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Overview:

1. Introduction
I Fundamental Scale of the Problem
I Queueing theory models
I Discrete event simulations

2. Adiabatic (quasi-static) models
I validation against χ simulations

3. Advection diffusion equations
I validation against factory data
I validation against χ simulations

4. Factory Master equations for a linear factory
I Moment expansions
I Deriving the state equation from first principles

5. Boundary control of hyperbolic nonlinear wave equations



1) Introduction

Example: Chip production in semiconductor manufacturing.
Factory investment several billions of $$.

Issues:
1.) Hardware: how many machines, topology of production flow
2.) Software: starts policies, dispatch policies, production mix



a) Fundamental Scale of the Problem:

250 production stages
individual wafers or batches of a few wafers go through a machine
cycle time in a machine: from a few minutes to several hours
raw cycle time through the factory: 18 days
actual cycle time through the factory: 40 - 60 days



Stochasticity in the cycle time:

I in the machine - very little

I due to the physical process in the machine - rework -
somewhat significant

I due to operators and operator availability - significant

I due to machine failure - major



b) Queueing theory models:
Each process in a machine is modelled as a queue;
stochastic arrival process into a buffer
stochastic exit process describing the machine and operator unit
Problem:

I Some processes are not modelled well using queueing models
-e.g crowding effect, operator fatigue etc.

I queueing theory not developed for non-stationary behavior



c) Simulation of choice:
Generate a faithful representation of the factory and do simulation
experiments using Discrete Event Simulations, e.g. χ (TU
Eindhoven)
Simulation of production flows with stochastic demand and
stochastic production processes requires Monte Carlo Simulations

It is not scalable.



Intermediate Scale: Fluid Models

Model production flow for each production step as an ODE.
Length of the queue (buffer) in front of the step is the dependent
variable
Outflux - constant mean production rate of the machine for this
step.
Link: Mass conservation:

dx

dt
= influx − outflux

Note: continuum in products.
Problems:

I 250 ODEs to parametrize

I how to model the delay



2) Continuum Models of production flows

Fundamental Idea:
Model high volume, many stages, production via a continuum.
Basic variable:
product density (mass density) ρ(x, t).
x- is the position in the production process, x ∈ [0, 1].- degree of
completion- stage of production
Note: For a re-entrant process a machine corresponds to many
positions x .



Mass conservation and state equations

Quasi-stationary model (adiabatic model): Mass conservation and
state equation

∂ρ

∂t
+

∂F

∂x
= 0

F = ρveq

Typical models for the equilibrium velocity veq (state equation) are

vLW (ρ) = v0(1− ρ

ρc
), (1)

vQ(ρ) =
v0

1 + L(ρ)
Lc

, (2)

veq(ρ) = Φ(L), (3)

with L the total load (Work in progress, WIP) given as

L(ρ) =

∫ 1

0
ρ(x , t)dx . (4)

Φ maybe determined experimentally or theoretically.



Validation through χ-simulations

Simulate a network in χ, consisting of 5 machines, re-entrant with
4 production loops.
Run experiment for different influx levels
Generate average cycle time, average WIP, and average
throughput.
Figure 1 shows resulting state equation.
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Figure: 1. Seven datapoints for a state equation describing the
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Usage:

1. Determine steady state parameters through
inter/extrapolation

2. Use as state equation for transient behavior

Figures 2, 3 show two experiments

1. Transition from a steady state with 75% utilization to 85%
utilization with pull policy

2. Transition from a steady state with 67% utilization to 85%
utilization with push policy
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Notice:
Inverse response in Figures 2 and 3
Due to global velocity model: Increase in influx leads to a change
in total WIP
Result: infinite wave speed and decrease in velocity and hence
decrease of output before the increase arrives at the end of the
factory.
Reality: re-entrant production has this effect but much less
pronounced.



3) Advection diffusion equations

Including variance in stochastic models typically introduces
diffusion. We expect that the basic mass conservation model
becomes

∂ρ

∂t
+ veq

∂ρ

∂x
= D

∂2ρ

∂x2
(5)

veq(t) = Φ(W (ρ(x , t))) (6)

W (t) =

∫ 1

0
ρ(x , t)dx (7)



a) Real Factory Data

Data analysis of sanitized data of a real INTEL factory for about 3
months production.
Details:

I 920 lots

I time log in and out at all machines

I identify 8 approximately equally spaced machines

I Determine time-in at all 8 machines

I interpolate paths

I generate histograms at different times.

I Fit the histograms to the explicit solution of the
advection-diffusion equation by a least square fit for the
diffusion coefficient.
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Figure: 6. Paths of all 920 lots
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Result:
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Figure: 9 WIP profile after a step up in influx, with and without diffusion



b) χ Simulations - Emiel v.d. Rijt

100 identical machines
characterized through mean process time te and squared coefficient
of variation c2

e .
Arrival process: average interarrival time ta and its squared
coefficient of variation c2

a

Goal: Determine the dependence of the WIP profile on the ratios

c2
a

c2
e

and u =
te
ta



Simulations - Wip profiles:
utilization u = 0.75,
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Boundary layer is utilization dependent: u = 0.99
The BL has reduced to one machine.
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PDE model

Consider the steady state of the advection diffusion equation:

ρveq + D
dρ

dx
= λ (8)

with boundary condition ρ(0) e.g. given by

ρ(0) =
1

2
(c2

a + c2
e )

u2

1− u
+ u

The solution to Eq.(8) is

ρ(x) =
λ

veq
+ (ρ0 − λ

veq
)e−

veq
D

x (9)



Notice:
with ρss = λ

veq
, e.g.

ρss = c2
e

u2

1− u
+ u

we get that

I if c2
a > c2

e then ρ′′(x) > 0,

I if c2
a < c2

e then ρ′′(x) < 0,

I utilization dependence:
Scaling argument: D ≈ σ2, σ2 = cv2

eq

limu→1 veq → 0

Hence from e−
veq
D

x the boundary layer ξ becomes ξ ≈ (1− u).



4) Factory Master Equation for Linear Factory from First
Principles

Goal:
Derive Factory Master Equation from ’First Principles’ with
methods from gas-dynamics.
General idea:
Boltzmann equation for the density f (x , y , t) of a particle at
position x with attribute y at time t:

∂t f + ∂x [u(x , y , t)f ] + ∂y (E (x , y , t)f ) = Q[f ] , (10)

∂y (Ef ) models a continuous change in attribute,
Q[f ] models a random and discontinuous change in the attribute
Note that ∫

Q[f ](x , y , t) dy = 0, ∀f . (11)



Define part density ρ(x , t) and flux density F (x , t) by

ρ(x , t) =

∫
f (x , y , t) dy ,

F (x , t) =

∫
u(x , y , t)f (x , y , t) dy

integrating we get the conservation law

∂tρ + ∂xF = 0 .

as the zero order moment equation.
Goal: Determine E and Q from detailed underlying kinetic
behavior and extend to higher moments.



Kinetic density for N particles:

f (x , y , t) =
N∑

n=1

H(t − an)δ(x − ξn(t))δ(y − ηn(t))

f (x , y , t) satisfies the Liouville equation for a single particle density
weakly in x :

∂t f + ∂x [uf ] + ∂y [Ef ] = 0,

Boundary condition:

f (x = 0, y , t) =
N∑

n=1

δ(y − rn)δ(t − aj),

Moment expansion gives the heuristic equation: e.g: assume

f (x , y , t) = ρ(x , t)δ(y − Y (x , t))

gives the conservation law with v(x , t) = u(x , Y (x , t), t).



Deriving the state equation

Assume: M stages,
identify the attributes with velocity i.e.

u(x , y , t) = y

update the velocity every time a particle enters a new stage out of
a probability distribution P(x , z , t) where

f (x , y , t) dxdy = dP{ξ(t) = x , η(t) = y} .

defines a probability density to find a particle at position x with
velocity y.
Boltzmann equation

∂t f + y∂x f = M[P(x , y , t)

∫
zf (x , z , t) dz − yf (x , y , t)] (12)



Asymptotic expansion for many stages M →∞: Chapman-Enskog
expansion

f (x , y , t) = φ(ρ(x , t), y , t) .

i.e. the kinetic density f is a ’shape function’ dependent on space
only through the macroscopic density ρ.
Zero order expansion: continuity equation with a state equation

v(x , t) =
1

ME [τ(x , t)]

E [τ ] denotes the expectation of the cycle time τ under the
probability distribution P .
First order expansion - flux becomes:

F = ρv(1 +
R

M
)− 1

M
vV [

1

y
]∂xρ . (13)

with V [ 1
y ] the variance of the cycle time.



Equation free model - Kevrekidis et al

Microscopic model: Monte Carlo simulation

(a) x(t + ∆t) = x(t) +
∆t

τ(t)
,

τ(t + ∆t) = κ(t)τ(t) + (1− κ(t))τ(t), t ≥ an,

(b) P{κ(t) = 1} = ω∆t, P{κ(t) = 0} = 1− ω∆t,

dP{τ(t) ≤ r} = T (r , t)dr ,

(c) x(an) = 0, dP{τ(an) ≤ r} = T (r , an)dr , (14)

microscopic model simulated for 20 short timesteps δts = 10−3

Extract Euler time step for the macroscopic time evolution of the
density ρ(x , t).
Coarse time step δtc = 0.2



Experiment
Influx:
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5) Open problem: Boundary control of hyperbolic nonlinear
wave equations

Consider adiabatic model:

∂ρ

∂t
+

∂F

∂x
= 0

F = ρveq

Optimal control problem: get from one steady state to another in
fastest time.
Control parameter: influx at one boundary λ(t).
Simplest problem: veq = 1 - linear wave equation.



Solution: Choose λ = λnew .
After t = 1 the transition wave will have moved through the
interval [0, 1] and we have reached the new steady state

How can this be proven in a way that generalizes to
nonlinear and non-local velocities?

Problem: No Pontryagin Maximum principle exists for PDEs.
Attempt: Convert PDE into network of ODEs via semi-discrete
methods
Choose: ∆x = 1

n



Then

ẋ1 = n(λ− x1)

ẋj = n(xj−1 − xj)

with an initial condition x1 = xj = λ1

and a final condition x1 = xj = λnew .
and a cost function C =

∫ t
0 ds

Solution due to Pontryagin’s maximal princple: find minimum of
Hamiltonian

H = 1 ∗ λ(t) + Σjξj(t)xj(t)

with respect to the control parameter. Since H is linear in λ we get
bang-bang -control:
λ switches between a minimal and maximal value.



Two fundamental problems with this approach:

I The intuitive result for the PDE suggests that the optimal
control parameter is λ = λnew .
How does the ODE bang -bang control approach the PDE?
Weak limit?
There should be theory for that but I can’t find any.

I Numerical issues:
Once bang-bang control is established the open problem is to
determine the swtiching manifolds. For n ODEs there will be
n − 1 switches. How to find those?



Current approach:

Linear optimization problem with nonlinear constraints: Define τi

to be the time between two switches.
Find

minΣjτj

subject to the flows φj(t, xj) which are either explictly given (linear
PDE) or numerically calculated.
Works for up to n = 9
not a very good way to numerical check a convergence to a weak
limit.



Conclusions

PDE models of production flows are highly effective simulation
tools. They can be adjusted to the desired level of accuracy and
modeling sophistication. In addition

I they have execution times in seconds

I they can be adjusted to include policies

I they can be adjusted to cover inhomogeneous production lines.

I they allow to simulate transient situations

I they can be linked to generate simulations for the whole
supply chain

I they can be justified (in parts) from first principles



Open Problems

I Find Boltzman equations for queueing networks. Issues:
I Gasdynamics: ergodicity assumption in time and space , i.e.

strong interactions
I Queueing: ergodicity assumption in time and samples, i.e.

weak interactions
I Queueing networks not well understood - only M/M/n queues

lead to good analytical solutions.

I Use the PDE models to solve business problems, i.e.
optimization problems.
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