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Nonlinear elastodynamics and phase transitions
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Derivation of the mathematical model 4

• Location of the material particle at time t, which was located initially in
x: y(x, t)

• Velocity v := ∂ty

• Deformation gradient w := ∂x(y − x)

• Internal energy e := e(w, ∂xw) := ē(∂xy, ∂xxy)

Standard choice: e(w, wx) := ε(w) + λ(w)w2
x

2

• Action functional: J(w) :=
∫ T

0

∫
Ω

(
e(w, ∂xw)− v2

2

)
dx dt

• Euler-Lagrange-equations:

∂tv − ∂xΣ(w, ∂xw, ∂xxw) = 0

∂tw − ∂xv = 0

where Σ(w, ∂xw, ∂xxw) := ∂we(w, ∂xw)− ∂x (∂wx
e(w, ∂xw)) .

4P. LeFloch: Hyperbolioc systems of conservation laws, p. 21





• y(x, t) : location of of the material particle at time t, which was located
initially in x.

• Velocity v := ∂ty

• Deformation gradient w := ∂x(y − x)

• Internal energy e := e(w, ∂xw) := ē(∂xy, ∂xxy)

Standard choice: e(w, wx) := ε(w) + λ(w)w2
x

2

• Action functional: J(w) :=
∫ T

0

∫
Ω

(
e(w, ∂xw)− v2

2

)
dx dt

• Euler-Lagrange-equations:

∂tv − ∂xΣ(w, ∂xw, ∂xxw) = 0

∂tw − ∂xv = 0

where Σ(w, ∂xw, ∂xxw) := ∂we(w, ∂xw)− ∂x (∂wx
e(w, ∂xw)) .

• Then we obtain with σ(w) := ε′(w)

∂tv − ∂xσ(w) =

(
λ′(w)

w2
x

2
− (λ(w)wx)x

)
x

∂tw − ∂xv = 0



Change of type

∂tv − ∂xσ(w) =

(
λ′(w)

w2
x

2
− (λ(w)wx)x

)
x

∂tw − ∂xv = 0

Now use

• Velocity v := ∂ty

• Deformation gradient w := ∂x(y − x)

and obtain in the main part

∂tty − ∂xσ(∂xy) = · · ·
∂tty − σ′(∂xy)∂xxy = · · ·



∂tty − ∂xσ(∂xy) = · · ·
∂tty − σ′(∂xy)∂xxy = · · ·

Avoid the elliptic region!



∂tv − ∂xσ(w) =

(
λ′(w)

w2
x

2
− (λ(w)wx)x

)
x

∂tw − ∂xv = 0

Results for this system 5

• Local well-posedness for smooth perturbations of travelling wave profiles.

• Generalization to several space dimensions. 6.

5S. Benzoni-Gavage, R. Danchin, S. Descombes: Well-posedness of one-dimensional Korteweg models, preprint 2004
6S. Benzoni-Gavage, R. Danchin, S. Descombes: On the well-posedness for the Euler-Korteweg model in several space dimensions, preprint

2005



Existence of travelling waves

Consider the special case:

∂tw − ∂xv = 0

∂tv − ∂xσ(w) = ε∂xxw − γε2∂xxxw

v(x, 0) = v0(x), w(x, 0) = w0(x)

Does there exist a solution of the form

wε(x, t) = w̄(
x− st

ε
)

vε(x, t) = v̄(
x− st

ε
)

w̄(∞) = wl, w̄(−∞) = wg

v̄(∞) = vl, v̄(−∞) = vg

such that for ε → 0 : wε(x, t) → w1(x, t), vε(x, t) → v1(x, t)
and w1, v1 is a shock solution of

∂tw − ∂xv = 0

∂tv − ∂xσ(w) = 0

v(x, 0) = v0(x), w(x, 0) = w0(x)



∂tw − ∂xv = 0

∂tv − ∂xσ(w) = ε∂xxw − γε2∂xxxw

v(x, 0) = v0(x), w(x, 0) = w0(x)

Theorem 1 7

• Let γ > 0 and wl, vl be given in the phase l. Then there exists a unique
state wg, vg in the phase g such that the corresponding travelling wave
converges to a shock solution.

• If γ = 0 then there does not exist a state wg, vg in the phase g such that
the corresponding travelling wave converges to a shock solution.

7M. Slemrod: Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Ration. Mech. Anal. 81 (1983), 302-315.



Main problem:

∂tw − ∂xv = 0

∂tv − ∂xσ(w) = ε∂xxw − δ∂xxxw

v(x, 0) = v0(x), w(x, 0) = w0(x)

For the limit ε, δ → 0 the limit will in general depend on δ
ε2 .



Model problem

∂tu
ε + ∂xf(uε) = ε∂xxu

ε + δ∂xxxu
ε, f(u) = u3 (1)

uε(., 0) = u0

Results for the model problem

• If |δ| << ε2 then the limit for ε, δ → 0 is the same as for the viscosity limit
in (??)8.

• If |δ| >> ε2 then there is no convergence to a weak solution of the con-
servation law for ε, δ → 0. 9

• If δ = µε2 then

– For ε > 0 there exists a unique classical solution uε ∈ C2,1(IR× [0, T ]) of
(??) and a weak solution u ∈ L1(IR × [0, T ]) of the limit problem such
that

limε→0||uε − u||L1(IR×[0,T ]) = 010.

– The limit for ε, δ → 0 will depend on µ := δ
ε2 .

8LeFloch: Hyperbolic conservation laws 2002, p. 23
9LeFloch, Archive Rational Mech. Anal. 139, 1997, p.4

10Hayes, LeFloch 1998



∂tu
ε + ∂xf(uε) = ε∂xxu

ε + δ∂xxxu
ε, f(u) = u3 (2)

– If δ = µε2 then

∗ For ε > 0 there exists a unique classical solution uε ∈ C2,1(IR× [0, T ])
of (??) and a weak solution u ∈ L1(IR × [0, T ]) of the limit problem
such that

limε→0||uε − u||L1(IR×[0,T ]) = 011.

∗ The limit for ε, δ → 0 will depend on µ := δ
ε2 .

∗ The limit is a weak solution of ∂tu + ∂xf(u) = 0 which satisfies

∂tU(u) + ∂xF (u) ≤ 0

for a single strictly convex entropy pair (U, F ) (depending on µ) but
in general it will not satisfy the Oleinik entropy condition .

∗ Repeat:

For viscous approximations and convex f the limit satisfies

∂tU(u) + ∂xF (u) ≤ 0

for a all strictly convex entropy pairs (U, F ) and the Oleinik entro-
py condition.

∗ Obtain uniqueness of the limit problem by additional conditions:
Kinetic relation and nucleation criterion. 12

11Hayes, LeFloch 1998
12LeFloch, Archive Rational Mech. Anal. 139, 1997, p.34



∂tw − ∂xv = 0

∂tv − ∂xσ(w) = 0 (3)

v(x, 0) = v0(x), w(x, 0) = w0(x).

∗ Choose initial data in different phases.

∗ Solve with three different numerical schemes, which corresponds
to different choices of ε, δ.



∂tw − ∂xv = 0

∂tv − ∂xσ(w) = ε∂xxw − γε2∂xxxw (4)

v(x, 0) = v0(x), w(x, 0) = w0(x)

∗ Choose initial data in different phases.

∗ Solve with three different numerical schemes, which corresponds
to different choices of ε, δ.

∗ All solutions are weak and entropy solutions of (??).

22 F. Coquel, D. Diehl, C. Merkle, C.Rohde

w is chosen as described later in Sect. 4.2. We use the Lax–Friedrichs scheme
and two schemes which we describe later in this paper (see Remark 4.9). We see
that all the schemes produce different weak solutions. One can check that all of
them are entropy solutions. They differ in different speeds of the phase boundary
and corresponding left and right states satisfying the Rankine–Hugoniot jump
conditions. Therefore, the entropy inequality is obviously not strong enough to
single out a unique weak solution of (4.22).

1

1.2

1.4
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2.2
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x

Lax Friedrichs

Scheme II

τ
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1.8

Figure 10: Nonuniqueness of weak solutions. Different numerical solutions of
(4.22).

The difference of a classical hydrodynamic shock wave and a phase boundary
can be seen when we look at the characteristic curves of the problem. A hydro-
dynamic shock wave is a Lax–shock (Fig. 11(a)): three characteristic curves are
entering into the shock line s = x

t
. For a phase boundary (Fig. 11(b)) only two

characteristic curves enter the shock wave. This kind of shock is called undercom-
pressive.

x

t

s =
x

t

τ
+

τ
−

(a) Lax shock

x

t

s =
x

t

τ
+

τ
−

(b) undercompressive shock

Figure 11: Characteristic curves of the system (4.22) in the classical and under-
compressive case.



Nonlinear elastodynamics and phase transitions in 2D 13

• u(x, t): displacement

• σ(∇u): shear stress

– σ(s) = ∂W
∂γ

– W: nonconvex, two well potential

∗ W (γ) = W0(γ) in the low strain phase, i.e. γ ∈ S0

∗ W (γ) = W1(γ) in the high strain phase, i.e. γ ∈ S1

∗ Wi are convex

∗ Physics: no strains in the nonconvex parts of W

13T.Y. Hou, P. Rosakis, Ph. LeFloch, Merkle





Mathematical model (simplified):

∂2
t u−∇ · σ(∇u) = 0 in Ω− Γt

and jump condition on Γt

Levelset formulation: ∂tφ− V |∇φ| = 0 in Ω

Use φ to meet only the convex parts of W .

W (γ, φ) = W0(γ) + H(φ)(W1(γ)−W0(γ))

Wε(γ, φ) = W0(γ) + Hε(φ)(W1(γ)−W0(γ))

σε =
∂Wε

∂γ

∂2
t u−∇ · σε(∇u, φ) = 0 in Ω

V is given by a kinetic relation (Abeyaratne, Knowles ):

V = g(f, n), f = [|W |] + [|∇u|](σ+ + σ−)



Twinning
Ω
−

t

Ω
+

t

Γt

Boundary:

u(x, y, t) = ky.

g(f,n) = M1f + M2|n1|f

Computation of Dynamical Phase Transition in Solids – p.27



















Ausblick

• Test different kinetic functions

• Non–Isothermal

• Higher Order Scheme, Parallelization, ...

Computation of Dynamical Phase Transition in Solids – p.37



The original system is of the form

∂tw − ∂xv = 0

∂tv − ∂xσ(w) = 0

v(x, 0) = v0(x), w(x, 0) = w0(x). (5)

Question: Do there exist Riemann solvers, for treating

• (??) with non monotone σ

• or Euler equations with van der Waals equation of state 14.

14Merkle PhD thesis 2005



Phase Transitions in Compressible Media

Numerical results I
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Fluids and phase transitions



The physical problem of phase transition

vapour

liquid

ρv

ρ
l

DFG − CNRS



Experiments:

Lauterborn, Göttingen



2nd Experiment (fast time scale): Laser produced bubbles and
bubble shock interaction (B1):

rigid wall

vapor

waterρ
water

waterp        << p
         >>
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vapor
ρ vapor

vapor

Rmax

water

s

DFG − CNRS



Mathematical model for the static case v = 0

Notations

ρ : density of the fluid

v : velocity of the fluid

W (ρ) : free energy density (double well)

E(ρ) : total energy

E(ρ) =

∫
Ω

W (ρ) dx

Constraint :

∫
Ω

ρ dx = M (conservation of mass)



Free energy density 15

W (ρ) p(ρ)2 F. Coquel, D. Diehl, C. Merkle, C.Rohde

ρ

bβ
2

β
1

α
1

α
2

ρ

α
2 bα

1

Figure 1: The lefthand picture shows the graph of a typical free energy density W
in the presence of a liquid and vapour phase for the fluid under consideration. The
density values that belong to convex branches of W are liquid or vapour states,
the others are spinodal. The righthand picture shows a (Van-der-Waals) pressure
function that is related to the energy W and the internal energy w by (1.1).

where w = w(τ) is the given internal energy and τ ∈ (1/b,∞) is the specific vol-
ume. The pressure p = p(ρ) is then defined from the standard thermomechanical
relation

p(ρ) = ρW ′(ρ)−W (ρ) = −w′
(

1

ρ

)

. (1.1)

In the case where phase transitions occur W has a shape as in Fig. 1 and we can
define phases as follows. The fluid phase with density ρ is called

vapour if ρ ∈ (0, α1),

spinodal if ρ ∈ (α1, α2),

liquid if ρ ∈ (α2, b).

The numbers α1, α2 ∈ (0, b) are given as in Fig. 1. The numbers β1 < β2 from
Fig.1 are the unique numbers such that the chord connecting (β1,W (β1)) and
(β2,W (β2)) has the same slope as the tangents of W in β1 and β2. They are
called Maxwell-states.
To capture the dynamics of the fluid correctly we want to use as our basic model
an extension of the compressible isothermal Navier-Stokes equations. More specif-
ically we consider the Navier-Stokes-Korteweg system (NSK-system). It contains
an additional term that takes into account capillarity effects close to phase bound-
aries.
In Sect. 2 we derive two versions of the NSK-system to model capillarity. Starting
from the description of the equilibrium situation there is one version with a clas-
sical third order derivative term and an another new one with a non-local integral

p(ρ) := ρ W ′(ρ)−W (ρ)

15Coquel, Diehl, Merkle, Rohde



Diffusive interface approach

• van der Waals 16 has recognized first the non-uniqueness problem of this
approach.

• He proposed to penalize the occurence of free boundaries between the
phases by ∫

Ω
γε2 |∇ρ|2

2
dx

and to consider

E(ρ) : total energy

E(ρ) =

∫
Ω

(
W (ρ) + γε2 |∇ρ|2

2

)
dx, Ē(ρ) =

∫
Ω

W (ρ) dx

Constraint :

∫
Ω

ρ dx = M (conservation of mass)

(6)

Let ρε be a minimizer of E and ρ0 be a minimizer of Ē, then

lim
ε→0

||ρ0 − ρε||L1 = 0.17

16J.D. van der Waals: Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung. Z. Phys. Chem. 1894.
17L. Modica: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98 (1987)



Mathematical model for the dynamical case ∂tv 6= 0

• Lagrangian: L(ρ, v) := 1
2ρ|v|

2 −W (ρ)− γ
2 |∇ρ|2

• Minimize the action functional:
∫ T

0

∫
IR3 L(ρ(x, t), v(x, t)) dx dt

• Obtain the Euler-Lagrange-equations:

∂tv + v∇v = ∇
(
−W ′(ρ) + γε2∆ρ

)
.

• Using p′(ρ) = ρW ′′(ρ) and conservation of mass we get

∂t(ρv) +∇ · (ρvvt + p(ρ)I) = γε2∇∆vρ18 19

.

• Add some scaled viscosity and obtain

∂tρ +∇ · (ρv) = 0

∂t(ρv) +∇ · (ρvvt + p(ρ))I) = εα∆v + γε2ρ∇∆ρ

18S. Benzoni-Gavage, R. Danchin, S. Descombes: On the well-posedness for the Euler-Korteweg model in several space dimensions, preprint
2005

19J.E. Dunn, J. Serrin: On the thermodynamics of interstitial working. Arch. Ration. Mech. Anal. 88 (1985), 95,133.



Basic model
(Navier-Stokes-Korteweg model, isothermal case):

∂tρ+div(ρ u) = 0

∂t(ρ u) + div(ρ u⊗ u) +∇p(ρ) = µ∆u+ λρ∇∆ρ

p(ρ)

ρρ
1

ρ
2ρ

1

eq ρ
2

eq

Van-der-Waals equation of state (low temperature)

DFG − CNRS



Known results:



Basic model
(Navier-Stokes-Korteweg model, isothermal case):

∂tρ+div(ρ u) = 0

∂t(ρ u) + div(ρ u⊗ u) +∇p(ρ) = µ∆u+ λρ∇∆ρ

p(ρ)

ρρ
1

ρ
2ρ

1

eq ρ
2

eq

Van-der-Waals equation of state (low temperature)

DFG − CNRS

Danchin, Desjardin 20:

– Global existence result for initial data close to stable equilibrium,
d=2,3;

– local in time existence for ρ0 ≥ c > 0.

20R. Danchin, B. Desjardin, : Existence of solutions for compressible fluid models of korteweg type. Annales de l’IHP, Analyse non lineaire,
18,(2001), 97-133.



Numerical scheme

• Lax-Friedrichs scheme for solving

∂tρ +∇ · (ρv) = α∆ρ

∂t(ρv) +∇ · (ρvvt + p(ρ))I) = εα∆v + γε2ρ∇∆ρ

(7)



.

1st Order Schemes in Conservation
Form

Well-Balanced DG-Schemes for the NSK Equations – p.5/8



.

1st Order Schemes in Conservation
Form

Well-Balanced DG-Schemes for the NSK Equations – p.5/8

• But the scheme has poor convergence properties, in particular for sta-
tionary solutions.



.

1st Order Schemes in Conservation
Form

The scheme does not give accurate results nearby the
static equilibrium.

Well-Balanced DG-Schemes for the NSK Equations – p.5/8



.

1st Order Schemes in Conservation
Form

The scheme does not give accurate results nearby the
static equilibrium.

The velocity field inside the interface arises due to the
numerical viscosity in the continuity equation.

ρt + ∇ · (ρu − α∇ρ) = 0, α = O(∆x).

Well-Balanced DG-Schemes for the NSK Equations – p.5/8



∂tρ +∇ · (ρv) = α∆ρ

∂t(ρv) +∇ · (ρvvt + p(ρ))I) = εα∆v + γε2ρ∇∆ρ

(8)

∂tρ +∇ · (ρv − α∇ρ) = 0

α = O(h)

∂t(ρv) +∇ · (ρvvt + p(ρ))I) = εα∆v + γε2ρ∇∆ρ

(9)

.

1st Order Schemes in Conservation
Form

• The scheme converges to the exact solution
• It gives poor results at static equilibrium

• The Energy does not decrease monotonically

Well-Balanced DG-Schemes for the NSK Equations – p.5/8



E(ρ) : total energy

E(ρ) =

∫
Ω

(
W (ρ) + γε2 |∇ρ|2

2

)
dx

Constraint :

∫
Ω

ρ dx = M (conservation of mass)

Euler Lagrange equations : −W ′(ρ) + γε2∆ρ = constant

∂tρ +∇ · (ρv) = α∆ρ

∂t(ρv) +∇ · (ρvvt + p(ρ))I) = εα∆v + γε2ρ∇∆ρ

Euler Lagrange equations : κ(ρ) := −W ′(ρ) + γε2∆ρ = constant

∂tρ +∇ · (ρv) = α∆κ

∂t(ρv) +∇ · ρvvt + ρ∇κ(ρ) = εα∆v

• Well balanced scheme 21: central differences in space, explicit Euler in
time .

21D. Kröner, M.D. Thanh, SINUM 2005, M. Nolte, D. Kröner, Preprint 2005



.

A Well-Balanced 1st Order Scheme in
Non-Conservative Form

Well-Balanced DG-Schemes for the NSK Equations – p.6/8



.

A Well-Balanced 1st Order Scheme in
Non-Conservative Form

Well-Balanced DG-Schemes for the NSK Equations – p.6/8



.

1st Order Schemes in Conservation
Form

Well-Balanced DG-Schemes for the NSK Equations – p.5/8

.

A Well-Balanced 1st Order Scheme in
Non-Conservative Form

• The scheme converges to the exact solution
n L1-error order

100 0.02600

200 0.00888 1.54

400 0.00356 1.31

800 0.00173 1.04

• It is well balanced
• The Energy decreases (mostly) monotonically

Well-Balanced DG-Schemes for the NSK Equations – p.6/8



• Discontinuous Galerkin schemes 22

– 2D triangular nonconform and conform meshes

– adaptive mesh refinement

– conservative and nonconservative schemes

– accuracy in space: 1,2,...,6,...

– implicit and explicit Runge Kutta methods, accuracy in time: 1,...4

22N. Besse, D. Kröner, M2AN 2005



.

Well-Balanced High Order
Discontinuous Galerkin Schemes

Well-Balanced DG-Schemes for the NSK Equations – p.7/8



.

Well-Balanced High Order
Discontinuous Galerkin Schemes

Well-Balanced DG-Schemes for the NSK Equations – p.7/8



merging bubbles

.

Well-Balanced High Order
Discontinuous Galerkin Schemes

Numerical Experiment: Merging Bubbles

• third order Discontinuous Galerkin scheme
• second order implicit Runge-Kutta method
• adaptive refined nonconform triangular mesh

movie: NSK2d Merging Bubbles (ap2).avi

Well-Balanced DG-Schemes for the NSK Equations – p.7/8




