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Multi-scale modeling strategies
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4. Reduced complexity in numerical
methods

• These techniques are used when appropriate effective equations are
not known

• Fast methods resolving all scales (complexity → O(ε-d))
– High order methods reducing number of unknowns
– Traditional multi -scale methods: multi-grid, fast multi-pole (using

special features in operator)
– Can not be used for extreme ε

• Numerical model reduction methods starting with all scales resolved
– Multi-scale finite element methods (MSFEM)
– Wavelet based model reduction
– Can not be used for extreme ε

• Fast methods not resolving all scales (using special features in
solution, i.e. scale separation)



4.1 Traditional numerical multi-scale
methods

• The multigrid methods aims at solving the fully
discretized problem
by reducing the computational complexity over direct
methods for solving linear systems: r=1 in

• A hierarchy of different grids is used in this iterative
method. The different grids focus on different scales.
The analytic properties of the differential equation is
taken advantage of. Smoothing is essential.
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• The analytic properties of the original problem is also important
for the fast multy-pole method (FMM)

• Hierarchical domain decomposition
• Conjugate gradient type of methods



4.2 Numerical model reduction
We will briefly consider two classes of methodologies:

• Standard model reduction of input-output systems as in control
theory

• Model reduction using compression and special basis functions

Remark. The computational cost of using these methods is at
least as large as the solution of the original full system. The gain
comes from the potential of using the same reduced system for
a large set of inputs.



Standard model reduction
Consider the input-output system

The matrix A may be the result of a spatial discretization and the
dimension n is assumed to be much larger than m and p.

Transient and filtered modes are eliminated to produce an
approximation with lower dimensional A. SVD of A is a possible
technique. Different methods are found in the control literature.
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Special basis functions
We will briefly consider two examples: the multi-scale finite element
method (MSFEM) [Hou] and wavelet based homogenization [E.,
Runborg]

In MSFEM the basis functions that are used in the finite element
method are chosen to satisfy the homogeneous form of the original
multi-scale problem.

The wavelets in wavelet based homogenization are used to keep the
reduced operators sparse during the computation. A discretized
differential equation equation in a wavelet basis is reduced by Schur
complement
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5. Heterogeneous multi-scale methods
and analysis

The heterogeneous multi-scale method (HMM) is a framework for
developing and analyzing computational multi-scale models. A macro-scale
method is coupled to a micro-scale method. The micro-scale technique is
only applied in part of the computational domain

The coupling is based on related theory for analysis of effective equations.
The gain in efficiency over applying the micro-scale method everywhere
follows from the application of the micro-scale model only in sampled
domains.



Two basic types of problems for which the
macro-scale model fails

• Type A: Macro-scale model is accurate enough in most of computational
domain Ω1. Micro-scale model used in the complement Ω2. Compare
mesh refinement and heterogeneous domain decomposition.

• Type B: A Macro-scale model is not fully known throughout computational
domain. Sampling the micro-scale

Ω1

Ω2



The HMM framework

• Design macro-scale scheme for the desired variables. The
scheme may not be valid in all of the computational domain
(type A) or components of the scheme may not be known in full
domain (type B).

• Use micro-scale numerical simulations to supply missing data in
macro-scale model



Examples of other “better than O(ε-d)” multi-
scale methods based on sampling

• Quasi continuum method
• Ultra FFTs
• Equation-free computation
• Gas kinetic schemes
• Super-parametrization



The quasi continuum method

• Coupling of molecular dynamics and continuum mechanics for
zero temperature simulations

• Based on the Cauchy-Born rule: “linear displacement of
boundary implies linear displacements of molecular lattice”

• Original paper [Tadmor, Ortiz, Phillips, 1996]
• There exists Type A and Type B versions
• Representative atoms and P1 representation of continuum
• Variational formulation: minimize energy.





Ultra FFTs

• Complexity of computing B largest modes from N data points:
O(BlogN) compare FFT: O(NlogN) and FT: O(N2)

• Random algorithm: accuracy δ with probability 1 - ε
• For given frequency Fourier coefficient computed by MC

• Frequency determined by hierarchical evaluation of L2 norms of
band limited filtered function values. Norm evaluation by MC

• [Gilbert and collaborators]
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Equation free computations
• [Kevrekides and collaborators]
• General procedure: local simulations connected by extrapolations

and interpolations

Gas kinetic schemes
• [Xu and collaborators]
• CFD fluxes computed by kinetic models at computational cell

boundaries.

Superparametrization
• [NCAR group]
• Turbulent vertical convection computed locally (reduced

dimension) and used in global weather simulations



Example (type B problem): a nonlinear conservation law is typically
based on an empirical equation of state,

The macro-scale fluxes may, for example,be computed on the fly
by micro-scale kinetic Monte Carlo or molecular dynamics simulations,
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A generalized Godunov method: Set up approximation by a finite
volume scheme for the effective nonlinear conservation law,

Estimate the flux f by replacing the Riemann solver in the Godunov
scheme by a micro-scale simulation, with appropriate initial and
boundary conditions.
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A generalized Godunov method: Set up approximation by a finite
volume scheme for the effective nonlinear conservation law,

Estimate the flux f by replacing the Riemann solver in the Godunov
scheme by a micro-scale simulation, with appropriate initial and
boundary conditions.
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A generalized Godunov method: Set up approximation by a finite
volume scheme for the effective nonlinear conservation law,

Estimate the flux f by replacing the Riemann solver in the Godunov
scheme by a micro-scale simulation, with appropriate initial and
boundary conditions.
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A generalized Godunov method: Set up approximation by a finite
volume scheme for the effective nonlinear conservation law,

Estimate the flux f by replacing the Riemann solver in the Godunov
scheme by a micro-scale simulation, with appropriate initial and
boundary conditions.
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A generalized Godunov method: Set up approximation by a finite
volume scheme for the effective nonlinear conservation law,

Estimate the flux f by replacing the Riemann solver in the Godunov
scheme by a micro-scale simulation, with appropriate initial and
boundary conditions.
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A generalized Godunov method: Set up approximation by a finite
volume scheme for the effective nonlinear conservation law,

Efficiency follows from minimal use of micro-scale model (small L)
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Carleman equations

Example of a different sampling strategy,

Homogenized equations,
evolution of Young measure
[Tartar]! 
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It is possible to prove weak convergence for particle methods.
Finite difference or finite element methods with phase or dissipative
errors do not converge.

Proof based on small devisors argument. Compare convergence of
quasi Monte Carlo methods.

! 

lim
h"0
(sup#

0<$%$ 

( ((uh
$ ) j & u

$ (x j ))'(x j )dx
j

( = 0

sup* : for aa $ /h



Convergence results

• FVM for hyperbolic and parabolic equations and FEM for elliptic
equations when applied to standard linear homogenization
problems.

• FVM approximating the diffusion equation as by Brownian
motion.

• FDM for selected dynamical systems and stochastic differential
equations. Both dissipative and oscillatory problems.

• Typical error estimate (p order of macro-scale method), e(HMM)
error in data from micro-scale model
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Structure of analysis

Compare Strang’s proof for convergence of FDM approximating
nonlinear hyperbolic PDEs
! 

Macro : FH (UH ,DH (uh )) = 0

Micro : fh (uh ,dh (UH )) = 0
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Example: homogenization of elliptic equation

Assume there exists a homogenized equation (not known)
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Ideally we want a FEM for the homogenized equation
based on the bilinear form

where VH is a standard finite element space (ie. P1, Dirichlet bc.).
With TH the corresponding triangulation of D we have the numerical
approximation
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The HMM strategy is now to approximate the unknown stiffness
matrix ( A(x) is not known) by constrained micro-scale simulations

Where Iδ(xl) is a cube with side length δ centered at xl. Boundary
conditions for micro-scale problem to mach gradient of VH via
Dirichlet, Neumann or periodic conditions.
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An alternative way for the same formulation

The validity of the last step that includes the quadrature is based
on localization and scale separation.
In a Galerkin formulation the following inner product are computed

where boundary conditions for v and w match ∇Φ.
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Convergence results for the elliptic homogenization case with

Let U0 be the analytical homogenized solution and UHMM the
computed HMM-solution. Assume the macro scheme uses Pk

elements and that the quadrature formulas are exact for
polynomials of order 2k-2. Define
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Theorem, Let h→0, a = a(x,x/ε)

The proof is based on the explicit form of the analytic solution [Abdul,
Schwab], [E, Ming, Zhang]
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6. Applications

• Other applications? QC, wavelet reduction, etc
• HMM more of that?
• Do fist stiff ODEs then epitaxial
• Discuss extra variables separately later



6.1 Examples of HMM simulations
• Fluid simulations: [E, Ren], contact line on multiphase fluid solid

interaction. Type A example: Continuum model valid but for contact line
where MD is applied.

• Solid simulation: [E, Li], thermal expansion.Type B example: Micro-
scale MD model needed in full domain of elasticity continuum model.

• Combustion fronts: [Sun, Eq], micro-scale simulation with chemistry to
evaluate macro scale properties at front.

• Stiff dynamical systems: [Sharp, Eq, Tsai]. intervals with short time
steps to evaluate the effective force for macro time steps.

• Epitaxial growth: [Sun, Eq], atomistic kinetic Monte Carlo micro-scale
simulation - diffusion and level-set models for macro-scale.
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6.2 Multi-scale dynamical systems

• Examples: stiff dynamical systems and equations with rapidly
changing coefficients

• Stiff systems
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The Kapitza pendulum, modeled by an equation with rapidly
changing coefficient
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If the pivot is forced to
oscillate rapidly, slow stable
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possible.



Structure of HMM-algorithm for ODEs
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• Initiate micro-scale solver from the available macro-scale
variables (micro-scale states or averages): reconstruction

• Effective 〈 f 〉 value for standard macro-scale solver from
average of standard micro-scale data



Example: sun-earth-moon, Newton’s equations



Remarks

• Averages approximate the following expression

by

• K should satisfy regularity, support and moment conditions
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Standard ODE-HMM

• Macro and micro-scale variables are the same
• Reconstruction and compression are identity maps



The standard HMM as outlined above without reconstruction or
extra variables converges for linear problems with the appropriate
order of accuracy if based on

• Stable and p-th order macro algorithm
• Stable and consistent micro algorithm
• Continuous averaging kernel with positive number of matched

moments

• The efficiency depends on kernel regularity and moment matching
and on the order of micro-scale algorithm.
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Example : the Kapitza pendulum
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= (g + #$1 sin(2%#$1t))sin(")

If the pivot is forced to
oscillate rapidly, slow stable
oscillations around θ =0 are
possible.
Phase matching is important.
Resonance can be controlled
by adding 〈θ 〉 as variable.



Convergence

The micro-scale variables are required to match 〈θ 〉.

Convergence proof following the general HMM outline. The error
e(HMM) is estimated based on an
averaging theorem, [Levi]. Second
order convergence in H for the
mid point rule applied to both micro
and macro scales.
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micro micro

macro step

loss of information

t
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macro scale view - HMM
constrained evolution=implicit step
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micro micro

macro step

t
micro

Implicit reconstruction to match
 predicted 〈θ 〉 based on Newton

 step as in stiff ODE solvers



With a different resonance scenario extra macro-scale variables may
be required. Consider the stiff nonlinear system,

By also tracking 〈 (x1)2 〉 and reinitialize such
that the moment average is consistent,
convergence can be achieved. Emerging
theory based on normal form.
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6.3 . Epitaxial growth

• Part of semiconductor production
• Layer by layer deposition of atoms
• Atoms diffuse on substrate surface, merge and nucleate islands

 



 

(a) Deposition (b) Diffusion (c) Nucleation (d) Attachment
(e) Detachment (f) Edge diffusion (g) Down step diffusion
(h) Nucleation on top of islands (i) Dimer diffusion



HMM strategy

• Macro-scale model: finite difference approximation of diffusion
equation (ρ) coupled to level-set method for interface tracking
(Γ).

• Missing data: velocity model for interface evolution and
boundary conditions at interface.

• Micro-scale model: Kinetic Monte Carlo simulation of atom
dynamics. Potentially based on  density function computations
of transition probabilities.



Masro-scale: diffusion equation and levelset
Interface tracking



Masro-scale: diffusion equation and levelset
Interface tracking - Typa A and B



Micro-scale: atomistic Kinetic
Monte Carlo, Initial and boundary
conditions from macro-scale,
returning front velocity and front
boundary conditions.

Roughness of interface important
for front velocity



Outline of algorithm
1. Macro-scale step

1.1 Update the level-set function
 representing Γ based on velocity
 estimate from earlier micro-step

1.2 Update ρ by implicit finite differences
 and the preconditioned conjugate
 gradient method using new location
 of Γ and Robin boundary condition
 from micro-step

2. Micro-scale step
2.1 Generate initial distribution of atoms using results from step 1
2.2 Perform a number of Kinetic Monte Carlo steps based on empirical or

pre-computed probabilities
2.3 Outer boundary conditions for flux balance given ρ from 1.2
2.4 Estimate velocity of Γ and flux boundary conditions for 1.1 and 1.2



7. Computational issues

• New techniques
• Concurrent or sequential?
• Need for scale separation?
• Top down or bottom up?
• Choice of macro-scale variables



7.1 New techniques

• Reconstruction techniques (from macro states to micro data)
• Boundary conditions for local micro-scale simulations
• Data estimation (from micro data to macro model)

• These techniques are also needed when when a refined simulation is
used to derive fixed effective equations



New techniques - the conservation law problem

• Reconstruction techniques (from macro states to micro data)
• Boundary conditions for local micro-scale simulations
• Data estimation (from micro data to macro model)

• These techniques are also needed when when a refined simulation is
used to derive fixed effective equations



New techniques - the conservation law problem

• Reconstruction techniques (from macro states to micro data)
• Boundary conditions for local micro-scale simulations
• Data estimation (from micro data to macro model)

• These techniques are also needed when when a refined simulation is
used to derive fixed effective equations



New techniques - the conservation law problem

• Reconstruction techniques (from macro states to micro data)
• Boundary conditions for local micro-scale simulations
• Data estimation (from micro data to macro model)

• These techniques are also needed when when a refined simulation is
used to derive fixed effective equations



7.2 Concurrent or sequential?

• In sequential simulations, the micro-scale computations produce
tables for the unknown data ahead of the macro-scale
simulation

• Also called parameter passing or pre-computing
• As described HMM is concurrent. The macro- and micro-scales

are coupled throughout the simulation
• The choice is a matter of computational cost



Example: the calculation of atomistic transition
probabilities in the epitaxial growth application can be
tabulated as a finite number of functions of
temperature. More efficient that concurrent
computations in two dimensional space-time.

Example: in the epitaxial growth computations the
velocity depends on density above and below the
step as well as on temperature and orientation of
step versus the crystal lattice. The sequential method
requires exploration of a four dimensional space
instead of the two dimensional x-t space for
concurrent simulation.



7.3 Need for scale separation?

• HMM for type B problems requires substantial scale separation
to be efficient

• Compare techniques as, for example, multi-grid for which scale
separation not essential

• HMM for type A problems does not require scale separation



7.4 Top down or bottom up

spatial scales

temporal
scales

top down

bottom up

micro

macro



Time (s)

Space (m)
Quantum mechanics

“Schrödinger”

Molecular dynamics
“Newton’s equations”

Kinetic theory
“Boltzmann”

Continuum theory
“Navier-Stokes”

1 Å 1
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Turbulence
models

The challenge of multi-scale computing



Top down or bottom up

spatial scales

temporal
scales

top down

bottom up

micro

macro



• Top down (standard):
– Model based on known physics, created for scales and

variables of interest, unknown quantities measured
– The quantities can also be pre-computed from first

principles: parameter passing or sequential multi-scale
modeling

– HMM

• Bottom up: aims at directly extending the range of a micro-scale
method
– Examples: Car-Parinello, equation free, accelerated

molecular dynamics
– The quasi continuum method can be seen both ways



Pitfalls of bottom up

• Connecting micro-scale modules without macro-scale
understanding
– Example: extrapolation in time or interpolation in space for

the equation free method may lead to instability
– In general, multi-physics couplings may miss the coupling

phenomena. Example interface waves.
• Rescaling introduces scaling error and may miss resonance

phenomena



7.5 Choice of macro-scale variables

• Often macro-scale variables are given by the physical situation.
Example: moments like mass momentum and energy are natural
for a macro-scale model based on kinetic micro-scale simulation.

• Are these variables enough - a basic closure problem.
• Example: consider dynamical systems with highly oscillatory

solution
• The macro-scale variables must allow for micro-scale

reconstruction that is consistent with the macro scale evolution



Conclusions

• Rigorous coupling of macro and micro-scale models are
possible

• With increasing computing power and algorithm improvements
realistic simulations become a reality

• Scale separation or some other form of dimensional reduction is
required
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1. The challenge of multi-scale problems

It is often natural to define scales in a physical process.

Examples of space scales are the size of the airplane, the turbulent eddies
and the distance between the atoms. The time sales vary from the time of
flight to the vibrations of the electrons. Different models are typically derived
independently for the different scales. We will focus on problems where
more than one scale and model is needed and where the micro-scale model
is too computationally costly.



Time (s)

Space (m)
Quantum mechanics

“Schrödinger”

Molecular dynamics
“Newton’s equations”

Kinetic theory
“Boltzmann”

Continuum theory
“Navier-Stokes”

1 Å 1

1

10-15

Turbulence
models



1.1 Computational complexity
• A major reason for deriving effective equations with a narrow

range of scales is the high computational cost of directly solving
multi-scale problems.

• With the largest wavelength = L (the size of the computational
domain) in each direction and the smallest wavelength = ε the
typical number of operations in the solution of a multi-scale
differential equation in d dimensions for a fixed prescribed
accuracy is,

! 

flop =O((N(" /L)(" /L)#1)dr) =O((L /")$ ), $ % d

# unknowns % 2(L /")d [Shannon]



With L=1 we have,

N(ε): number of unknowns per wavelength to achieve a given
accuracy (N(ε)≥2 from Shannon sampling theorem,
N(ε)≈ O(ε-1/2) for standard second order finite difference
methods). N typically scales as O(δ-s), s>0, where δ is the
prescribed accuracy

ε: the shortest wavelength to be approximated
d: number of dimensions
r: exponent for number of flops per unknown in the numerical

method (r=1 for explicit methods and r=3 for Gaussian
elimination of dense matrices)

! 

flop =O((N(")"#1)dr )



Even with the best numerical methods:, r=1, N(ε) bounded,

    and this prohibits numerical simulation based on direct atomistic
models over sizes in the millimeter range or more.

The upper limit for a teraflop computer is thus practically ε=10-4  with
10000 degrees of freedom in each dimension, R3+1.

New approximate effective equations must be derived or the
computation must be reduced to a small sample of the original
domain.

! 

flop =O("#d )



For clarity in the presentation we will mainly consider “two-scale”
problems: a macro-scale in the range of O(1) and a micro-scale
with wave-lengths O(ε) rather than full multi-scale problems.

When there is a continuum of scales we assume they are in the
range O(ε) to O(1).

We will typically be interested in macro-scale variables for which a
higher fidelity of the micro-scale model is needed.



1.2 Two basic types of problems for which
the macro-scale model fails

• Type A: Macro-scale model is accurate enough in most of computational
domain Ω1. Micro-scale model used in the complement Ω2. Compare
mesh refinement and heterogeneous domain decomposition.

• Type B: A Macro-scale model is not fully known throughout computational
domain. Sampling the micro-scale

Ω1

Ω2



2. Modeling strategies

• Modeling: analytical and numerical models
• Analytical models

– Purpose: find equations for appropriate range of scales
– Use science, mathematics and experiments

(Here mainly as background for understanding the numerical
methods.)

• Numerical models
– Purpose: increase computational efficiency and accuracy
– Efficient algorithms and coupling of different models



Let us formally write the original multi-scale differential equation as,

where Fε represents the differential equations with initial and boundary
conditions. Analytically we are interested in finding    and effective
such that,

The topology for the weak or strong convergence will be different for
different cases.

! 

F" (u" ) = 0

! 

lim
"#0

u" = u 

F (u ) = 0
! 

F 

! 

u 



The scales could be given by the geometry or in the differential
equations.  In the Navier-Stokes equation the Reynolds number
guides the nonlinear generation of a wide spectrum of scales. The
Maxwell’s equation is the same on atomistic and galactic scales and
multi-scale effects comes from boundary conditions.

In our analysis we will define the scales more explicitly, for example,
by a scaling law.

The function fε(x) = f(x,x/ε), where f(x,y) is 1-periodic in y, or where
f(x,y)  F(x) as y  0, are said to contain the scales 1 and ε.

The scales are also naturally described by a scale-based transform of
a function as, for example, Fourier or wavelet transforms.



Computational strategies
Let the equation below represent a multi-scale
problem with range of scales O(ε) to O(1)

! 

F" (u
"
) = 0



In the ideal case we can find an analytic model
reduction which produces a model (effective or
homogenized equation) with a narrow range of
scales

! 

F" (u
"
) = 0

! 

F (u ) = 0



This model can then be efficiently numerically
approximated

! 

F" (u
"
) = 0

! 

F (u ) = 0

! 

F 
h
(u 

h
) = 0



If appropriate effective equations are not available
special numerical techniques are needed. With ε
very small direct numerical simulation is too costly
and a numerical model reduction is required

! 

F" (u
"
) = 0

! 

F (u ) = 0

! 

F 
h
(u 

h
) = 0 ! 

F" ,h (u" ,h ) = 0



Standard numerical model reduction starts with
direct numerical simulation model

! 

F" (u
"
) = 0

! 

F (u ) = 0

! 

F 
h
(u 

h
) = 0 ! 

F" ,h (u" ,h ) = 0

! 

˜ F " ,h
( ˜ u " ,h

) = 0



3. Analytic model reduction
• These techniques are often found in the physics, mechanics or in the

classical applied mathematics literature and are commonly seen as part
of these sciences rather than “just” mathematical techniques.

• A goal is to reduce a model with a broad range of scales to one with a
narrow range. Such simpler models or effective equations are typically
easier to analyze and better as basis for numerical simulation.

• Many times the different models for different ranges of scales are
derived independently and the connection between the models
developed later. Rigorous mathematical analysis connecting the
models is often missing.



Examples of analytic techniques

Applied mathematics and mechanics related techniques

• Singular perturbations ()
• Stiff dynamical systems ()
• Homogenization methods ()
• Geometrical optics and geometrical theory of diffraction ()
• Boundary layer theory ()

Examples from theoretical physics

• Renormalization group methods
• Semi classical representation, path integral techniques, Wigner

distributions
• Density function theory



3.1 Classical analytic techniques
We discussed briefly a number of mathematical techniques for
deriving effective equations in 1.3. We will consider four of those in
more detail and they are chosen to give representative examples of
a variety of analytic techniques and will be used in connection to the
numerical techniques later.

3.2  Singular perturbations of differential equations
3.3  Stiff ordinary differential equations
3.4  Homogenization of elliptic differential equations
3.5  Geometrical optics

Remark: Analytical reasoning is often the basis for numerical multi-
scale methods



3.2 Singular perturbations

We will consider examples where the the micro scales are localized - a
type A problem. The purpose is the derivation of the limiting effective
equations and the study of the limiting process.

! 

"#
d
2
u#

dx
2

+ a
du#

dx
+ bu# = f (x) 0 < x <1

u# (0) = uL , u# (1) = uR

#, a, b > 0



The formal limit of this differential equation is of first order and only
requires one boundary condition. In this case we can solve the original
problem to see which boundary condition should be kept

The inhomogeneous part of the solution uih is smooth as ε→0. The
homogenous part uh matches the boundary conditions resulting from uih
with z1 and z2 the roots of the characteristic equation,

! 

u" = uih + uh

uih (x) = exp(#b /a(x #$) f ($)d$ +O(")
0

x

%

uh (x) = A1 exp(z1x) + A2 exp(z2x)

! 

"#z2 + az + b = 0

z
1

= a /(2#) + ((a /(2#))2 " b), z
2

= a /(2#) " ((a /(2#))2 " b),



Recall the form of the homogeneous part,

The coefficients A1 and A2 are determined to match the boundary
conditions

Thus uih is exponentially small in ε away from a boundary layer close
to x=1.

! 

u
h
(x) = A1 exp(z1x) + A2 exp(z2x)

z1 = a /" +O("), z2 = " /a +O("3)

! 

A1 + A2 = "u
ih
(0)

A1 exp(z1) + A2 exp(z2) = "u
ih
(1)

A1 # "uih (1)exp("z1), A2 = "A1



The effective equation is

and uε converges to u point wise in any domain 0≤x≤r<1, with the error
O(ε).

The inner solution and the boundary layer solution can be matched
together to form an approximation for the full interval. This type of
approximation goes under the name of matched asymptotics. One
such example is the tipple deck method in fluid mechanics. Three
approximating layers are matched.

Numerically we can use the reduced equation and a coarse grid for
most of the domain away from x=1. “upwinding” keeps the correct
influence from the boundary

! 

a
du

dx
+ bu = f (x), 0 < x <1

u(0) = uL
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"u

"t
+ u

"u

"x
+ v

"u

"y
+
"p

"x
=
1

R
(
" 2u

"x 2
+
" 2u

"y 2
)

"v

"t
+ u

"v

"x
+ v

"v

"y
+
"p

"y
=
1

R
(
" 2v

"x 2
+
" 2v

"y 2
)

"u

"x
+
"u

"y
= 0, y > 0, #$ < x <$, t > 0,

u(x,y,0), v(x,y,0) given initial values,

u = v = 0, y = 0, #$ < x <$,

Prandtl boundary layer equations
One classical example of an effective boundary layer equation is the
Prandtl equation as a limit of high Reynolds number Navier-Stokes
equations,



The Prandtl assumption is that the inertia terms are balanced by the
viscous terms in the a boundary layer of thickness δ (0<y< δ).
Rescaling the independent variables y/δ → η and using the
divergence free condition,

implies the scaling u=O(1), v=O(δ). Following the tradition we will use
y for the new variable η and study the scaling of the terms in the
original equations.

! 

"

"y
#$%1

"

"&
,
"u

"x
+
"v

"y
= 0



Balancing inertia and viscous terms implies R=O(δ-2).
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"t
+ u
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"x
+ v
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"y
+
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(
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=
1

R
(
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Leading orders of δ in the second equation gives ,

We then get the Prandtl boundary layer equation from the first
equation, ! 

"p

"y
= 0 # p = P(x)

! 

"u

"t
+ u

"u

"x
+ v

"u

"y
+ Px =

" 2u

"y 2

v = #
"u

"x
d$,

0

y

%

u(x,y,0) given initial values

u(x,0,t) = 0, u(x,1,t) =U(x,t)



3.3 Stiff dynamical systems
Analysis of certain types of stiff dynamical systems resembles that of
singular perturbations above. A system of ordinary differential
equations is said to be stiff if the eigenvalues of the matrix A below are
of strongly different magnitude or if the magnitude of the eigenvalues
are large compared to the length of interval of the independent
variable,

! 

du

dt
= Au+ f (t), t > 0, u :R

1
" R

d

u(0) = u
0



The following nonlinear system is stiff for 0 < ε << 1,

If the conditions below are valid it has resemblance to the singular
perturbation case,

! 

du"

dt
= f (u" ,v" ),

dv"

dt
= "#1g(u" ,v" ), t > 0

u" (0) = u
0
, v" (0) = v

0

! 

Re("(
#g

#v$
)) % & < 0, det(

#g

#u$
) ' 0



From

We have the differential algebraic equations (DAE),

The original  functions have an exponential transient of order O(1)
right after t=0 before converging to (u,v). The reduced system
represents the slow manifold of the solutions of the original system.

Compare the Born-Oppenheimer approximation and the numerical
Car-Parinello method.

! 

du"

dt
= f (u" ,v" ),

dv"

dt
= "#1g(u" ,v" )

! 

u" (t)# u(t), v" (t)# v(t), t $ t > 0, as " # 0,

%u

%t
= f (u,v), u(0) = u

0

g(u,v) = 0, defines v



Oscillatory solutions
• For nonlinear problems simple averaging does not work

 <f(u)> ≠ f(<x>).
• Averaging must take resonance into account. This is possible

for polynomial f.
• A typical application is finite temperature molecular dynamics.
• Simple oscillatory example (that we will use later),

! 

du

dt
= "#1v,

dv

dt
= #"#1u,

dw

dt
= u

2
+ v

2
,

u(0) = 0, v(0) =1, w(0) = 0

$ u(t) = sin(t /"), v(t) = cos(t /"), w(t) = t



3.4 Homogenization
Homogenization is an analytic technique that applies to a wide class of
multi-scale differential equations. It is used for analysis and for derivation
of effective equations.
Let us start with the example of a simple two-point boundary value
problem where aε may represent a particular property in a composite
material.

The high frequencies in aε interact with those in        to create low
frequencies.! 

d

dx
(a" (x)

du"

dx
) = f (x), 0 < x <1,

u" (0) = u" (1) = 0

a" (x) = a(x /") > 0

! 

du"

dx



If we assume a(y) to be 1-periodic then a(x/ε) is highly oscillatory with
wave length ε. The oscillations in aε will create oscillations in the solution
uε. The oscillations in aε and uε interact to create low frequencies from
these high frequencies. The effective equations can not simply be derived
by taking the arithmetic average of aε.

This example can be analyzed by explicitly deriving the solution. After
integration of the differential equation we have

! 

a" (x)
du"
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= f (

0

x

# $)d$ + C

u" (x) = (
0

x

# a" ($)%1( f (&)d&
0

$

# + C)d$



The constant C is determined by the boundary conditions,

In this explicit form of the solution it is possible to take the limit as
ε→0.
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Elliptic homogenization problems

For most problems there is no closed form solution and the procedure
in our simple example cannot be followed.

The typical approach in to assume an expansion of the solution in
terms of  a small parameter ε, insert the expansion into the differential
equation and then to find some closure process to achieve the
convergence result and the effective equation.



Assume the matrix a(x,y) to be positive definite and 1-periodic in y,
The function a0(x,y) is also assumed to be positive and 1-periodic in y.
The asymptotic assumption on uε is as follows,

! 

"# $ (a(x,x /%)#u% (x)) + a
0
(x,x /%)u% (x) = f (x), x & '

u% (x) = 0, x & (' boundary of ') R
d

! 

u" (x) = u
0
(x,x /") + "u

1
(x,x /") + "2u

2
(x,x /") + ...

u j (x,y), 1# periodic in y, j =1,2,...



Introduce the variable y=x/ε and equate the different orders of ε. The
equation for the ε-2 terms is

with periodic boundary conditions in y. This implies

The equation for the ε-1 terms gives a representation of u1 in terms of
u. The terms of order O(1), O(ε), etc. couple the unknown terms in the
expansion of uε but the closure assumption that u2(x,y) is 1-periodic in
y generates the effective equation as conditions on u for existence of
u2.

! 

"#ya(x,y)# yu0(x,y) = 0

! 

u
0
(x,y) = u(x)



The effective or homogenized equations take the form,

The function κ is a solution of the cell problem,

! 

"#A(x)#u(x) + a (x)u(x) = f (x)

A : aij (x) =
1

T
(aij

T

$ (x,y) + aik
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)dy
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$ (x,y)dy

! 

"(
#

#yi
aik (x,y))

#$ j

#yk
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#aij (x,y)

#yi

$ periodic bc in y



3.5 Geometrical optics
Geometrical optics equations are effective equations for high
frequency wave propagation. Instead of approximating highly
oscillatory functions geometrical optics gives the phase φ(x,t) and
amplitude A(x,t).

In this case the effective formulation were known long before the wave
equation form.

New variables are introduced and not just the strong or weak limit of
the original dependent variables.



Scalar wave equation

The velocity is denoted by c and the initial values are assumed to be
highly oscillatory such that the following form is appropriate,

! 

"u2(x.t)

"t 2
= c(x)

2
#u(x, t)

u(x,0) = u
0
(x),

"u(x,0)

"t
= u

1
(x)

! 

u(x, t) = exp(i"#(x, t)) A j

"= 0

$

% (x,t)"& j
, " >>1



Insert the expansion into the wave equation and equate the different
orders of ω (=ε-1). The leading equations give the eikonal and transport
equations where there is no ω,

The traditional ray tracing can be seen as the method of
characteristics applied to the eikonal equation,! 

"#

"t
+ c(x)$# = 0, ( % = Euclidean norm)

"A
0
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$# %$A
0

$#
+

c(x)
2&# '

" 2#

"t 2

2c(x)$#
A
0

= 0

! 

dx
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