR)
macroscopic model and a microscopic Follow the Leader
type model is established.

� In [Bagnerini and Rascle, SIAM J. Math. Anal., 35 (2003)] is
shown what (and how) can be homogenized in a multiclass
version of the AR model.
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The Macroscopic Model

We are concerned with the “Aw-Rascle” macroscopic model
of traffic flow.
It consists in the conservative form (in Eulerian coordinates)
of two equations
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The Macroscopic Model

We are concerned with the “Aw-Rascle” macroscopic model
of traffic flow.
It consists in the conservative form (in Eulerian coordinates)
of two equations

{

∂tρ + ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρvw) = 0,
(1)
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The Macroscopic Model

We are concerned with the “Aw-Rascle” macroscopic model
of traffic flow.
It consists in the conservative form (in Eulerian coordinates)
of two equations

{

∂tρ + ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρvw) = 0,
(1)

where,

� ρ denotes the fraction of space occupied by cars
(a dimensionless local density),

� v is the macroscopic velocity of cars

� w is a Lagrangian marker and for instance w = v + p(ρ).
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The Macroscopic Model

For concreteness, in the sequel, we will assume that

p(ρ) =







vre f

γ

(

ρ
ρm

)γ
, γ > 0,

−vre f ln
(

ρ
ρm

)

, γ = 0,
(2)
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The Macroscopic Model

For concreteness, in the sequel, we will assume that

p(ρ) =







vre f

γ

(

ρ
ρm

)γ
, γ > 0,

−vre f ln
(

ρ
ρm

)

, γ = 0,
(2)

with vre f a given reference velocity and ρm = 1 is the
maximal density.
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The Macroscopic Model

Let τ = 1/ρ be the specific volume and denote by (X, T) the
Lagrangian “mass” coordinates. We have

∂xX = ρ, ∂tX = −ρv, T = t.

X =
∫ x

ρ(y, t)dy describes the total length occupied by cars
up to the point x, if they were packed “nose to tail”.
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The Macroscopic Model

Let τ = 1/ρ be the specific volume and denote by (X, T) the
Lagrangian “mass” coordinates. We have

∂xX = ρ, ∂tX = −ρv, T = t.

X =
∫ x

ρ(y, t)dy describes the total length occupied by cars
up to the point x, if they were packed “nose to tail”.
In Lagrangian “mass” coordinates, system (1) becomes

{

∂Tτ− ∂Xv = 0,

∂Tw = 0,
(3)
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The Macroscopic Model

Let τ = 1/ρ be the specific volume and denote by (X, T) the
Lagrangian “mass” coordinates. We have

∂xX = ρ, ∂tX = −ρv, T = t.

X =
∫ x

ρ(y, t)dy describes the total length occupied by cars
up to the point x, if they were packed “nose to tail”.
In Lagrangian “mass” coordinates, system (1) becomes

{

∂Tτ− ∂Xv = 0,

∂Tw = 0,
(3)

with, w = v + P(τ) := v + p
(

1
τ

)

.
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The Macroscopic Model

Under the assumption of the CFL condition, the Lagrangian
Godunov discretization of the macroscopic model (3) is







τn+1
j = τn

j + ∆t
∆X

(

vn
j+1 − vn

j

)

,

wn+1
j = wn

j ,
(4)

with initial data

{

τj(0) = τ0
j

vj(0) = v0
j = w0

j + P(τ0
j )

(5)
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The Microscopic Model

We consider a microscopic Follow-the-Leader type model.
The dynamics of a vehicle j is given by the two equations:
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The Microscopic Model

We consider a microscopic Follow-the-Leader type model.
The dynamics of a vehicle j is given by the two equations:











dxj

dt = vj,
dvj

dt = 1
∆X (vj+1 − vj)

vre f τ
γ
m

τ
γ+1
j

(6)

where
xj(t) and vj(t) are respectively the location and the velocity

of the jth vehicle at time t.
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The Microscopic Model

We consider a microscopic Follow-the-Leader type model.
The dynamics of a vehicle j is given by the two equations:











dxj

dt = vj,
dvj

dt = 1
∆X (vj+1 − vj)

vre f τ
γ
m

τ
γ+1
j

(6)

where
xj(t) and vj(t) are respectively the location and the velocity

of the jth vehicle at time t.

Here, τj =
(xj+1−xj)

∆X = 1
ρj

, with ρj the normalized local

density.
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The Microscopic Model

Introducing the variable wj = vj + P(τj) in (6) (with

P(τj) = p
(

1
τj

)

), we obtain
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The Microscopic Model

Introducing the variable wj = vj + P(τj) in (6) (with

P(τj) = p
(

1
τj

)

), we obtain







dτj

dt =
(vj+1−vj)

∆X ,
dwj

dt = 0.
(7)

with initial conditions
{

τj(0) = τ0
j ,

vj(0) = v0
j = w0

j − P(τ0
j ).

(8)
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The Microscopic Model

The explicit Euler time discretization of system (7) is then






τn+1
j = τn

j + ∆t
∆X

(

vn
j+1 − vn

j

)

,

wn+1
j = wn

j

(9)
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The Microscopic Model

The explicit Euler time discretization of system (7) is then






τn+1
j = τn

j + ∆t
∆X

(

vn
j+1 − vn

j

)

,

wn+1
j = wn

j

(9)

with
vn+1

j = wn+1
j − P(τn+1

j ).
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The Link between the Models
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Link between the Models: The scaling

Let us consider a large number of vehicles on a long stretch
of road and introduce in the macroscopic model (3), a
scaling (zoom) such that:
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Link between the Models: The scaling

Let us consider a large number of vehicles on a long stretch
of road and introduce in the macroscopic model (3), a
scaling (zoom) such that:
� the size of the considered domain −→ ∞,

� the number of vehicles −→ ∞ and

� the vehicles length tends to 0.
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Link between the Models: The scaling

Let us consider a large number of vehicles on a long stretch
of road and introduce in the macroscopic model (3), a
scaling (zoom) such that:
� the size of the considered domain −→ ∞,

� the number of vehicles −→ ∞ and

� the vehicles length tends to 0.

Let ǫ be the scaling parameter.

For some given Lagrangian coordinates (X, T), we consider
the rescaled coordinates

(X′, T′) = (ǫX, ǫT). (10)
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Link between the Models: The scaling

Consequently, the lenght of a vehicle will be

∆X′ = ǫ∆X. (11)
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Link between the Models: The scaling

Consequently, the lenght of a vehicle will be

∆X′ = ǫ∆X. (11)

However, in the new coordinates (X′, T′), the variable τ
(resp. ρ) and the Riemann invariant (v, w) remain
unchanged, i.e.

τ′ = τ (resp. ρ′ = ρ), v′ = v, w′ = w. (12)
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Link between the Models: The scaling

Thus the system (3) becomes

{

∂τ
∂t′ = ∂v

∂X′ ,
∂w
∂t′ = 0.

(13)
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Link between the Models: The scaling

Thus the system (3) becomes

{

∂τ
∂t′ = ∂v

∂X′ ,
∂w
∂t′ = 0.

(13)

Using the same scaling for the microscopic model, (7) turns
to

{

dτj

dt′ = 1
∆X′

(

vj+1 − vj

)

,
dwj

dt′ = 0.
(14)
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Link between the Models: The scaling

Thus the system (3) becomes

{

∂τ
∂t′ = ∂v

∂X′ ,
∂w
∂t′ = 0.

(13)

Using the same scaling for the microscopic model, (7) turns
to

{

dτj

dt′ = 1
∆X′

(

vj+1 − vj

)

,
dwj

dt′ = 0.
(14)

In the rescaled coordinates, a standard explicit Euler time
discretization of the microscopic model (9)⇐⇒ to the
Godunov discretization (4) of the macroscopic model.



» Outline

Introduction

Models

Link between the models

Hybridization

» Hybrid Model

Synchronization

BV Estimates

Simulation

Conclusion

Multiscale Modeling and Applications – Cargese, August 7-12 2006 – ← → A Hybrid Lagrangian Model for Vehicular Traffic Flow — Page 18

Hybridization
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Hybrid Model

Combining a macroscopic description away from the junctions,
traffic lights etc. . . and a microscopic view near these
obstacles.

Macroscopic model Macroscopic model

Actual Microscopic Region (AMR)

Minimal Microscopic Region

(MMR)

. . .. . . . . . . . .

Figure 1: Hybrid Lagrangian model.

Thanks to the equivalence established above, no compatibility
problem between the two models.
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Macro-Micro and Micro-Macro
Synchronization
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From Macro to Micro

i + 1 i (i − 1)N (i − 1)N − 1

i1iN

N∆X

∆X

Li

Li/N

Macroscopic cell

Microscopic cells

Minimal
Microscopic
Region (MMR)

. . .

. . .. . .

. . .

ij ij − 1

xij xij−1

Li

Figure 2: From the macroscopic to the microscopic model: before
(above) and after (below) the synchronization.
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From Macro to Micro

� This transformation does not modify the specific volume τ.
Indeed, in the macroscopic cell i,

τi =
Li

N∆X
= τmac. (15)
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From Macro to Micro

� This transformation does not modify the specific volume τ.
Indeed, in the macroscopic cell i,

τi =
Li

N∆X
= τmac. (15)

� When this cell i becomes microscopic, the distance between
two successive cars (i, j) (the follower) and (i, j− 1) (the
leader) is

(xi,j−1 − xi,j) =
Li

N
. (16)
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From Macro to Micro

� Therefore the microscopic specific volume in each of these
smaller cells is

τi,j = τmic =
Li/N

∆X
= τmac. (17)

So the specific volume does not change when passing from
the macroscopic to the microscopic model.
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From Macro to Micro

� Therefore the microscopic specific volume in each of these
smaller cells is

τi,j = τmic =
Li/N

∆X
= τmac. (17)

So the specific volume does not change when passing from
the macroscopic to the microscopic model.

� The Lagrangian variable w is conserved i.e.

wi,j = wi. (18)
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From Macro to Micro

� Therefore the microscopic specific volume in each of these
smaller cells is

τi,j = τmic =
Li/N

∆X
= τmac. (17)

So the specific volume does not change when passing from
the macroscopic to the microscopic model.

� The Lagrangian variable w is conserved i.e.

wi,j = wi. (18)

� Consequently, the velocity also does not change:

vi,j = wi,j − P(τi,j) = wi − P(τi) = vi, (19)

for all microscopic car j in this cell i.
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From Micro to Macro

i− 1

i

(i + 1)1(i + 1)2 i1iN

N∆X

∆X
xiN xi1

lij

Macroscopic cell

Minimal
Microscopic

Region (MMR)

. . .
. . .. . .

. . .ij ij − 1

xij xij−1

∑

j lij

Figure 3: From the microscopic to the macroscopic model: before

(above) and after (below) the synchronization.
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From Micro to Macro

� The macroscopic specific volume will be

τ̄i =
∑

N
j=1 li,j

N∆X
=

1

N

N

∑
j=1

li,j

∆X
=

1

N

N

∑
j=1

τi,j. (20)
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From Micro to Macro

� The macroscopic specific volume will be

τ̄i =
∑

N
j=1 li,j

N∆X
=

1

N

N

∑
j=1

li,j

∆X
=

1

N

N

∑
j=1

τi,j. (20)

� The Lagrangian variable wi,j is conserved i.e.

wi,j = wi. (21)

Thus, averaging in Lagrangian coordinates, we have

1

N

N

∑
j=1

wi,j =
1

N

N

∑
j=1

wi = wi. (22)
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From Micro to Macro

� Therefore, the corresponding macroscopic velocity is

v̄ = w− P(τ̄). (23)
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From Micro to Macro

� Therefore, the corresponding macroscopic velocity is

v̄ = w− P(τ̄). (23)

� In this case, the macroscopic model does not inherit exactly
the microscopic parameters but only the average for τ and
w, and the above corresponding velocity.
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From Micro to Macro

� Therefore, the corresponding macroscopic velocity is

v̄ = w− P(τ̄). (23)

� In this case, the macroscopic model does not inherit exactly
the microscopic parameters but only the average for τ and
w, and the above corresponding velocity.

� However the total variation in space and time of v and τ are
controlled.
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Estimates on the Total Variation
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Estimates on the Total Variation

Theorem 1
Assume that the sequences (v0

h, τ0
h ), respectively the initial

data for v and τ (and therefore for w), are in BV(R), and the
the CFL condition is satisfied both in the macro and micro
parts. Then, in the hybid model

a) the total variation in x of vh(., t) (resp. in t of vh(., .)) is non
increasing in time (resp. is bounded on R× [t, t′] );

b) the total variation in x of τh(., t) on ∪j∈Z Ij (resp. in t of τh(., .)

on R× [t, t′)) is bounded (resp. is bounded).
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Proof of the Theorem

Lemma 1 Let U = (u1, u2, . . . un) ∈ R
n and Ū ∈ R such that

m = min
i

(ui) ≤ Ū ≤ max
i

(ui) = M.

Then,

∀ α, β ∈ R, |α− Ū|+ |Ū − β| ≤ |α− u1|+
n−1

∑
i=1

|ui − ui+1|+ |un − β|
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Proof of the Theorem

(i) In the macroscopic model (resp. the microscopic model)
(see Aw, Klar, Materne, Rascle, SIAM J. Appl. Math., 63
(2002) and
Bagnerini & Rascle, SIAM J. Math. Anal., 35 (2003)),
we have:
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Proof of the Theorem

(i) In the macroscopic model (resp. the microscopic model)
(see Aw, Klar, Materne, Rascle, SIAM J. Appl. Math., 63
(2002) and
Bagnerini & Rascle, SIAM J. Math. Anal., 35 (2003)),
we have:

a) the total variation in x of vh(., t) (resp. in t of vh(., .) ) is
non increasing in time (resp. is bounded on R× [t, t′]);
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Proof of the Theorem

(i) In the macroscopic model (resp. the microscopic model)
(see Aw, Klar, Materne, Rascle, SIAM J. Appl. Math., 63
(2002) and
Bagnerini & Rascle, SIAM J. Math. Anal., 35 (2003)),
we have:

a) the total variation in x of vh(., t) (resp. in t of vh(., .) ) is
non increasing in time (resp. is bounded on R× [t, t′]);

b) the total variation in x of τh(., t) on ∪j∈Z Ij (resp. in t of
τh(., .), on R× [t, t′)) is bounded (resp. is bounded).
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Proof of the Theorem

(i) In the macroscopic model (resp. the microscopic model)
(see Aw, Klar, Materne, Rascle, SIAM J. Appl. Math., 63
(2002) and
Bagnerini & Rascle, SIAM J. Math. Anal., 35 (2003)),
we have:

a) the total variation in x of vh(., t) (resp. in t of vh(., .) ) is
non increasing in time (resp. is bounded on R× [t, t′]);

b) the total variation in x of τh(., t) on ∪j∈Z Ij (resp. in t of
τh(., .), on R× [t, t′)) is bounded (resp. is bounded).

(ii) During the synchronization process, at each time tn, the
total variations in x of vh and τh do not increase and their
total variations in time are controlled thanks to Lemma 1.



» Outline

Introduction

Models

Link between the models

Hybridization

Synchronization

BV Estimates

Simulation

» Scenario 1

» Scenario 2

» Scenario 3

Conclusion

Multiscale Modeling and Applications – Cargese, August 7-12 2006 – ← → A Hybrid Lagrangian Model for Vehicular Traffic Flow — Page 31

Numerical Simulations
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Scenario 1
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Scenario 2
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Scenario 3
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Conclusion and Outlook
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Conclusion and Outlook

Hybrid Model Properties

� Simple Macro-Micro and Micro-Macro synchronization;

� Mass is easily conserved through the interfaces;

� Nice wave propagation;

� Total variation controlled.

Further works

� Intersection modeling, Implementation on a road network, . . .
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Thank you!
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