7. Optimal Design Task

Goal: Find (macroscopic) location of two materials
with maximal torsion stiffness.
Model: AFERM with W"(Dwvy) = g (|Dvy])

for given 0 < pu1 < pup < o0, 0 < © < 1! pug =
Oui+(1-0)us, t1 = \/2>\u1/u2, top1 = ppty defi-
nes gx(t) := ua(t?/2 — X), virtapipat — A(p1 + p2),
ui(t?2/2 = X) for t <ty, t1 <t <tp, tp <t, and

LOT (vy,) = /Q vy, dx + Aug|L2|.

Mathematical Modelling: [Murat-Tartar (1985), Kohn-
Strang (1986), Godman-Kohn-Reyna (1986)]
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Cont. 7. Optimal Design Task Numerical Approximation
of Volume Fraction [French (1990), Kawohl-Stara-
Wittum (1991) C.-Plechac (1997), C.-Bartels]:

D .
o= g’>\(|Du|)% and o, = gS\(|Duh|)|D—ZZ| satisfy

: 1/2
lo = opll2 S min{[|Du — D[ pacqy: ™}

for all FE functions v;, and for standard explicit
residual or averaging error estimator n.

AFERM with A = .08 vields mesh with N = 12089
dof and discrete volume fraction

1
0.9 :
0.8
0.7
0.6
0.5

04

0.3
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Cont. 7. Optimal Design Task EXperimental convergence
rates of a posteriori error bounds for uniform vs. ad-
aptive mesh-refining and reliability-efficiency gap:

100_ T L T L T L T L

—~ "gR (uniform)
O Mgg (uniform)
102 % "AR (un.iform)
i = MaE (uniform)
— "gg (adaptive)
& nR’E (adaptive)
E S | A’R (adaptive)
AN A’E (adaptive)

-3

10 L ool L ool L ool
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8. Micromagnetism [c-praetorius (2003)]

Goal: Compute macroscopic magnetisation vector
without resolving microscopic physics. Minimise

1
E(my) = /Q o(my,) da:—/Qf-mhda:—I—E/Rd |Vu|2dm

over piecewise constant my; : 2 — RY subject to
Imy| < 1 a.e. and with magnetic potential u s.t.

Vu e L2(2)?% and div(—=Vu + my,) = 0 in D'(R?).

Given data are anisotropic energy density with uni-
axis e € R? and

p(x) =1—(z-€)

(e.g. Cobalt) and the exterior applied magnetic
field f. Model based on Landau-Lifshitz [Brown
1963, 1966] with vanishing exchange energy for li-
mit of large and soft magnets by DeSimone (1993).

Elimination of w with Newton potential

o —log|z| for d=2,
G(z) := |33(0,1)|{ 2|24 /(2—d) for d > 2

via uZG*diszzgzl%*mj.
j

1
Penalty term 5/{2 e~ max{0, |my| — 1}%dx
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Cont. 8. Micromagnetism

Discrete macroscopic magnetisation m; and corre-

sponding magnetic potential uy, from AFERM with

easy axis e = (1,0) and applied magnetic field

f = (.5,.5) on adaptive mesh with N = 206 dof
3/2

and e = hT

0.85

i
]
“u
~ IS o
T

ng

10.85

10.8

Sl S S s s s s ] N s
R Y Y Y S Y T R T Y
Sl s s s s s s N N

10.75

10.7

!

& Quasioptimal Approximation of Magnetic Poten-
tial and of D¢(m)—D¢(my,) and Reliability-Efficiency
Gap in A Posteriori Error Control!
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9. Outlook

Open Tasks:

@ (Further) Design and Analysis of Effective Mul-
tilevel Algorithms for (Ry,).

@& Error Analysis of (Ry) for General Non-Convex
Relaxed Problems.

[C.-Dolzmann: An a priori error estimate for fi-
nite element discretizations in nonlinear elasticity
for polyconvex materials under small loads. Numer.
Math. (2003) accepted]

@ Numerical Quasiconvexification (e.g. in Finite
Plasticity).

[Bartels-C.-Hackl-Hoppe: Effective Relaxation for
Microstructure Simulations (2003)],

[Dolzmann: Variational Methods for Crystalline
Microstructure—Analysis and Computation, 2003,
Lecture Notes in Mathematics 1803]
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Cont. 9. Outlook
4 Time-Evolving Microstructures?

Model with non-monotone hyperbolic system: Seek
u(t,:) : Q2 C R* - R™ with
upt = div(o(Du) + v Dug) in Q x (0,T)
subject to the boundary and initial conditions
u =0 ondx(0,T),
u =wug in Q2 x {0},
vg 1N €2 X {O}

@ Strong damping v =1 in [C.-Dolzmann (2004)]
@ No damping v =0

ut

50 60 x/dx

with YM approximation [C.-Rieger (2002)]
@& Propagation of microstructures observed but its
development for smooth I.C. is not.
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