
Optimization of BEM-based Cooling Channels Injection Moulding 
Using Model Reduction

N. Pirc1, F. Schmidt1, M. Mongeau2, F. Bugarin1, F. Chinesta3

1CROMeP - Ecole des Mines d’Albi, Campus Jarlard,8 1013 Albi,cédex 9, France.
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ABSTRACT: Today, around 30% of manufactured plastic goods rely on injection moulding. The cooling
time can represent more than 70% of the injection cycle. In this process, heat transfer during the cooling step
has a great influence both on the quality of the final parts thatare produced, and on the moulding cycle time.
Models based on a full 3D finite element method renders unpractical the use of optimization of the design and
placement of the cooling channel in injection moulds. We have extended the use of boundary element method
(BEM) to this process. We introduce in this paper a practicalmethodology to optimize both the position and
the shape of the cooling channels in injection moulding processes. We couple the direct computation with an
optimization algorithm such as SQP (Sequential Quadratic Programming). First, we propose an implementation
of the model reduction in the BEM solver. This technique permits to reduce considerably the computing time
during the linear system resolution (unsteady case). Secondly, we couple it with an optimization algorithm to
evaluate its potentiality. For example, we can minimize themaximal temperature on the cavity surface subject
to a temperature uniformity constraint. Thirdly, we present encouraging computational results on plastic parts
that show that our optimization methodology is viable.
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1 INTRODUCTION

Numerical simulations for designing injection
moulds have become an important developement in
injection moulding processes. The location of the
cooling channels is a major element in the design of
the mould because the cooling time can represents up
to 70 % of the injection cycle. We need efficient nu-
merical simulations in order to optimize the process
parameters, but models based on full 3D finite ele-
ment method renders unpractical the use of optimiza-
tion for this design and placement of cooling channels
in injection moulds.
In this context, the Dual Reciprocity Method (DRM),
introduced by Brebbia [1], is acknowledged to be one
of the most effective BEM techniques for transform-
ing domain integrals into boundary integrals. More-

over, during the optimization, this method permits to
compute exact gradients, thereby avoiding the N di-
rect computations per optimization iteration that are
needed by finite-difference gradient approximation
(where N is the number of optimization variables).
However, thermal models involved in the numerical
modelling in injection moulding processes a certain
number of numerical difficulties such as size meshing,
long simulations, or the necessity to define a homoge-
nized thermal conductivity. In the first part of this pa-
per, we present the use of boundary element method
(BEM) and DRM applied to unsteady heat transfer
of injection moulds. The BEM software, developed
at the CROMeP laboratory [2], was combined with
an adaptive reduced modelling [3]. This procedure
permits to reduce considerably the computing time
during the linear system resolution in unsteady prob-
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lem. Then, we present a practical methodology to op-
timize both the position and the shape of the cooling
channels in injection moulding processes. We cou-
ple the direct computation with an optimization al-
gorithm such as SQP (Sequential Quadratic Program-
ming) [4].
For the sake of simplicity, we will consider a potential
problem defined in a 2D unbounded domain. The ca-
pabilities of both the reduced order modeling and the
boundary element method will be outlined.

2 BEM AND DRM APPLIED TO POISSON
EQUATION

Using BEM, only the boundary of the domain
has to be meshed and internal points are explicitly
excluded from the solution procedure. An interest-
ing side effect is the considerable reduction in size of
the linear system to be solved [5]. The transient heat
conduction in a homogeneous isotropic bodyΩ is de-
scribed by the diffusion equation [6], wherea is the
material diffusion:

∀M ∈ Ω,
−→
∇2T (M, t) =

1

a

∂(M, t)

∂t
(1)

We define the initial conditions and the boundary con-
ditions as:





T (M, t) = T0 ∀M ∈ ΓP

φ(M, t) = λ.(T − TC) ∀M ∈ ΓC

T (M, t = 0) = T 0(M)
(2)

WhereΓP is the boundary of the polymer and
ΓC the boundary of the channels. The temperature of
the coolant isTC and the heat transfer coefficient,h,
is related to the coolant flow rate (via Colburn cor-
relation). Several strategies are possible to solve such
problems using BEM. Mätzig [7] propose to use space
and time Green’s function. To express the domain in-
tegral in terms of equivalent boundary integrals, we
introduce the DRM approximation [1]. The solution
is defined as a series of particular solutionsT̂k located
in each boundary nodesNn, and each internal nodes
Ni. We obtain Eq (3), explain in detail by Mathey [2]

CiTi − a

∫

Γ

T.q∗dΓ −

∫

Γ

q.T ∗dΓ

=

Nn+Ni∑

k=1

βk

(
CiT̂ik +

∫

Γ

T̂k.q
∗dΓ −

∫

Γ

q̂k.T
∗dΓ

)

(3)

Here,T andq denotes the temperature and the
flux denotes, andCi is equal to 1 since the pointi is
inside the domain and to 0.5 on its regular boundary.
The following Green’s functionT ∗ andq∗ [1] denotes
the fundamental solution of this equation. The vector
β is define such as:

β =
1

a
F−1Ṫ (4)

Matrix F consists of interpolation-function values
f = 1 + r at each point.

3 REDUCED MODELING

Usual reduced models perform the simulation of
some similar problem or the desired one in a short
time interval. From these solutions, the Karhunen-
Loève decomposition [3] can be performed, allowing
to extract the most relevant functions describing the
solution evolution.

3.1 The Karhunen-Lòeve decomposition

We assume that the evolution of a certain
field T (x, t) is known. In practical applications,
this field is defined at the spatial mesh nodesxi

(with i ∈ {1, · · · , N}), and for some timetm =
m.∆t with m ∈ {1, · · · , M}. We introduce the no-
tation Tm(xi) for defining the vector containing the
nodal degrees of freedom (temperatures) at timetm.
The main idea of the Karhunen-Loève (KL) decom-
position tell us how to obtain the most typical or char-
acteristic structureφ(x) among theseTm(x) ∀ M .
This is equivalent to obtaining a functionφ(x) maxi-
mizingα defined as:

α =

∑P

p=1

[∑N

i=1
φ(xi)T

p(xi)
]2

∑N

i=1
(φ(xi))

2
(5)

This leads to:

P∑

p=1

[[
N∑

i=1

φ̃(xi)T
P (xi)

] [
N∑

i=1

φ(xi)T
P (xi)

]]

= α

N∑

i=1

φ̃(xi)φ
P (xi) ∀φ̃ (6)

whereφ̃ denotes the variation ofφ(x) which can be
rewritten under the form:

φ̃
T
k.Φ = αφ̃

T
.φ ∀φ̃

T
⇒ k.φ = α.φ (7)
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We define the matrix Q containing the discrete field
history, and the vectorφ such that its i-component is
φ(xi). This yields to the eigenvalue problemD =

Q.QT :

Q =




T 1
1 T 1

2 · · · T 1
P

T 2
1 T 2

2 · · · T P
1

...
...

. . .
...

T 1
N T 2

N · · · T P
N


 (8)

The functions defining the most characteristic struc-
ture ofT P (x) are the eigenfunctionsφn(x) ≡ φn as-
sociated with the largest eigenvalues.

3.2 A posteriori reduced model

We solve the eigenvalue problem defined by Eq
(7) selecting the eigenfunctionsφn associated with the
eigenvalues belonging to the interval defined by the
largest eigenvalue such asΦn’s sum is upper or equal
to 99.9% ofΦN ’s sum. In practice,n is much lower
thanN . Let us now try to use these n eigenfunctions
φn for approximating the solution. LetB be the fol-
lowing matrix:

B =




φ1(X1) φ2(X1) · · · φn(X1)
φ1(X2) φ2(X2) · · · φn(X2)

...
...

. . .
...

φ1(XN) φ2(XN) · · · φn(XN)


 (9)

We express the linear system of equations resulting
from the semi-implicit thermal-model discretization
as:

Tm+1 =

i=n∑

i=1

ζm+1

i φi = B.ζm+1 (10)

4 MOULD COOLING OPTIMIZATION

Each optimization iteration involves performing
a BEM simulation and computing the objective and
constraint functions. The optimization method allows
updating the cooling channel design parameters (sub-
ject to the constraints) until a minimum of the cost
function is reached [5]. Figure 1 shows the coupling
between the thermal solver and the optimization algo-
rithm.

Figure 1: optimization procedure

The SQP method is designed for mono-
objective optimization [4]. However, pratical opti-
mization problems almost always involves at least
two objective functions. One way to proceed in such a
context is to consider as cost function a weighted sum
of two objectives, but this method involves choosing
a weighting parameter. We rather propose here using
one objective as optimization criterion, and the other
as a non-linear constraint. The first criterion involves
miniming the maximal temperature on the cavity sur-
face. The second criterion aims at improving temper-
ature uniformity. More precisely, we formulate our
problem under the form:

minimizemax
i∈D

(Ti) (11)

subject to
∑

i∈D

|Ti − Tmoy| ≤ σ (12)

where D is the set of discretization elements of the
plastic part where the temperature Ti is measured,
Tmoy is the average of the Ti’s, andσ is a user-defined
temperature uniformity tolerance, fixed here equal to
4.

5 APPLICATION TO TWO-DIMENSIONAL
CASE

It is important to note that using reduced model
to optimize the cooling channel location is possible
since the vectorφn(xN ) does not change when the
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unsteady equation source term changes, i.e. even if
the position of the cooling channels changed.
Optimization variables are the coordinates (Xi, Yi) of
each circle centeri, and the radius of them. This ge-
ometry have 7 channels, thus we have 21 optimization
variables in our problem. The coolant temperature is
fixed asTC = 30◦C. Figure 2 displays the geometry
used to validate our method. Dotted circles show the
initial configuration of the cooling channels, and bold
circles show the optimized position.

Figure 2: Channels configuration before and after optimization

Figure 3: Temperature before and after optimization

On average, one objective function evaluation re-
quires 8 seconds of CPU time on a Macintosh 1.83
GHz Intel Core 2 Duo, and 22 iterations and 534 eval-
uations are necessary to reach convergence.

Table 1: CPU time comparison
Method direct computation optimization
DRM 38.2 seconds 5.6 hours
reduction model 1 second 9.6 minutes

The reduced model permits to divide by more than
40 the CPU of each direct computation, compared to
DRM. We usedn = 17 in our simulations, whereas
N = 288 (nodes number).

6 CONCLUSIONS

Our methodology uses BEM to solve the unsteady
heat transfer equation during the cooling step of the
injection moulding process. Simulation results are
used in an optimization procedure to find the best ge-
ometry and process parameters according to a given
objective function. Reduce model technique involves
a Karhunen-Love decomposition leading to an opti-
mal number of approximation functions, allowing to
considerable CPU time savings (some times in the or-
der of 40). Our preliminary test showed that our ap-
proach is viable for optimizing the design of cooling
channels for injection moulding. Various objective
functions can be provided by the user (either directly
as a cost function or within constraints) . We presently
work on more complex 3D moulds with more general
parameterizations of the cooling channels.
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