
Water-Waves Problem

Goal: Describe the motion of the free surface

Incompressibility

z

0
ζ (t,X)

z=−h

Ω

X=(x,y)

g

Constant pressure
Bording surface

Impermeability

Irrotationality
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Water-Waves Equations

i. In the fluid

Incompressibility:
div v = 0;

Conservation of momentum (Euler equation):

∂tv + v · ∇X,zv = −1

ρ
∇X,zP + g;

Irrotationality:
curl v = 0.
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Water-Waves Equations

ii. Boundary conditions
The surface and the bottom are bounding surfaces: no
fluid particule crosses them.
Remark. An implicit surface Σ(t,X, z) = 0 is bounding iff

dΣ

dt
= (∂t + v · ∇X,z)Σ = 0.

 Bottom: Σ(t,X, z) = z + h and the condition is

vz = 0 at z = −h;

 Surface: Σ(t,X, z) = z − ζ(t,X) and one gets

∂tζ = (−∇ζ, 1)T · v|z=ζ(t,X)
.
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Water-Waves equations

ii. Boundary conditions Neglecting the surface tension, the
pressure is constant at the surface and we can assume

P = 0 at z = ζ(t,X).

Conclusion: Free surface Euler Equations:





div v = 0, in Ω,

rot v = 0, in Ω,

∂tv + v · ∇X,zv = − 1
ρ
∇X,zP + g in Ω,

vz = 0, z = −h,
∂tζ = (−∇ζ, 1)T · v z = ζ(t, x, y),

P = 0 z = ζ(t, x, y).
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Bernouilli’s formulation

Remark that




div v = 0, in Ω,

rot v = 0, in Ω,

vz = 0, z = −h,
⇐⇒

{
∆Φ = 0, in Ω

∂zΦ = 0, z = −h,

where Φ is a velocity potential : v = ∇X,zΦ.
Similarly,

∂tv + v · ∇X,zv = −1

ρ
∇X,zP + g in Ω,

⇐⇒ ∂tΦ +
1

2
|∇Φ|2 + gz = −1

ρ
P in Ω.

 P disappears at the surface.
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Bernouilli’s formulation

Water-Waves Equations under Bernouilli’s formulation:




∆Φ = 0, −h ≤ z ≤ ζ(t, x, y),

∂zΦ = 0, z = −h,
∂tζ + ∂yΦ∂xζ + ∂yΦ∂yζ = ∂zΦ, z = ζ(t, x, y),

∂tΦ + 1
2
|∇Φ|2 + gz = − 1

ρ
P z = ζ(t, x, y).
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Nondimensionalization

a Typical amplitude of the wave;

h Mean depth;

λ typical wavelength in the x direction;
λ
γ
 typical wavelength in the y direction.

Dimensionless quantities:

x′ =
x

λ
, y′ = γ

y

λ
, z′ =

z

h
,

ζ ′ =
ζ

a
, Φ′ =

Φ

Φ0

, t′ =

√
gh

λ
t,

where Φ0 = a
h

√
ghλ.
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Nondimensionalized equations





µ∂2
xΦ + γ2µ∂2

yΦ + ∂2
zΦ = 0, (−1 ≤ z ≤ εζ),

∂zΦ = 0, (z = −1),

∂tζ + ε∂xΦ∂xζ + εγ2∂yΦ∂yζ =
1

µ
∂zΦ, (z = εζ),

∂tΦ +
1

2
(ε(∂xΦ)2 + εγ2(∂yΦ)2 +

ε

µ
(∂zΦ)2) + ζ = 0.

with

ε = a
h
 nonlinearities;

µ = h2

λ2  shallowness parameter;

γ  lack of isotropy.

My Big Presentation – p. 8/69



Dirichlet-Neumann operator

Let ψ = φ|z=εζ
and define

Gγ,µ[εζ] : ψ 7→
√

1 + ε2|∇ζ|2∂nφ|z=εζ

with

∂nφ|z=εζ
:= n ·




µ∂xφ

γ2µ∂yφ

∂zφ




|z=εζ

and {
∂2

zφ+ µ∂2
xφ+ γ2µ∂2

yφ = 0

φ|z=εζ
= ψ, ∂zφ|z=−1

= 0.
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Zakharov formulation





∂tζ −
1

µ
Gγ,µ[εζ]ψ = 0,

∂tψ + ζ +
ε

2
|∇γψ|2 − ε

µ

(Gγ,µ[εζ]ψ + εµ∇γζ · ∇γψ)2

2(1 + ε2µ|∇γζ|2) = 0,

where
∇γ := (∂x, γ∂y)

T .

Example: Long-Waves Regime:

Isotropic waves: ε = µ << 1 and γ = 1.

Weakly transverse waves: ε = µ << 1 and γ2 = ε.
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Linear water-waves equations

For small amplitude waves, one obtains at first order, ie
when ε = 0:





∂tζ −
1

µ
Gγ,µ[0]ψ = 0,

∂tψ + ζ = 0.

where Gγ,µ[0]ψ = ∂zφ|z=0 and

{
∂2

zφ+ µ∂2
xφ+ γ2µ∂2

yφ = 0, −1 < z < 0

φ|z=0 = ψ, ∂zφ|z=−1 = 0.
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Computation of Gγ,µ[0]ψ

After horizontal Fourier transform:
{
∂2

z φ̂− µ(k2 + γ2l2)φ̂ = 0,

φ̂|z=0 = ψ̂, ∂zφ̂|z=−1 = 0.

 φ̂(k, l, z) =
cosh((z + 1)

√
µ
√
k2 + γl2)

cosh(
√
µ
√
k2 + γl2)

ψ̂(k, l),

 ∂zφ̂|z=0 =
√
µ
√
k2 + γl2 tanh(

√
µ
√
k2 + γl2)ψ̂(k, l),

Thus, with |Dγ | =
√
D2

x + γ2D2
y,

Gγ,µ[0]ψ =
√
µ|Dγ | tanh(

√
µ|Dγ |)ψ.
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Linear water-waves equations

The linearized equations are therefore:




∂tζ −
1√
µ
|Dγ | tanh(

√
µ|Dγ |)ψ = 0,

∂tψ + ζ = 0.

 ∂2
t ζ +

1√
µ
|Dγ | tanh(

√
µ|Dγ |)ζ = 0.
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Shallow water approximation

Shallow water condition:

µ << 1 ⇐⇒ h2/λ2 << 1.

 Costal flows:

h = 10m, λ = 100m =⇒ µ = 0.01.

 Indian ocean tsunami:

h = 6000m, λ = 100km =⇒ µ = 0.0036.
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Linear shallow water eqs (first order)

Isotropic case: γ = 1

∂2
t ζ − ∆ζ = 0 (dimensionless),

∂2
t ζ − gh∆ζ = 0 (with dimensions).

Weakly transverse waves: γ =
√
µ

∂2
t ζ − ∂2

xζ = 0 (dimensionless),

∂2
t ζ − gh∂2

xζ = 0 (with dimensions).
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Linear shallow water eqs (second
order)

Isotropic case: γ = 1
1√
µ

√
k2 + l2 tanh(

√
µ
√
k2 + l2) ∼ (k2 + l2) − 1

3
(k2 + l2)2.

 ∂2
t ζ − ∆ζ − µ

3
∆2ζ = 0.

Weakly transverse waves: γ =
√
µ

1√
µ

√
k2 + µl2 tanh(

√
µ
√
k2 + µl2) ∼ k2 + µ(l2 − 1

3
k4).

 ∂2
t ζ − ∂2

xζ − µ(
1

3
∂4

x + ∂2
y)ζ = 0.

My Big Presentation – p. 16/69



Nonlinear shallow water models

Different regimes (γ = 1):

ε = 1, µ << 1
 Shallow-water (Saint-Venant) equations;

ε = µ << 1
 Boussinesq equations;

ε2 = µ << 1
 Serre equations.
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The method

Recall the equations:




∂tζ −
1

µ
Gγ,µ[εζ]ψ = 0,

∂tψ + ζ +
ε

2
|∇γψ|2 − ε

µ

(Gγ,µ[εζ]ψ + εµ∇γζ · ∇γψ)2

2(1 + ε2µ|∇γζ|2) = 0,

 Asymptotic expansion of G[εζ]ψ when

ε = 1, µ << 1 (Shallow-water)

ε = µ << 1 (Boussinesq)

ε2 = µ << 1 (Serre)
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Shallow water equations

Proposition 1 One has

Gµ[ζ]ψ = −µ∇ · ((1 + ζ)∇ψ) +O(µ2).

Plugging this into the ww equations yields:
{
∂tψ + ζ +

1

2
|∇ψ|2 = 0

∂tζ + ∇ · ((1 + ζ)∇ψ) = 0,

or, with V = ∇ψ,
{
∂tV + ∇ζ +

1

2
|V |2 = 0

∂tζ + ∇ · ((1 + ζ)V ) = 0.
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A Boussinesq system

Proposition 2 One has

Gε[εζ]ψ = −ε∆Ψ − ε2(
1

3
∆2ψ + ∇ · (ζ∇ψ)) +O(ε3).

 



∂tψ + ζ + ε(
1

2
|∇ψ|2) = 0

∂tζ + ∆ψ + ε(
1

3
∆2ψ + ∇ · (ζ∇ψ)) = 0,

or, with V = ∇ψ,




∂tV + ∇ζ + ε
1

2
|V |2 = 0

∂tζ + ∇ · V + ε(
1

3
∇ · ∆V + ∇ · (ζV )) = 0.
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Serre equations

Proposition 3 One has

Gµ[
√
µζ]ψ = −µ∆Ψ − µ3/2∇ · (ζ∇ψ) +O(µ2).

 {
∂tψ + ζ +

√
µ(

1

2
|∇ψ|2) = 0

∂tζ + ∆ψ +
√
µ∇ · (ζ∇ψ) = 0,

or, with V = ∇ψ,
{
∂tV + ∇ζ +

√
µ

1

2
|V |2 = 0

∂tζ + ∇ · ((1 +
√
µζ))V = 0.
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Expanding the DN operator

Recall that

Gγ,µ[εζ] : ψ 7→
√

1 + ε2|∇ζ|2∂nφ|z=εζ

with

∂nφ|z=εζ
:= n ·




µ∂xφ

γ2µ∂yφ

∂zφ




|z=εζ

and {
∂2

zφ+ µ∂2
xφ+ γ2µ∂2

yφ = 0 in Ω

φ|z=εζ
= ψ, ∂zφ|z=−1

= 0.
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Expanding the DN operator

Proposition 4 One has Gγ,µ[εζ]ψ = ∂P
n Φ̃|z=0 , with

{
∇γ · Pε,γ,µ∇γΦ̃ = 0 in R

2 × (−1, 0),

Φ̃|z=0
= ψ, ∂P

n Φ̃|z=−1
= 0,

and

Pε,γ,µ =




µ(1 + εζ) 0 −µε(z + 1)∂xζ

0 µ(1 + εζ) −γµε(z + 1)∂yζ

−µε(z + 1)∂xζ −γµε(z + 1)∂yζ
1+µε2(z+1)2|∇γζ|2

1+εζ


 .
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Expanding the DN operator

Proposition 5 If Φapp satisfies
{

∇γ · Pε,γ,µ∇γΦapp∼0 in R
2 × (−1, 0),

Φapp |z=0
= ψ, ∂P

n Φapp|z=−1
= 0,

then
Gγ,µ[εζ]ψ∼∂P

n Φapp |z=0.

 We want to construct an explicit Φapp.
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Expanding the DN operator

Example: In the Boussinesq, ε = µ << 1 and γ = 1:

Φapp = Φ0 + εΦ1 + ε2Φ2 + ...

One choses the Φj to cancel the leading terms of the
expansion of Φapp into powers of ε:

Order O(1): ∂2
zΦ0 = 0

 Φ0(X, z) = ψ(X).

Order O(ε): ∂2
zΦ1 = −∆Φ0

 Φ1 = −( z2

2
+ z)∆ψ.

Etc.
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Provisional conclusion

We have so far proved consistency results:
If for some T > 0, there exists a unique family of solutions
(ψ, ζ)ε,γ,µ such that (V := ∇γψ, ζ)ε,γ,µ is bounded over
times [0, T

ε
] then:

(V, ζ) solves the Boussinesq system up to a O(ε2)
residual;

(V, ζ) solves the Shallow-Water system up to a O(µ)
residual;

(V, ζ) solves the Serre eqs up to a O(µ) residual.
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Remarks

In the weakly transverse case, we assume that
√
ε∂yψ

is bounded ∂yψ may grow as 1/
√
ε.

Consistency is not convergence !

Keypoint: large time existence result for the ww
equations.

Boussinesq is linearly ill-posed!

One-way asymptotic models (KdV,KP) are a step
further.
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Formally equivalent Boussinesq
systems

From the Boussinesq system




∂tV + ∇ζ + ε
1

2
|V |2 = 0

∂tζ + ∇ · V + ε(
1

3
∇ · ∆V + ∇ · (ζV )) = 0,

one can derive an infinity of formally equivalent
Boussinesq systems:

∂tV = −∇ζ +O(ε) ∂tV = (1 − µ)∂tV − µ∇ζ + O(ε).

∂tζ = −∇ · V +O(ε)
 ∇ · V = λ∇ · V − (1 − λ)∂tζ +O(ε).

Vθ := (1 − ε
2
(1 − θ2)∆)−1V .
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Formally equivalent Boussinesq
systems

A first class of systems:

{
(1 − εb∆)∂tV + ∇ζ + ε(1

2
∇|V |2 + a∆∇ζ) = 0

(1 − εd∆)∂tζ + ∇ · V + ε(∇ · (ζV ) + c∇ · ∆V ) = 0.

Remark: 4 coefficients depending on the 3 parameters θ, λ,
µ.
Remark: Linearly well-posed or ill-posed depending on a, b,
c and d.
Remark: One can take a = c, b ≥ 0, d ≥ 0.
 Symmetric linear part.
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Formally equivalent Boussinesq
systems

A second class of systems:
Make the nonlinear change of variables

Ṽ = (1 +
ε

2
ζ)V.





(1 − εb∆)∂tV + ∇ζ
+ε(1

4
∇|V |2 + 1

2
(V · ∇)V + 1

2
V∇ · V + 1

2
ζ∇ζ + a∆∇ζ) = 0

(1 − εd∆)∂tζ + ∇ · V + ε( 1
2
∇ · (ζV ) + c∇ · ∆V ) = 0.

Remark: The nonlinear part is always symmetric.
Remark: When the linear part is also symmetric, the system
is quasilinear symmetric hyperbolic
 Good energy estimates.
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Rigorous justification

Let (ψε, ζε)ε be a family of solution such that (V ε, ζε)ε is
bounded over [0, T

ε
].

Step 1. We saw that (V ε, ζε) is consistent with ONE
Boussinesq system.
Step 2. Linear manipulations:

(V ε, ζε) (V ε
1 , ζ

ε),

consistent with ANY system of the first class.
Step 3. Nonlinear change of variables:

(V ε
1 , ζ

ε) (V ε
2 , ζ

ε),

consistent with the corresponding system with symmetric
nonlinearity.
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Rigorous justification

In particular: One can transform (V ε, ζε) into a family
(V ε

2 , ζ
ε) consistent with a completely symmetric system.

Step 4. There exist an exact solution (V ], ζ]) to this system,
with same ICs.
Step 5. Energy estimates on the completely symmetric
system:
 |(V ε

2 , ζ
ε) − (V ], ζ])|L∞([0,t]×R2) ≤ Cst ε2t.

Step 6. Inverting the changes of variables, one gets
(V ], ζ]) (Vapp, ζapp).
Step 7. Conclusion:

|(V ε, ζε) − (Vapp, ζapp)|L∞([0,t]×R2) ≤ Cst ε2t.
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Rigorous Justification

Theorem 1 Any family (V ε = ∇ψε, ζε)ε bounded on [0, T
ε
]

solution to the ww equations can be approximated with a
precision O(ε2t) using ANY of the Boussinesq systems
seen above.

Remark. Same approach for weakly transverse waves.
Remark. Same kind of result for shallow water, Serre ...
Remark. What about the large time existence of solutions
for the ww equations?
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Uncoupled models

KdV approximation: (for 1D surface waves)
ζ(t, x) ∼ ζ+(εt, x− t) + ζ−(εt, x+ t), with

∂τζ+ +
1

6
∂3

xζ+ +
3

2
ζ+∂xζ+ = 0.

Kadomtsev-Petviashvili (KP) approximation: (for weakly
transverse, 2D surface waves)

ζ(t, x) ∼ ζ+(εt,
√
εy, x− t) + ζ−(εt,

√
εy, x+ t),

with

∂τζ+ + ∂−1
x ∂2

yζ+ +
1

6
∂3

xζ+
3

2
ζ+∂xζ+ = 0.
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Justification of KdV

 Enough to justify the KdV approximation for one of the
Boussinesq systems:

{
∂tV + ∂xζ + ε(3

2
V ∂xV + 1

2
ζ∂xζ + 1

3
∂3

xζ) = 0

∂tζ + ∂xV + ε(1
2
∂x(ζV ) + 1

3
∂3

xV ) = 0.

Ansatz: (V, ζ)(t, x) = (Ṽ , ζ̃)(εt, t, x), with

(Ṽ , ζ̃)(T, t, x) = (V0, ζ0) + ε(V1, ζ1) + . . .

Plug the ansatz into the equations and BKW...
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Justification of KdV

Order O(1):

∂tV0 + ∂xζ0 = 0, ∂tζ0 + ∂xV0 = 0.

 ζ0(T, t, x) = ζ+(T, x− t) + ζ−(T, x+ t)
 V0(T, t, x) = ζ+(T, x− t) − ζ−(T, x+ t).

Order O(ε):

∂tζ1 + ∂xV1 = −∂TV0 −
1

2
∂x(ζ0V0) −

1

3
∂3

xV0

= −∂T (ζ+ + ζ−) − 1

2
∂x((ζ

+ + ζ−)(ζ+ − ζ−)) − 1

3
∂3

x(ζ
+ − ζ−)

∂tV1 + ∂xζ1 = . . .
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Justification of KdV

Lemma 1 One has
{

(∂t + ∂x)u = f(x− t) + g(x+ t) + h1(x− t)h2(x+ t)

limt→∞
1
t
u(t) = 0

is equivalent to
{
f = 0

(∂t + ∂x)u = g(x+ t) + h1(x− t)h2(x+ t).
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Justification of KdV

We deduce:
{

(∂t + ∂x)(ζ1 + V1) = L+(ζ−, ∂x)ζ
− + α+ζ+∂xζ

− + β+ζ−∂xζ
+

∂T ζ
+ + 1

3
∂3

xζ
+ + 3

2
ζ+∂xζ

+ = 0

{
(∂t − ∂x)(ζ1 − V1) = L−(ζ+, ∂x)ζ

+ − α−ζ+∂xζ
− + β−ζ−∂xζ

+

∂T ζ
− + 1

3
∂3

xζ
− − 3

2
ζ−∂xζ

− = 0

 Solving KdV gives ζ± and thus (V0, ζ0)
 Solving the above eqs gives (V1, ζ1).
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Justification of KdV

Conclusion:
Step 1. We have constructed an approximate solution with
O(ε2) residual.
Step 2. Energy estimates over times O(1/ε)
 Our approximate solution (V, ζ) gives a O(ε) error term
with respect to the exact solution of the Boussinesq
system.
Step 3. The error with respect to the exact solution of the
water waves equation is O(ε2t) + O(ε) = O(ε).
Step 4. One has (V, ζ) = (V0, ζ0) + ε(V1, ζ1) and the KdV
approximation is (V0, ζ0).
 Under appropriate assumptions, ε(V1, ζ1) = O(ε) and
the precision of KdV is O(ε) (difficulty= secular growth).
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Justification of KdV

Theorem 2 Any family (V ε = ∇ψε, ζε)ε bounded on [0, T
ε
]

solution to the ww equations can be approximated with a
precision O(ε) using the uncoupled KdV approximation.

Remark. For Boussinesq, we had O(ε2t)
 The coupling effects are of order O(ε).

Remark. False on bounded domains.

Remark. Decay assumptions not necessary for Boussinesq.
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Justification of KP

Same method:
Step 1. Expansion of the DN operator (ε = µ << 1, γ =

√
ε).

Step 2. Derivation of a Weakly Transverse Boussinesq
system.
Step 3. Consistency of any family of solution to the ww
equations such that (∂xψ,

√
ε∂yψ, ζ) is bouded over [0, T

ε
].

Step 4. Formally equivalent systems and symetrization.
Step 5. Justification of KP from a weakly transverse
Boussinesq system under additional (restrictive) zero mass
assumptions.
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Existence results

Ovsjannikov, Nalimov,Yosihara...

Theorem 3 (S. Wu JAMS’99, D.L. JAMS ’05) For all
(ζ0, ψ0) such that (ζ0,∇ψ0) ∈ Hs(Rd) (s > s0), there exists
T > 0 and a unique solution (ζ, ψ) to the water-waves
equations on the time interval [0, T ).

Question: How does the existence time T depend on the
parameters ε, µ and γ?

Partial answer (Csq of Craig, Kano-Nishida, Schneider-Wayne):
In 1D, and when ε = µ << 1, then T = O(1/ε).
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Conclusion

Theorem 4 (B. Alvarez, D.L.) For all ζ0,∇ψ0 ∈ Hs, there
exist T > 0 and a unique solution (ζ, ψ) to the water-waves
eqs defined on [0, T

ε
].

Moreover, |ζ|Hs and |∇γψ|Hs remain bounded on [0, T
ε
].

Corollary 1 ε = µ, γ = 1: 2D Boussinesq approx justified.

Corollary 2 ε = µ = γ2: control of ζ, ∂xψ and
√
ε∂yψ.

 Weakly transverse Boussinesq systems justified;
 KP approximation justified.

Similarly: i. ε =
√
µ << 1, γ = 1 Serre.

ii. ε = γ = 1, µ << 1, Saint-Venant (=shallow water eqs).
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Summary

O(  )

Saint−Venant SerreBoussinesq Boussinesq

Free Surface Euler Equations

Korteweg−de Vries

Kadomtsev−Petviashvili

O(   t)ε2

ε

Classes 1 and 2

Small AmplitudeLarge amplitude
Shallow WaterShallow Water Shallow−Water

Medium amplitude

Uncoupled models
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So what?

Dispersion relation:

Water-waves equations
 ω2 = 1√

µ

√
k2 + γ2l2 tanh(

√
µ
√
k2 + γ2l2);

Weakly-transverse Boussinesq systems (µ = ε = γ2):

ω2 = k2 (1 − εak2)(1 − εck2)

(1 + εbk2)(1 + εdk2)
+ εl2

(1 − εgk2)(1 − εfk2)

(1 + εek2)(1 + εdk2)

KP:

ω2 = (k + ε
l2

2k
− k3

6
)2.

 Completely different behaviour, especially for small and
large frequencies!
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Dispersive properties
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Figure 1: Left=δbouss, Right=δkp
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Range of validity of the model

Asymptotically, all the Boussinesq models are equivalent,
and are also equivalent to the KdV approximation
(unbounded domain).

Example: Coastal flows:
i. λ = 100m, h = 10m µ = 0.01.
ii. λ = 80m, h = 30m µ = 0.14.

 Is the asymptotic regime reached with the physical
values of the small parameters?

 Do some Boussinesq models have a wider range of
validity than others?
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Equivalent models?
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Equivalent models?
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Equivalent models?
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Numerical simulation of water-waves

Goal: Develop a general code for the Free Surface Euler
equations and use it to check the range of validity of the
different Boussinesq models.

 No assumption on the physical regime should be made
(eg small amplitude).

 General method for computing the DN operator.
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Numerical computation of the DN

 Method inspired by
K. DOMELEVO, P. OMNES, A finite volume method for the Laplace
equation on almost arbitrarytwo-dimensional grids, M2AN, 39
(2006), no. 6, pp. 1203-1249.

Recall
G[ζ]ψ =

√
1 + |∇ζ|2∂n+Φ|y=ζ(t,x),

where Φ is the periodic solution of period L in x to




4x,yΦ = 0, ∀(x, y) ∈ Ω,

∂n−
Φ|y=b(x) = 0, ∀0 ≤ x ≤ L

Φ(y = ζ(x)) = ψ(x), ∀0 ≤ x ≤ L.
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The mesh
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Numerical computation of the DN

(ΦT ,ΦP ) approximations of Φ on grids T and P .

Approximate gradient:
∇hΦ = ((∇hΦ)1, (∇hΦ)2) approximations of ∇Φ on
diamond grids D1 and D2:

(∇hΦ)i,j,1 =
1

2 |Di,j,1|
( (ΦT

i,j − ΦT
i,j−1)|Ai,j,1|ni,j,1

+(ΦP
i+1,j − ΦP

i,j)|A′
i,j,1|n′

i,j,1);

(∇hΦ)i,j,2 =
1

2 |Di,j,2|
( (ΦT

i,j − ΦT
i−1,j)|Ai,j,2|ni,j,2

+(ΦP
i,j+1 − ΦP

i,j)|A′
i,j,2|n′

i,j,2).
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Numerical computation of the DN

We have constructed:

∇h : (P, T ) → (D1, D2)

Similarly:
divh : (D1, D2) → (P, T )

Thus:
∆h : (P, T ) → (P, T ).

 One can compute G[ζ]ψ.
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Numerical scheme

With U = (ζ, ψ)T , the ww eqs can be written

∂tU + F(U) = 0,

with

F(U) =
(
−G[ζ]ψ, gζ +

1

2
|∇ψ|2 − (G[ζ]ψ + ∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
)T

.

Equivalently:




∂tV + dUF · V = 0

U(t) = U |t=0 +

∫ t

0

V (s)ds

V|t=0 = −F(U|t=0).
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Trigonalized equations

There exists explicit Z(U), v(U) and a(U) such that
W = (V1, V2 − Z(U)V1)

T solves
{
∂tW +M(U)W = 0

W |t=0 = (V1|t=0, V2|t=0 − Z(U)|t=0V1|t=0)
T ,

with

M(U) =

(
∇ · (·v(U)) −G(ζ)·

a(U) v(U) · ∇

)
.
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Splitting the trigonalized system

One has M(U) = M1(U) +M2(U), with

M1(U) :=

(
∇ · (·v(U)) 0

0 v(U) · ∇

)

and

M2(U) :=

(
0 −G[U1]·

a(U) 0

)

 We want to solve ∂tW +Mj(U)W = 0, j = 1, 2.
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Solving ∂tW +M1(U)W = 0

Let S1(t) be the solution operator.
 We seek an an approximation W n,1of S(k/2)W n:

W n,1 = W n +
k

4
M

n+1/2
1 (W n +W ∗) .

with

W ∗ = W n +
k

2
M

n+1/2
1 W n.
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Solving ∂tW +M2(U)W = 0

Let S2(t) be the solution operator.
 W n,2 := S2(k)W

n,1 ∼W ]
|t=k

, with

{
∂tW

] +M
n+1/2
2 W ] = 0,

W ]|t=0 = W n,1

 
W n,2−W n,1

k
+M

n+1/2
2 (θW n,2 + (1 − θ)W n,1) = 0.

Iterative method: W̃ 0 = W n,1 and

W̃ k+1 −W n,1

k
+M

n+1/2
2 (θW̃ k + (1 − θ)W n,1) = 0.

 W n,2 = lim
k→∞

W̃ k.
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Numerical scheme

 Compute by induction V n ∼ V (nk) and Un ∼ U(nk).

As in [Besse-Bruneau], compute Un+1/2 by

Un+1/2 + Un−1/2

2
= Un.

Approximations of Z(U) at time n and n+ 1/2:

Z(Un+1/2) and Zn =
Z(Un+1/2) + Z(Un−1/2)

2
.

Approximation of W at time n:

W n := (V n
1 , V

n
2 − ZnV n

1 )T .
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Numerical scheme

Un+1/2, Z(Un+1/2), Zn, W n.

Approximation of the operator M(U) at time n+ 1/2:

Mn+1/2 :=

(
∇ · (·v(Un+1/2)) −G[ζn+1/2]·

a
n+1/2

v(Un+1/2) · ∇

)

Compute W n+1 = W|(n+1)k
with

{
∂tW +Mn+1/2W = 0

W |t=nk = W n,
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Numerical scheme

Un+1/2, Z(Un+1/2), Zn, W n, W n+1.

Recall that W = P (U)V

 

V n+1 + V n

2
= P (Un+1/2)−1W

n+1 +W n

2
.

Finally

Un+1 = Un + k
V n+1 + V n

2
.
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To do

Boundary value problems;

Models coupling;

Good 2DH numerics;

Layers;

...
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Challenges actuels en mécanique des fluides :
modélisation et analyse

du 23 au 27 Octobre 2006, CIRM, (Marseille)
http://www.cmi.univ-mrs.fr/ fboyer/MECAFLU2006/

Water-Waves

Microfluidics

Fluid mechanics in biology
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