Quelques exercices

Exercice 1. On considère un espace vectoriel réel E de dimension finie $n \ge 1$. On note $\mathcal{L}(E)$ l'espace vectoriel des endomorphismes de E.

- 1. Si $\{e_1, \ldots, e_n\}$ est une base de E, on définit pour tous i et j dans $\{1, \ldots, n\}$, l'endomorphisme $\mathcal{E}_{i,j} : E \longrightarrow E$ par $\mathcal{E}_{i,j}(e_k) = e_i$ si k = j et $\mathcal{E}_{i,j}(e_k) = 0$ si $k \neq j$. Montrer que $\{\mathcal{E}_{i,j}\}_{1 \leq i,j \leq n}$ est une base de $\mathcal{L}(E)$.
- **2.** Pour tout $u \in \mathcal{L}(E)$, on considère l'application linéaire $L_u : \mathcal{L}(E) \longrightarrow \mathcal{L}(E)$ définie par $L_u(f) = u \circ f$.
 - a. Montrer que pout tout $u \in \mathcal{L}(E)$ et tout polynôme $P \in \mathbb{R}[X]$ on a $L_{P(u)} = P(L_u)$.
 - b. En déduire que si $u \in \mathcal{L}(E)$, alors u et L_u ont le même polynôme minimal.
 - c. En déduire que u est diagonalisable si et seulement si L_u est diagonalisable.
- **3.** Maintenant, pour tout $u \in \mathcal{L}(E)$, on note $\Phi_u : \mathcal{L}(E) \longrightarrow \mathcal{L}(E)$ l'application linéaire définie par $\Phi_u(f) = u \circ f f \circ u$.

On suppose que u est diagonalisable et on note $\{e_1, \ldots, e_n\}$ une base de E qui diagonalise u. On considère alors les endomorphismes $\mathcal{E}_{i,j}$ définis comme à la première question.

- a. Montrer que pour tous i et j dans $\{1,\ldots,n\}$, $\mathcal{E}_{i,j}$ est un vecteur propre de Φ_u (préciser la valeur propre associée).
 - b. Montrer que Φ_u est diagonalisable.

<u>Correction</u>: 1. On considère une famille $(\lambda_{i,j})_{1 \leq i,j \leq n}$ de réels tels que

$$\sum_{1 \leqslant i, j \leqslant n} \lambda_{i,j} \mathcal{E}_{i,j} = 0.$$

Soit $k \in [1, n]$. On a

$$0 = \sum_{1 \le i, j \le n} \lambda_{i,j} \mathcal{E}_{i,j}(e_k) = \sum_{i=1}^n \lambda_{i,k} e_i.$$

Puisque (e_1, \ldots, e_n) est libre, on obtient que $\lambda_{i,k} = 0$ pour tout $i \in [1, n]$. Ceci étant valable pour n'importe quel $k \in [1, n]$, on obtient que tous les coefficients $\lambda_{i,k}$ sont nuls. Cela prouve que la famille $(\mathcal{E}_{i,j})_{1 \leq i,j \leq n}$ est libre. Comme elle contient $n^2 = \dim(L(E))$ éléments, c'est bien une base de L(E).

2. a. Soit $u \in L(E)$. On montre par récurrence sur $k \in \mathbb{N}$ que $L_{u^k} = (L_u)^k$. Pour k = 0 on a

$$L_{u^0} = L_{\mathrm{Id}_E} = \mathrm{Id}_{L(E)} = (L_u)^0,$$

et pour k=1 on a bien $L_{u^1}=L_u=(L_u)^1$. On suppose le résultat acquis jusqu'au rang k-1 (avec $k \ge 2$). Pour $f \in L(E)$ on a

$$L_{u^k}(f) = u^k \circ f = u \circ u^{k-1} \circ f = u \circ (L_u)^{k-1}(f) = L_u((L_u)^{k-1}(f)) = (L_u)^k(f).$$

Ainsi $L_{u^k} = (L_u)^k$. Montrons maintenant que l'application $u \mapsto L_u$ est linéaire. Soient $u, v \in L(E)$ et $\lambda \in \mathbb{R}$. Pour tout $f \in L(E)$ on a alors

$$L_{u+\lambda v}(f) = (u + \lambda v) \circ f = u \circ f + \lambda v \circ f = L_u(f) + \lambda L(v).$$

Cela prouve que $L_{u+\lambda v} = L_u + \lambda L_v$, et donc que L est linéaire. Soit maintenant $P = \sum_{k=0}^{m} a_k X^k \in \mathbb{R}[X]$. On a alors

$$L_{P(u)} = L_{\sum_{k=0}^{m} a_k u^k} = \sum_{k=0}^{m} a_k L_{u^k} = \sum_{k=0}^{m} a_k (L_u)^k = P(L_u).$$

- b. Soit $P \in \mathbb{R}[X]$. On suppose que P(u) = 0. Alors on a $P(L_u) = L_{P(u)} = 0$. Inversement si $P(L_u) = 0$ alors $L_{P(u)} = 0$. En particulier $P(u) \circ \mathrm{Id}_E = 0$ donc P(u) = 0. Ainsi P(u) = 0 si et seulement si $P(L_u) = 0$. Cela prouve que u et L_u ont les mêmes polynômes annulateurs, et donc le même polynôme minimal.
- c. On rappelle qu'un endomorphisme est diagonalisable si et seulement si son polynôme minimal est scindé à racines simples. Puisque u et L_u ont même polynôme minimal, cela implique que u est diagonalisable si et seulement si L_u l'est.
- **3.** a. Pour $l \in [\![1,n]\!]$ on note λ_l la valeur propre de u telle que $u(e_l) = \lambda_l e_l$. Soient $i,j \in [\![1,n]\!]$. Pour $k \in [\![1,n]\!]$ on a

$$\Phi_{u}(\mathcal{E}_{i,j})(e_{k}) = u(\mathcal{E}_{i,j}(e_{k})) - \mathcal{E}_{i,j}(u(e_{k}))$$

$$= u(\delta_{j,k}e_{i}) - \mathcal{E}_{i,j}(\lambda_{k}e_{k})$$

$$= \delta_{j,k}\lambda_{i}e_{i} - \delta_{j,k}\lambda_{k}e_{i}$$

$$= (\lambda_{i} - \lambda_{j})\mathcal{E}_{i,j}(e_{k}).$$

Ceci étant valable pour tout $k \in [1, n]$, cela prouve que $\Phi_u(\mathcal{E}_{i,j}) = (\lambda_i - \lambda_j)\mathcal{E}_{i,j}$. Comme en outre $\mathcal{E}_{i,j} \neq 0$ (puisque $\mathcal{E}_{i,j}(e_j) \neq 0$), on obtient que $\mathcal{E}_{i,j}$ est un vecteur propre pour Φ_u associé à la valeur propre $\lambda_i - \lambda_j$.

b. D'après les questions 1 et 3.a la famille $(\mathcal{E}_{i,j})_{1 \leq i,j \leq n}$ est une base de L(E) constituée de vecteurs propres pour Φ_u , qui est donc diagonalisable.

Commentaires:

- Si E est un espace vectoriel de dimension n, alors L(E) est de dimension n^2 .
- Et la famille $(\mathcal{E}_{i,j})_{1 \leq i,j \leq n}$ contient n^2 éléments...
- Parler de la dimension d'une famille (ou même de l'un de ses éléments) n'a aucun sens.
- Attention, il est certes perturbant de travailler dans un espace d'applications linéaires (et donc avec des applications linéaires dont les arguments sont eux-mêmes des applications linéaires), mais toute la théorie fonctionne de la même façon. Il suffit de faire attention à chaque instant à la nature des objets que l'on manipule. C'était la seule difficulté de cet exercice.
- En particulier, attention aux polynômes d'endomorphismes. Par exemples pour $u, f \in L(E)$ et $P \in \mathbb{R}[X]$ on a en général

$$P(u) \circ f \neq P(u \circ f).$$

Par exemple si $P(X) = X^2$ on a $P(u) \circ f = u^2 \circ f = u \circ u \circ f$ tandis que $P(u \circ f) = (u \circ f)^2 = u \circ f \circ u \circ f$.

• Dans le même genre,

$$L_{P(u)}(f) \neq P \circ u \circ f.$$

Le terme de droite n'a tout simplement aucun sens. La bonne expression est

$$L_{P(u)}(f) = P(u) \circ f.$$

Exercice 2. Soit λ un nombre réel. On note $\mathcal{E} = \mathcal{M}_n(\mathbb{R})$ l'espace vectoriel réel des matrices carrées de taille $n \times n$ à coefficients réels. On considère alors l'application $L : \mathcal{E} \longrightarrow \mathcal{E}$ définie par

$$L(A) = \lambda A + Tr(A)I_n$$

pour tout A dans \mathcal{E} , où I_n désigne la matrice identité de $\mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que L est un endomorphisme de \mathcal{E} .
- **2.** Montrer que les valeurs propres de L sont λ et $\lambda + n$ et déterminer les sous-espaces propres correspondants.
- 3. En déduire que L est diagonalisable et donner son polynôme minimal.
- **4.** Pour quelles valeurs de λ , l'endomorphisme L est-il un automorphisme?