

A self-adaptive IMEX splitting capturing the multi-scale waves of compressible low-velocity flows

D. lampietro^{1,2}, F. Daude^{1,5}, J-M. Hérard^{2,3}, P. Galon^{4,5}

¹ERMES, EDF Lab Saclay, France, ²Institut de Mathématiques de Marseille, UMR CNRS 7373, Marseille, France, ³MFEE, EDF Lab Chatou, France, ⁴CEA/DEN/DANS/DM2S/SEMT/DYN Saclay, France ⁵IMSIA, UMR EDF-ENSTA-CNRS-CEA 9219, Saclay, France

1 Low-velocity flows endowed with a stiff equation of state

2 A dynamic Implicit-Explicit scheme

3 Numerical results

D. lampietro A self-adaptive IMEX scheme [2/29]

1 Low-velocity flows endowed with a stiff equation of state

2 A dynamic Implicit-Explicit scheme

3 Numerical results

D. lampietro A self-adaptive IMEX scheme [3/29]

- Liquid water : $p_0 = 3.281$ bar, $T_0 = 23.9$ °C, $u_0 = 0.401 \ m.s^{-1}$.
- At t = 0 valve closure.

edf

• Strong shock/rarefaction waves propagating up and down.

•
$$(p_{\max} - p_0)/p_0 \approx 1.93.$$

edf

D. lampietro A self-adaptive IMEX scheme [4/29]

• $|u_{\rm max}| \approx 0.4 \, m.s^{-1}$.

edf

D. lampietro A self-adaptive IMEX scheme [4/29]

• $|u_{\max}| \approx 0.4 \ m.s^{-1}$.

•
$$M_{\rm max} \approx 3.5 \times 10^{-4}$$
.

edf

D. lampietro

A self-adaptive IMEX scheme [4/29]

Euler system with a passive tracer :

$$\begin{cases} \partial_t \rho &+ \partial_x \left(\rho \, u \right) &= 0, \\ \partial_t \left(\rho Y \right) &+ \partial_x \left(\rho \, Y \, u \right) &= 0, \\ \partial_t \left(\rho u \right) &+ \partial_x \left(\rho \, u^2 + p \right) &= 0, \\ \partial_t \left(\rho e \right) &+ \partial_x \left(\left(\rho \, e + p \right) \, u \right) &= 0. \end{cases} \begin{cases} Y : \text{ passive tracer,} \\ e = \frac{|u|^2}{2} + \varepsilon, \\ \varepsilon = \varepsilon^{EOS} \left(\rho, \, p \right). \end{cases}$$

Stiffened gas equation of state :

$$arepsilon^{EOS}\left(
ho,\ m{p}
ight)=rac{m{p}+\gamma\,P_{\infty}}{\left(\gamma-1
ight)\ m{
ho}}$$

	Left state	Right state
ρ (kg.m ⁻³)	$ ho_{0, L} = ho_0 = 10^3$	$\rho_{0,R} = \rho_0$
u (m.s ⁻¹)	$u_{0, L} = u_0 = 1$	$u_{0,R} = -u_0$
p (bar)	$p_{0, L} = p_0 = 3$	$p_{0,R} = p_0$

Table: Stiffened gas symmetric double shock initial conditions

	Left state	Right state
ρ (kg.m ⁻³)	$ ho_{0, L} = ho_0 = 10^3$	$\rho_{0,R} = \rho_0$
u (m.s ⁻¹)	$u_{0, L} = u_0 = 1$	$u_{0,R} = -u_0$
p (bar)	$p_{0, L} = p_0 = 3$	$p_{0,R} = p_0$

Table: Stiffened gas symmetric double shock initial conditions

Rankine-Hugoniot relations through the 3-shock wave : u^{*} = 0, looking for (p^{*} - p₀)/p₀.

	Left state	Right state
ρ (kg.m ⁻³)	$ ho_{0, L} = ho_0 = 10^3$	$\rho_{0,R} = \rho_0$
u (m.s ⁻¹)	$u_{0, L} = u_0 = 1$	$u_{0,R} = -u_0$
p (bar)	$p_{0, L} = p_0 = 3$	$p_{0,R} = p_0$

Table: Stiffened gas symmetric double shock initial conditions

Rankine-Hugoniot relations through the 3-shock wave : u^{*} = 0, looking for (p^{*} - p₀)/p₀.

•
$$M_0 = u_0/c_0$$
, $c_0 = \sqrt{\frac{\gamma(p_0 + P_\infty)}{\rho_0}}$, $P \equiv p + P_\infty$, $P_0 \equiv p_0 + P_\infty$.

	Left state	Right state
ρ (kg.m ⁻³)	$ ho_{0, L} = ho_0 = 10^3$	$\rho_{0,R} = \rho_0$
u (m.s ⁻¹)	$u_{0, L} = u_0 = 1$	$u_{0,R} = -u_0$
p (bar)	$p_{0, L} = p_0 = 3$	$p_{0,R} = p_0$

Table: Stiffened gas symmetric double shock initial conditions

Rankine-Hugoniot relations through the 3-shock wave : u^{*} = 0, looking for (p^{*} - p₀)/p₀.

•
$$M_0 = u_0/c_0$$
, $c_0 = \sqrt{\frac{\gamma(p_0 + P_\infty)}{\rho_0}}$, $P \equiv p + P_\infty$, $P_0 \equiv p_0 + P_\infty$.

$$\frac{P^* - P_0}{P_0} = M_0 \, \gamma \, \left(\frac{\gamma + 1}{4} \, M_0 + \sqrt{1 + \frac{(\gamma + 1)^2}{16} \, M_0^2} \right).$$

edf

Analytical pressure jump :

$$rac{P^*-P_0}{P_0} = M_0 \, \gamma \, \left(rac{\gamma+1}{4} \, M_0 + \sqrt{1+rac{(\gamma+1)^2}{16} \, M_0^2}
ight).$$

Analytical pressure jump :

$$rac{P^*-P_0}{P_0} = M_0 \, \gamma \, \left(rac{\gamma+1}{4} \, M_0 + \sqrt{1 + rac{(\gamma+1)^2}{16} \, M_0^2}
ight).$$

Ideal gas EOS :
$$P_{\infty} = 0$$

 $p = P$, $p_0 = P_0$.

$$\frac{p^* - p_0}{p_0} = M_0 \times O(1) \text{ w.r.t } M_0.$$

$$\Rightarrow \lim_{M_0 \to 0} \frac{p^* - p_0}{p_0} = 0.$$

Analytical pressure jump :

$$rac{P^*-P_0}{P_0} = M_0 \, \gamma \, \left(rac{\gamma+1}{4} \, M_0 + \sqrt{1 + rac{(\gamma+1)^2}{16} \, M_0^2}
ight).$$

Ideal gas EOS :
$$P_{\infty} = 0$$

 $p = P$, $p_0 = P_0$.

$$\frac{p^* - p_0}{p_0} = M_0 \times O(1) \text{ w.r.t } M_0.$$

$$\Rightarrow \lim_{M_0 \to 0} \frac{p^* - p_0}{p_0} = 0.$$

Stiffened gas EOS : $P_{\infty} \gg 1$ $p \neq P$, $P_0 = p_0 (1 + \alpha)$, $\alpha \equiv P_{\infty}/p_0$. $\frac{p^* - p_0}{p_0} = M_0 (1 + \alpha) \times O(1)$ w.r.t M_0 .

Analytical pressure jump :

$$rac{P^*-P_0}{P_0} = M_0 \, \gamma \, \left(rac{\gamma+1}{4} \, M_0 + \sqrt{1 + rac{(\gamma+1)^2}{16} \, M_0^2}
ight).$$

Ideal gas EOS :
$$P_{\infty} = 0$$

 $p = P$, $p_0 = P_0$.

$$\frac{p^* - p_0}{p_0} = M_0 \times O(1) \text{ w.r.t } M_0.$$

$$\Rightarrow \lim_{M_0 \to 0} \frac{p^* - p_0}{p_0} = 0.$$

Stiffened gas EOS : $P_{\infty} \gg 1$ $p \neq P$, $P_0 = p_0 (1 + \alpha)$, $\alpha \equiv P_{\infty}/p_0$. $\frac{p^* - p_0}{p_0} = M_0 (1 + \alpha) \times O(1)$ w.r.t M_0 . Numerical Application : $\gamma = 7.5$, $\overline{P_{\infty} = 3 \times 10^8}$ (Pa). $\Rightarrow c_0 \approx 1500 \text{ m.s}^{-1}$, $T_0 \approx 22^{\circ}C$. $\Rightarrow M_0 \approx 7 \times 10^{-4}$, $\alpha = 10^3$. $\Rightarrow (p^* - p_0)/p_0 \approx 5.26$.

Derivation of Allievi's model (Allievi, 1902)

Hypothesis :

• Euler system with constant temperature $T_0: p = p^{EOS}(\rho, T_0) = p_0^{EOS}(\rho)$,

$$ho = \left(p_{0}^{ ext{EOS}}
ight)^{-1} (p) =
ho_{0}^{ ext{EOS}} (p), \ 1/c = \sqrt{\left(
ho_{0}^{ ext{EOS}}
ight)^{'} (p)}.$$

Derivation of Allievi's model (Allievi, 1902)

 ${\sf Hypothesis}:$

• Euler system with constant temperature $T_0 : p = p^{\text{EOS}}(\rho, T_0) = p_0^{\text{EOS}}(\rho),$ $\rho = (p_0^{\text{EOS}})^{-1}(p) = \rho_0^{\text{EOS}}(p), 1/c = \sqrt{(\rho_0^{\text{EOS}})'(p)}.$ $\partial_t \rho + \partial_x (\rho u) = 0,$ $\partial_t (\rho u) + \partial_x (\rho u^2 + p) = 0.$

Derivation of Allievi's model (Allievi, 1902)

Hypothesis :

• Euler system with constant temperature $T_0 : p = p^{EOS}(\rho, T_0) = p_0^{EOS}(\rho)$, $\rho = (p_0^{EOS})^{-1}(p) = \rho_0^{EOS}(p), 1/c = \sqrt{(\rho_0^{EOS})'(p)}.$ $\partial_t \rho + u \partial_x \rho + \rho \partial_x u = 0,$ $\rho (\partial_t u + u \partial_x u) + \partial_x p = 0.$

Derivation of Allievi's model (Allievi, 1902)

Hypothesis :

• Euler system with constant temperature $T_0 : p = p^{\text{EOS}}(\rho, T_0) = p_0^{\text{EOS}}(\rho),$ $\rho = (p_0^{\text{EOS}})^{-1}(p) = \rho_0^{\text{EOS}}(p), \ 1/c = \sqrt{(\rho_0^{\text{EOS}})'(p)}.$ $\frac{1}{c^2}(\partial_t p + u \partial_x p) + \rho \partial_x u = 0,$

$$\rho (\partial_t u + u \partial_x u) + \partial_x p = 0.$$

Derivation of Allievi's model (Allievi, 1902)

 ${\sf Hypothesis}:$

- Euler system with constant temperature $T_0 : p = p^{\text{EOS}}(\rho, T_0) = p_0^{\text{EOS}}(\rho),$ $\rho = (p_0^{\text{EOS}})^{-1}(p) = \rho_0^{\text{EOS}}(p), 1/c = \sqrt{(\rho_0^{\text{EOS}})'(p)}.$ $\frac{1}{c^2}(\partial_t p + u \partial_x p) + \rho \partial_x u = 0,$ $\rho(\partial_t u + u \partial_x u) + \partial_x p = 0.$
- Reference scales : l_0 , $\rho_0 \approx 10^3 \text{ kg.m}^{-3}$, $u_0 \approx 1 \text{ m.s}^{-1}$, $c_0 \approx 1.5 \times 10^3 \text{ m.s}^{-1}$, $p_0 = \rho_0 u_0 c_0 \approx 15 \text{ bar}$, $(\rho_0 c_0^2 \approx 22500 \text{ bar}$, unphysical !), $t_0 = l_0/c_0$, $M_0 = u_0/c_0$.

Derivation of Allievi's model (Allievi, 1902)

Hypothesis :

- Euler system with constant temperature $T_0 : p = p^{\text{EOS}}(\rho, T_0) = p_0^{\text{EOS}}(\rho),$ $\rho = (p_0^{\text{EOS}})^{-1}(p) = \rho_0^{\text{EOS}}(p), \ 1/c = \sqrt{(\rho_0^{\text{EOS}})'(p)}.$ $\frac{1}{c^2} (\partial_t p + M_0 u \partial_x p) + \rho \partial_x u = 0,$ $\rho (\partial_t u + M_0 u \partial_x u) + \partial_x p = 0.$
- Reference scales : l_0 , $\rho_0 \approx 10^3 \text{ kg.m}^{-3}$, $u_0 \approx 1 \text{ m.s}^{-1}$, $c_0 \approx 1.5 \times 10^3 \text{ m.s}^{-1}$, $p_0 = \rho_0 u_0 c_0 \approx 15 \text{ bar}$, $(\rho_0 c_0^2 \approx 22500 \text{ bar}$, unphysical !), $t_0 = l_0/c_0$, $M_0 = u_0/c_0$.

Derivation of Allievi's model (Allievi, 1902)

Hypothesis :

- Euler system with constant temperature $T_0 : p = p^{\text{EOS}}(\rho, T_0) = p_0^{\text{EOS}}(\rho),$ $\rho = (p_0^{\text{EOS}})^{-1}(p) = \rho_0^{\text{EOS}}(p), 1/c = \sqrt{(\rho_0^{\text{EOS}})'(p)}.$ $\frac{1}{c^2}(\partial_t p + M_0 u \partial_x p) + \rho \partial_x u = 0,$ $\rho (\partial_t u + M_0 u \partial_x u) + \partial_x p = 0.$
- Reference scales : l_0 , $\rho_0 \approx 10^3 \ kg.m^{-3}$, $u_0 \approx 1 \ m.s^{-1}$, $c_0 \approx 1.5 \times 10^3 \ m.s^{-1}$, $p_0 = \rho_0 \ u_0 \ c_0 \approx 15 \ bar$, $(\rho_0 \ c_0^2 \approx 22500 \ bar$, unphysical !), $t_0 = l_0/c_0$, $M_0 = u_0/c_0$.
- Unsteady compressible low Mach number flows : $M_0 \ll 1 \Rightarrow \rho = \rho_0 + O(M_0), \ c = c_0 + O(M_0).$

Derivation of Allievi's model (Allievi, 1902)

Hypothesis :

- Euler system with constant temperature $T_0: p = p^{\text{EOS}}(\rho, T_0) = p_0^{\text{EOS}}(\rho),$ $\rho = (p_0^{\text{EOS}})^{-1}(\rho) = \rho_0^{\text{EOS}}(\rho), \ 1/c = \sqrt{(\rho_0^{\text{EOS}})'(\rho)}.$ $\frac{1}{c_0^2}(\partial_t \rho + M_0 u \partial_x \rho) + \rho_0 \partial_x u = O(M_0),$ $\rho_0(\partial_t u + M_0 u \partial_x u) + \partial_x \rho = O(M_0).$
- Reference scales : l_0 , $\rho_0 \approx 10^3 kg.m^{-3}$, $u_0 \approx 1 m.s^{-1}$, $c_0 \approx 1.5 \times 10^3 m.s^{-1}$, $p_0 = \rho_0 u_0 c_0 \approx 15$ bar, ($\rho_0 c_0^2 \approx 22500$ bar, unphysical !), $t_0 = l_0/c_0$, $M_0 = u_0/c_0$.
- Unsteady compressible low Mach number flows : $M_0 \ll 1 \Rightarrow \rho = \rho_0 + O(M_0), \ c = c_0 + O(M_0).$

Derivation of Allievi's model (Allievi, 1902)

Hypothesis :

• Euler system with constant temperature $T_0: p = p^{\text{EOS}}(\rho, T_0) = p_0^{\text{EOS}}(\rho),$ $\rho = (p_0^{\text{EOS}})^{-1}(p) = \rho_0^{\text{EOS}}(p), \ 1/c = \sqrt{(\rho_0^{\text{EOS}})'(p)}.$

Allievi's model :
$$\begin{cases} \frac{1}{c_0^2} \partial_t p + \rho_0 \, \partial_x \, u = 0, \\ \rho_0 \, \partial_t \, u + \partial_x \, p = 0. \end{cases}$$

- Reference scales : l_0 , $\rho_0 \approx 10^3 kg.m^{-3}$, $u_0 \approx 1 m.s^{-1}$, $c_0 \approx 1.5 \times 10^3 m.s^{-1}$, $p_0 = \rho_0 u_0 c_0 \approx 15$ bar, ($\rho_0 c_0^2 \approx 22500$ bar, unphysical !), $t_0 = l_0/c_0$, $M_0 = u_0/c_0$.
- Unsteady compressible low Mach number flows : $M_0 \ll 1 \Rightarrow \rho = \rho_0 + O(M_0), \ c = c_0 + O(M_0).$
- Eigenvalues and jump relations : $\lambda_0^{\pm} = \pm c_0$.

• edf

 $[p] = \pm \rho_0 c_0 [u]$ (Joukowski, 1898).

Main objectives

Identification of three different regimes :

(1) $M_0 \approx 1$: fully compressible unsteady flows.

Main objectives

Identification of three different regimes :

- (1) $M_0 \approx 1$: fully compressible unsteady flows.
- (11) $M_0 \ll 1$ and $\rho_0 \approx 1 \ kg.m^{-3}$ (gas, $P_{\infty} = 0$), $c_0 \approx 3 \times 10^2 \ m.s^{-1}$, $p_0 = \rho_0 \ c_0^2$, $t_0 = l_0/u_0$: low Mach number flows asymptotically consistent with the classical Euler incompressible system.

Identification of three different regimes :

(1) $M_0 \approx 1$: fully compressible unsteady flows.

- (11) $M_0 \ll 1$ and $\rho_0 \approx 1 \ kg.m^{-3}$ (gas, $P_{\infty} = 0$), $c_0 \approx 3 \times 10^2 \ m.s^{-1}$, $p_0 = \rho_0 \ c_0^2$, $t_0 = l_0/u_0$: low Mach number flows asymptotically consistent with the classical Euler incompressible system.
- (III) $M_0 \ll 1$ and $\rho_0 \approx 10^3 \ kg.m^{-3}$ (water, $P_{\infty} \gg 1$), $c_0 \approx 1.5 \times 10^3 \ m.s^{-1}$, $p_0 = \rho_0 \ u_0 \ c_0$, $t_0 = l_0/c_0$:

low velocity compressible flows asymptotically consistent with the Allievi's model.

Identification of three different regimes :

(1) $M_0 \approx 1$: fully compressible unsteady flows.

(11) $M_0 \ll 1$ and $\rho_0 \approx 1 \ kg.m^{-3}$ (gas, $P_{\infty} = 0$), $c_0 \approx 3 \times 10^2 \ m.s^{-1}$, $p_0 = \rho_0 \ c_0^2$, $t_0 = l_0/u_0$: low Mach number flows asymptotically consistent with the classical Euler incompressible system.

(III)
$$M_0 \ll 1$$
 and $\rho_0 \approx 10^3 \ kg.m^{-3}$ (water, $P_{\infty} \gg 1$), $c_0 \approx 1.5 \times 10^3 \ m.s^{-1}$,
 $p_0 = \rho_0 \ u_0 \ c_0$, $t_0 = l_0/c_0$:

low velocity compressible flows asymptotically consistent with the Allievi's model.

Question :

How to derive a numerical scheme able to be accurate on the different multi-scale waves when the flow goes through the regimes (I) and (III)?

1 Low-velocity flows endowed with a stiff equation of state

2 A dynamic Implicit-Explicit scheme

3 Numerical results

D. lampietro A self-adaptive IMEX scheme [10/29]

$$\begin{aligned} &\partial_t \rho & +\partial_x \left(\rho \, u \right) & = 0, \\ &\partial_t \left(\rho Y \right) & +\partial_x \left(\rho \, Y \, u \right) & = 0, \\ &\partial_t \left(\rho u \right) & +\partial_x \left(\rho \, u^2 + p \right) & = 0, \\ &\partial_t \left(\rho e \right) & +\partial_x \left(\left(\rho \, e + p \right) u \right) & = 0. \end{aligned}$$

$$\partial_t \rho + \partial_x (\rho u) = 0,$$

$$\partial_t (\rho X) + \partial_t (\rho X u) = 0,$$

$$\partial_t (\rho Y) + \partial_x (\rho Y u) \equiv 0,$$

 $\partial_t (\rho u) + \partial_x (\rho u^2 + p) = 0,$

$$\partial_t (\rho e) + \partial_x ((\rho e + p) u) = 0.$$

• Introduce : $\mathscr{E}_0^2(t) \in]0,1]$, $\mathbf{U} = [\rho, \rho \mathbf{Y}, \rho \mathbf{u}, \rho \mathbf{e}]^T$.

$$\begin{aligned} \partial_t \rho &+ \partial_x \left(\rho \, u \right) &= 0, \\ \partial_t \left(\rho Y \right) &+ \partial_x \left(\rho \, Y \, u \right) &= 0, \\ \partial_t \left(\rho u \right) &+ \partial_x \left(\rho \, u^2 + \mathscr{E}_0^2(t) \, p \right) &+ \left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \, p \right) &= 0, \\ \partial_t \left(\rho e \right) &+ \partial_x \left(\left(\rho \, e + \mathscr{E}_0^2(t) \, p \right) \, u \right) &+ \left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \left(p \, u \right) &= 0. \end{aligned}$$

• Introduce : $\mathscr{E}_0^2(t) \in]0,1]$, $\mathbf{U} = [\rho, \rho \mathbf{Y}, \rho \mathbf{u}, \rho \mathbf{e}]^T$.

$$\begin{aligned} \partial_{t} \rho &+ \partial_{x} (\rho u) &= 0, \\ \partial_{t} (\rho Y) &+ \partial_{x} (\rho Y u) &= 0, \\ \partial_{t} (\rho u) &+ \partial_{x} (\rho u^{2} + \mathscr{E}_{0}^{2}(t) p) &+ ((1 - \mathscr{E}_{0}^{2}(t)) \partial_{x} p &= 0, \\ \partial_{t} (\rho e) &+ \underbrace{\partial_{x} ((\rho e + \mathscr{E}_{0}^{2}(t) p) u)}_{C} &+ \underbrace{((1 - \mathscr{E}_{0}^{2}(t)) \partial_{x} (p u)}_{A} &= 0. \end{aligned}$$

- Introduce : $\mathscr{E}_0^2(t) \in]0,1]$, $\mathbf{U} = [\rho, \rho \mathbf{Y}, \rho \mathbf{u}, \rho \mathbf{e}]^T$.
- Convective subsystem : C. Acoustic subsystem A.

$$\begin{aligned} \partial_t \rho &+ \partial_x (\rho u) &= 0, \\ \partial_t (\rho Y) &+ \partial_x (\rho Y u) &= 0, \\ \partial_t (\rho u) &+ \partial_x (\rho u^2 + \mathcal{E}_0^2(t) p) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x p) &= 0, \\ \partial_t (\rho e) &+ \underbrace{\partial_x ((\rho e + \mathcal{E}_0^2(t) p) u)}_{\mathcal{C}} &+ \underbrace{((1 - \mathcal{E}_0^2(t)) \partial_x (p u)}_{\mathcal{A}} &= 0. \end{aligned}$$

- Introduce : $\mathscr{E}_0^2(t) \in]0,1]$, $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$.
- Convective subsystem : C. Acoustic subsystem A.
- Resolution based on the \mathcal{C}/\mathcal{A} operator splitting :

1.
$$\partial_t \mathbf{U} + \mathcal{C} = \mathbf{0} \quad (t^n \to t^{n+}).$$

2. $\partial_t \mathbf{U} + \mathcal{A} = \mathbf{0} \quad (t^{n+} \to t^{n+1}).$

$$\begin{aligned} \partial_t \rho &+ \partial_x (\rho u) &= 0, \\ \partial_t (\rho Y) &+ \partial_x (\rho Y u) &= 0, \\ \partial_t (\rho u) &+ \partial_x (\rho u^2 + \mathcal{E}_0^2(t) p) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x p) &= 0, \\ \partial_t (\rho e) &+ \underbrace{\partial_x ((\rho e + \mathcal{E}_0^2(t) p) u)}_{\mathcal{C}} &+ \underbrace{((1 - \mathcal{E}_0^2(t)) \partial_x (p u)}_{\mathcal{A}} &= 0. \end{aligned}$$

- Introduce : $\mathscr{E}_0^2(t) \in]0,1]$, $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$.
- Convective subsystem : C. Acoustic subsystem A.
- Resolution based on the \mathcal{C}/\mathcal{A} operator splitting :

1.
$$\partial_t \mathbf{U} + \mathcal{C} = \mathbf{0} \quad (t^n \to t^{n+}).$$

2. $\partial_t \mathbf{U} + \mathcal{A} = \mathbf{0} \quad (t^{n+} \to t^{n+1}).$

• Time-dynamic evolution :

•
$$\mathscr{E}_0^2(t) \to 1.$$

edf
$$\partial_t \rho \qquad +\partial_x \left(\rho \, u \right) \qquad = 0$$

$$\partial_t (\rho Y) + \partial_x (\rho Y u) = 0$$

$$\frac{\partial_t (\rho u)}{\partial_t (\rho e)} + \frac{\partial_x (\rho u^2 + \rho)}{\partial_t (\rho e)} + \frac{\partial_x ((\rho e + \rho) u)}{\partial_t (\rho e)} + \frac{\partial_x ((\rho e + \rho) u)}{\partial_t (\rho e)} + \frac{\partial_x (\rho e)}{\partial_t (\rho e)} = 0$$

- Introduce : $\mathscr{E}_0^2(t) \in]0,1]$, $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$.
- Convective subsystem : C. Acoustic subsystem A.
- Resolution based on the \mathcal{C}/\mathcal{A} operator splitting :

1.
$$\partial_t \mathbf{U} + \mathcal{C} = \mathbf{0} \quad (t^n \to t^{n+}).$$

2. $\partial_t \mathbf{U} + \mathcal{A} = \mathbf{0} \quad (t^{n+} \to t^{n+1})$

- Time-dynamic evolution :
 - $\mathscr{E}_0^2(t) \to 1.$

Pedf

$$\begin{aligned} \partial_t \rho &+ \partial_x (\rho u) &= 0, \\ \partial_t (\rho Y) &+ \partial_x (\rho Y u) &= 0, \\ \partial_t (\rho u) &+ \partial_x (\rho u^2 + \mathcal{E}_0^2(t) p) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x p) &= 0, \\ \partial_t (\rho e) &+ \underbrace{\partial_x ((\rho e + \mathcal{E}_0^2(t) p) u)}_{\mathcal{C}} &+ \underbrace{((1 - \mathcal{E}_0^2(t)) \partial_x (p u)}_{\mathcal{A}} &= 0. \end{aligned}$$

- Introduce : $\mathscr{E}_0^2(t) \in]0,1]$, $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$.
- Convective subsystem : C. Acoustic subsystem A.
- Resolution based on the \mathcal{C}/\mathcal{A} operator splitting :

1.
$$\partial_t \mathbf{U} + \mathcal{C} = \mathbf{0} \quad (t^n \to t^{n+}).$$

2. $\partial_t \mathbf{U} + \mathcal{A} = \mathbf{0} \quad (t^{n+} \to t^{n+1}).$

• Time-dynamic evolution :

•
$$\mathscr{E}_0^2(t) \to 1.$$

edf

$$\begin{aligned} \partial_t \rho &+ \partial_x (\rho u) &= 0, \\ \partial_t (\rho Y) &+ \partial_x (\rho Y u) &= 0, \\ \partial_t (\rho u) &+ \partial_x (\rho u^2 + \mathcal{E}_0^2(t) p) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x p) &= 0, \\ \partial_t (\rho e) &+ \underbrace{\partial_x ((\rho e + \mathcal{E}_0^2(t) p) u)}_{\mathcal{C}} &+ \underbrace{((1 - \mathcal{E}_0^2(t)) \partial_x (p u)}_{\mathcal{A}} &= 0. \end{aligned}$$

- Introduce : $\mathscr{E}_0^2(t) \in]0,1]$, $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$.
- Convective subsystem : C. Acoustic subsystem A.
- Resolution based on the \mathcal{C}/\mathcal{A} operator splitting :

1.
$$\partial_t \mathbf{U} + \mathcal{C} = \mathbf{0} \quad (t^n \to t^{n+}).$$

2. $\partial_t \mathbf{U} + \mathcal{A} = \mathbf{0} \quad (t^{n+} \to t^{n+1}).$

• Time-dynamic evolution :

•
$$\mathscr{E}_0^2(t) \to 1.$$

• $\mathscr{E}_0^2(t) \to 0^+.$

edf

$$\begin{aligned} \partial_t \rho &+ \partial_x \left(\rho \, u \right) &= 0, \\ \partial_t \left(\rho Y \right) &+ \partial_x \left(\rho \, Y \, u \right) &= 0, \\ \partial_t \left(\rho u \right) &+ \partial_x \left(\rho \, u^2 \right) &+ \partial_x \, p &= 0, \\ \partial_t \left(\rho e \right) &+ \underbrace{\partial_x \left(\rho \, e \, u \right)}_C &+ \underbrace{\partial_x \left(p \, u \right)}_A &= 0. \end{aligned}$$

- Introduce : $\mathscr{E}_0^2(t) \in]0,1]$, $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$.
- Convective subsystem : C. Acoustic subsystem A.
- Resolution based on the \mathcal{C}/\mathcal{A} operator splitting :

1.
$$\partial_t \mathbf{U} + \mathcal{C} = \mathbf{0} \quad (t^n \to t^{n+}).$$

2. $\partial_t \mathbf{U} + \mathcal{A} = \mathbf{0} \quad (t^{n+} \to t^{n+1})$

• Time-dynamic evolution :

•
$$\mathscr{E}_0^2(t) \to 1.$$

• $\mathscr{E}_0^2(t) \to 0^+.$

$$\begin{aligned} \partial_t \rho &+ \partial_x \left(\rho \, u \right) &= 0, \\ \partial_t \left(\rho \, Y \right) &+ \partial_x \left(\rho \, Y \, u \right) &= 0, \end{aligned}$$

$$\partial_t (\rho u) + \partial_x (\rho u^2 + \mathcal{E}_0^2(t) \rho) = 0,$$

$$\partial_t (\rho e) + \underbrace{\partial_x ((\rho e + \mathcal{E}_0^2(t) \rho) u)}_{\mathcal{C}} = 0.$$

•
$$\rho c_{\mathcal{C}}^2 (\rho, p) = \left(\partial_{\rho} \varepsilon_{|\rho}\right)^{-1} \left(\mathscr{E}_0^2 \frac{\rho}{\rho} - \rho \partial_{\rho} \varepsilon_{|\rho}\right)$$
 convective sound speed

$$\partial_t \rho \qquad +\partial_x \left(\rho \, u \right) \qquad = 0,$$

$$\partial_t (\rho Y) + \partial_x (\rho Y u) = 0,$$

$$\partial_t (\rho u) + \partial_x (\rho u^2 + \mathcal{E}_0^2(t) p) = 0,$$

$$\partial_t (\rho e) + \underbrace{\partial_x ((\rho e + \mathcal{E}_0^2(t) \rho) u)}_{\mathcal{C}} = 0.$$

•
$$\rho c_{\mathcal{C}}^2(\rho, p) = \left(\partial_{\rho} \varepsilon_{|\rho}\right)^{-1} \left(\mathscr{E}_0^2 \frac{\rho}{\rho} - \rho \partial_{\rho} \varepsilon_{|\rho}\right)$$
 convective sound speed

•
$$\rho c^{2}(\rho, p) = (\partial_{\rho} \varepsilon_{|\rho})^{-1} \left(\frac{\rho}{\rho} - \rho \partial_{\rho} \varepsilon_{|p}\right)$$
 Euler sound speed

$$\partial_t \rho \qquad +\partial_x \left(\rho \, u \right) \qquad = 0,$$

$$\partial_t (\rho Y) + \partial_x (\rho Y u) = 0,$$

$$\partial_t (\rho u) + \partial_x (\rho u^2 + \mathcal{E}_0^2(t) p) = 0,$$

$$\partial_t (\rho e) + \underbrace{\partial_x ((\rho e + \mathscr{E}_0^2(t) p) u)}_{\mathcal{C}} = 0.$$

Hyperbolicity & Eigenvalues :

•
$$\rho c_{\mathcal{C}}^2 (\rho, p) = \left(\partial_{\rho} \varepsilon_{|\rho}\right)^{-1} \left(\mathscr{E}_0^2 \frac{p}{\rho} - \rho \partial_{\rho} \varepsilon_{|\rho}\right)$$
 convective sound speed

•
$$\rho c^{2}(\rho, p) = (\partial_{\rho} \varepsilon_{|\rho})^{-1} \left(\frac{\rho}{\rho} - \rho \partial_{\rho} \varepsilon_{|\rho}\right)$$
 Euler sound speed

• Stiffened gas thermodynamics : $c_{\mathcal{C}}^2 > 0$, and \mathcal{C} is strictly hyperbolic.

$$\partial_t \rho \qquad +\partial_x \left(\rho \, u \right) \qquad = 0,$$

$$\partial_t (\rho Y) + \partial_x (\rho Y u) = 0,$$

$$\partial_t (\rho u) + \partial_x (\rho u^2 + \mathcal{E}_0^2(t) p) = 0,$$

$$\partial_t (\rho e) + \underbrace{\partial_x ((\rho e + \mathscr{E}_0^2(t) p) u)}_{\mathcal{C}} = 0.$$

•
$$\rho c_{\mathcal{C}}^2 (\rho, p) = (\partial_{\rho} \varepsilon_{|\rho})^{-1} \left(\mathscr{E}_0^2 \frac{\rho}{\rho} - \rho \partial_{\rho} \varepsilon_{|\rho} \right)$$
 convective sound speed

•
$$\rho c^{2}(\rho, p) = (\partial_{\rho} \varepsilon_{|\rho})^{-1} \left(\frac{\rho}{\rho} - \rho \partial_{\rho} \varepsilon_{|\rho}\right)$$
 Euler sound speed

- Stiffened gas thermodynamics : $c_{\mathcal{C}}^2 > 0$, and \mathcal{C} is strictly hyperbolic.
- Eigenvalues : $\lambda_1^{\mathcal{C}} = u \mathscr{E}_0 c_{\mathcal{C}} \le \lambda_{2,3}^{\mathcal{C}} = u \le \lambda_4^{\mathcal{C}} = u + \mathscr{E}_0 c_{\mathcal{C}}$,

$$\partial_t \rho \qquad +\partial_x \left(\rho \, u \right) \qquad = 0,$$

$$\partial_t (\rho Y) + \partial_x (\rho Y u) = 0,$$

$$\partial_t (\rho u) + \partial_x (\rho u^2 + \mathcal{E}_0^2(t) p) = 0,$$

$$\partial_t (\rho e) + \underbrace{\partial_x ((\rho e + \mathcal{E}_0^2(t) p) u)}_{\mathcal{C}} = 0.$$

Hyperbolicity & Eigenvalues :

edf

•
$$\rho c_{\mathcal{C}}^2 (\rho, p) = (\partial_{\rho} \varepsilon_{|\rho})^{-1} \left(\mathscr{E}_0^2 \frac{\rho}{\rho} - \rho \partial_{\rho} \varepsilon_{|\rho} \right)$$
 convective sound speed

•
$$\rho c^{2}(\rho, p) = (\partial_{\rho} \varepsilon_{|\rho})^{-1} \left(\frac{p}{\rho} - \rho \partial_{\rho} \varepsilon_{|p}\right)$$
 Euler sound speed

- Stiffened gas thermodynamics : $c_{\mathcal{C}}^2 > 0$, and \mathcal{C} is strictly hyperbolic.
- Eigenvalues : $\lambda_1^{\mathcal{C}} = u \mathscr{E}_0 c_{\mathcal{C}} \le \lambda_{2,3}^{\mathcal{C}} = u \le \lambda_4^{\mathcal{C}} = u + \mathscr{E}_0 c_{\mathcal{C}},$

•
$$\forall k \in \{1, 2, 3, 4\}$$
: $\lim_{\mathscr{E}_0 \to 1} \lambda_k^{\mathcal{C}} = \lambda_k^{\mathsf{Euler}}, \lim_{\mathscr{E}_0 \to 0} \lambda_k^{\mathcal{C}} = \lambda_2^{\mathsf{Euler}} = u$

Discretization of the convective subsystem $\mathcal C$

$$\begin{aligned} \partial_t \rho &+ \partial_x \left(\rho \, u \right) &= 0, \\ \partial_t \left(\rho Y \right) &+ \partial_x \left(\rho \, Y \, u \right) &= 0, \\ \partial_t \left(\rho u \right) &+ \partial_x \left(\rho \, u^2 + \mathcal{E}_0^2(t) \, p \right) &= 0, \\ \partial_t \left(\rho e \right) &+ \underbrace{\partial_x \left(\left(\rho \, e + \mathcal{E}_0^2(t) \, p \right) \, u \right)}_C &= 0. \end{aligned}$$

Discretization of the convective subsystem \mathcal{C}

$$\begin{aligned} \partial_t \rho &+ \partial_x \left(\rho \, u \right) &= 0, \\ \partial_t \left(\rho Y \right) &+ \partial_x \left(\rho \, Y \, u \right) &= 0, \\ \partial_t \left(\rho u \right) &+ \partial_x \left(\rho \, u^2 + \mathcal{E}_0^2(t) \, p \right) &= 0, \\ \partial_t \left(\rho e \right) &+ \underbrace{\partial_x \left(\left(\rho \, e + \mathcal{E}_0^2(t) \, p \right) \, u \right)}_{\mathcal{C}} &= 0. \end{aligned}$$

• Suliciu-like (Suliciu, 1998, IJES) relaxation technique : Π , μ , a_c .

Discretization of the convective subsystem $\mathcal C$

$$\begin{array}{ll} \partial_t \rho & +\partial_x \left(\rho \, u \right) & = 0, \\ \partial_t \left(\rho Y \right) & +\partial_x \left(\rho \, Y \, u \right) & = 0, \\ \partial_t \left(\rho u \right) & +\partial_x \left(\rho \, u^2 + \mathscr{E}_0^2(t) \, \Pi \right) & = 0, \\ \partial_t \left(\rho e \right) & +\partial_x \left(\left(\rho \, e + \mathscr{E}_0^2(t) \, \Pi \right) \, u \right) & = 0, \\ \partial_t \left(\rho \Pi \right) & + \underbrace{\partial_x \left(\left(\rho \, \Pi + a_c^2 \right) \, u \right)}_{\mathcal{C}^{\mu}} & = \rho \left(p(\mathbf{U}) - \Pi \right) / \mu. \end{array}$$

- Suliciu-like (Suliciu, 1998, IJES) relaxation technique : Π , μ , a_{C} .
- $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) \Pi) / \mu]^T$.

Discretization of the convective subsystem ${\cal C}$

$$\frac{\partial_t \mathbf{U}}{\partial_t (\rho \Pi)} + \frac{\partial_x \mathbf{F}^{\mathcal{C}} (\mathbf{W})}{\sum_{\mathcal{C}^{\mu}}} = \mathbf{0},$$

$$= \mathbf{0},$$

$$= \rho \left(\rho(\mathbf{U}) - \Pi \right) / \mu.$$

• Suliciu-like (Suliciu, 1998, IJES) relaxation technique : Π , μ , a_{C} .

•
$$\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$$
, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) - \Pi) / \mu]^T$.

- A two-steps resolution :
 - 1. Exact solution of the Riemann problem :

$$\partial_t \mathbf{W} + \mathcal{C}^{\mu} = \mathbf{0}, \quad \mathbf{W}(t = 0, .) = \begin{cases} \mathbf{W}_L & \text{if } x < 0 \\ \mathbf{W}_R & \text{if } x > 0 \end{cases}, \quad \mathbf{W}^{\text{God}}(x/t, \mathbf{W}_R, \mathbf{W}_L).$$

Discretization of the convective subsystem ${\cal C}$

$$\frac{\partial_t \mathbf{U}}{\partial_t (\rho \Pi)} + \frac{\partial_x \mathbf{F}^{\mathcal{C}} (\mathbf{W})}{\sum_{\mathcal{C}^{\mu}}} = \mathbf{0},$$

$$= \rho \left(\rho(\mathbf{U}) - \Pi \right) / \mu.$$

• Suliciu-like (Suliciu, 1998, IJES) relaxation technique : Π , μ , a_{C} .

•
$$\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$$
, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) - \Pi) / \mu]^T$.

- A two-steps resolution :
 - 1. Exact solution of the Riemann problem :

$$\partial_t \mathbf{W} + \mathcal{C}^{\mu} = \mathbf{0}, \quad \mathbf{W} (t = 0, .) = \begin{cases} \mathbf{W}_L & \text{if } x < 0 \\ \mathbf{W}_R & \text{if } x > 0 \end{cases}, \quad \mathbf{W}^{\text{God}} (x/t, \mathbf{W}_R, \mathbf{W}_L).$$

Hyperbolic relaxation system, LD fields, simple Riemann invariants.

Discretization of the convective subsystem ${\cal C}$

$$\frac{\partial_t \mathbf{U}}{\partial_t (\rho \Pi)} + \frac{\partial_x \mathbf{F}^{\mathcal{C}} (\mathbf{W})}{\sum_{\mathcal{C}^{\mu}}} = \mathbf{0},$$

$$= \rho \left(\rho(\mathbf{U}) - \Pi \right) / \mu.$$

• Suliciu-like (Suliciu, 1998, IJES) relaxation technique : Π , μ , a_{C} .

•
$$\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$$
, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) - \Pi) / \mu]^T$.

- A two-steps resolution :
 - 1. Exact solution of the Riemann problem :

$$\partial_t \mathbf{W} + \mathcal{C}^{\mu} = \mathbf{0}, \quad \mathbf{W} (t = 0, .) = \begin{cases} \mathbf{W}_L & \text{if } x < 0 \\ \mathbf{W}_R & \text{if } x > 0 \end{cases}, \quad \mathbf{W}^{\text{God}} (x/t, \mathbf{W}_R, \mathbf{W}_L).$$

Hyperbolic relaxation system, LD fields, simple Riemann invariants.

2. Instantaneous projection on the equilibrium manifold :

$$\mathscr{H}^{\mathsf{eq}} = \{ \mathsf{W}, \, \mathsf{s.t.} \, \Pi = p(\mathsf{U}) \} \qquad \mathscr{P} : \mathsf{U} \to [\mathsf{U}, \, \rho \, p(\mathsf{U})]^T \, .$$

Discretization of the convective subsystem ${\mathcal C}$

$$\frac{\partial_t \mathbf{U}}{\partial_t (\rho \Pi)} + \frac{\partial_x \mathbf{F}^{\mathcal{C}} (\mathbf{W})}{\sum_{\mathcal{C}^{\mu}}} = \mathbf{0},$$

$$= \rho \left(\rho(\mathbf{U}) - \Pi \right) / \mu.$$

• Suliciu-like (Suliciu, 1998, IJES) relaxation technique : Π , μ , a_{C} .

•
$$\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$$
, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) - \Pi) / \mu]^T$.

- A two-steps resolution :
 - 1. Exact solution of the Riemann problem :

$$\partial_t \mathbf{W} + \mathcal{C}^{\mu} = \mathbf{0}, \quad \mathbf{W} (t = 0, .) = \begin{cases} \mathbf{W}_L & \text{if } x < 0 \\ \mathbf{W}_R & \text{if } x > 0 \end{cases}, \quad \mathbf{W}^{\text{God}} (x/t, \mathbf{W}_R, \mathbf{W}_L).$$

Hyperbolic relaxation system, LD fields, simple Riemann invariants.

2. Instantaneous projection on the equilibrium manifold :

$$\mathscr{H}^{\mathsf{eq}} = \{ \mathsf{W}, \, \mathsf{s.t.} \, \Pi = p(\mathsf{U}) \} \qquad \mathscr{P} : \mathsf{U} \to [\mathsf{U}, \, \rho \, p(\mathsf{U})]^T \, .$$

• Numerical flux : $\mathbf{H}_{\mathcal{C}}(\mathbf{U}_{i+1}^{n}, \mathbf{U}_{i}^{n}) = \mathbf{F}^{\mathcal{C}}(\mathbf{W}^{\text{God}}(\mathscr{P}(\mathbf{U}_{i+1}^{n}), \mathscr{P}(\mathbf{U}_{i}^{n}))).$

Discretization of the convective subsystem ${\mathcal C}$

$$\frac{\partial_t \mathbf{U}}{\partial_t (\rho \Pi)} + \frac{\partial_x \mathbf{F}^{\mathcal{C}} (\mathbf{W})}{\sum_{\mathcal{C}^{\mu}}} = \mathbf{0},$$

$$= \rho \left(\rho(\mathbf{U}) - \Pi \right) / \mu.$$

• Suliciu-like (Suliciu, 1998, IJES) relaxation technique : Π , μ , a_{C} .

•
$$\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$$
, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) - \Pi) / \mu]^T$.

• A two-steps resolution :

edf

 $1. \ \ \, {\rm Exact}$ solution of the Riemann problem :

$$\partial_t \mathbf{W} + \mathcal{C}^{\mu} = \mathbf{0}, \quad \mathbf{W} (t = 0, .) = \begin{cases} \mathbf{W}_L & \text{if } x < 0 \\ \mathbf{W}_R & \text{if } x > 0 \end{cases}, \quad \mathbf{W}^{\text{God}} (x/t, \mathbf{W}_R, \mathbf{W}_L). \end{cases}$$

Hyperbolic relaxation system, LD fields, simple Riemann invariants.

2. Instantaneous projection on the equilibrium manifold :

$$\mathscr{H}^{\mathsf{eq}} = \{ \mathbf{W}, \, \mathsf{s.t.} \, \Pi = p(\mathbf{U}) \} \qquad \mathscr{P} : \mathbf{U} \to [\mathbf{U}, \, \rho \, p(\mathbf{U})]^T \, .$$

- Numerical flux : $\mathbf{H}_{\mathcal{C}}(\mathbf{U}_{i+1}^{n},\mathbf{U}_{i}^{n}) = \mathbf{F}^{\mathcal{C}}(\mathbf{W}^{God}(\mathscr{P}(\mathbf{U}_{i+1}^{n}),\mathscr{P}(\mathbf{U}_{i}^{n}))).$
- Whitam's subcharacteristic condition (Whitham, 1974) : a_C > ρ c_C.

$$\begin{aligned} \partial_t \rho &= 0, \\ \partial_t (\rho Y) &= 0, \\ \partial_t (\rho u) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x p) &= 0, \\ \partial_t (\rho e) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x (p u)) &= 0. \end{aligned}$$

•
$$\rho c_{\mathcal{A}}^{2}(\rho, p) = \left(\partial_{\rho} \varepsilon_{|\rho}\right)^{-1} \frac{\rho}{\rho}$$
 acoustic sound speed.

$$\begin{aligned} \partial_t \rho &= 0, \\ \partial_t (\rho Y) &= 0, \\ \partial_t (\rho u) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x p) &= 0, \\ \partial_t (\rho e) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x (p u)) &= 0. \end{aligned}$$

- $\rho c_{\mathcal{A}}^{2}(\rho, p) = (\partial_{\rho} \varepsilon_{|\rho})^{-1} \frac{p}{\rho}$ acoustic sound speed.
- $\rho c_{\mathcal{C}}^2(\rho, p) = \left(\partial_{\rho} \varepsilon_{|\rho}\right)^{-1} \left(\mathscr{E}_0^2 \frac{\rho}{\rho} \rho \partial_{\rho} \varepsilon_{|p}\right)$ convective sound speed.

$$\begin{aligned} \partial_t \rho &= 0, \\ \partial_t (\rho Y) &= 0, \\ \partial_t (\rho u) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x p) &= 0, \\ \partial_t (\rho e) &+ \underbrace{((1 - \mathcal{E}_0^2(t)) \partial_x (p u)}_{\mathcal{A}} &= 0. \end{aligned}$$

- $\rho c_{\mathcal{A}}^{2}(\rho, p) = \left(\partial_{\rho} \varepsilon_{|\rho}\right)^{-1} \frac{\rho}{\rho}$ acoustic sound speed.
- $\rho c_{\mathcal{C}}^2(\rho, p) = \left(\partial_{\rho} \varepsilon_{|\rho}\right)^{-1} \left(\mathscr{E}_0^2 \frac{\rho}{\rho} \rho \partial_{\rho} \varepsilon_{|p}\right)$ convective sound speed.

•
$$c_{\mathcal{C}}^2 + (1 - \mathscr{E}_0^2) \ c_{\mathcal{A}}^2 = c^2$$

$$\begin{aligned} \partial_t \rho &= 0, \\ \partial_t (\rho Y) &= 0, \\ \partial_t (\rho u) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x p) &= 0, \\ \partial_t (\rho e) &+ \underbrace{((1 - \mathcal{E}_0^2(t)) \partial_x (\rho u)}_{\mathcal{A}} &= 0. \end{aligned}$$

Hyperbolicity & Eigenvalues :

- $\rho c_{\mathcal{A}}^{2}(\rho, p) = \left(\partial_{\rho} \varepsilon_{|\rho}\right)^{-1} \frac{\rho}{\rho}$ acoustic sound speed.
- $\rho c_{\mathcal{C}}^2(\rho, p) = \left(\partial_{\rho} \varepsilon_{|\rho}\right)^{-1} \left(\mathscr{E}_0^2 \frac{\rho}{\rho} \rho \partial_{\rho} \varepsilon_{|\rho}\right)$ convective sound speed.

•
$$c_{\mathcal{C}}^2 + \left(1 - \mathscr{E}_0^2\right) \ c_{\mathcal{A}}^2 = c^2$$

• Stiffened gas thermodynamics : $\forall (x, t), \ p(x, t) > 0 \Rightarrow c_A^2 > 0$, and A is strictly hyperbolic.

$$\begin{aligned} \partial_t \rho &= 0, \\ \partial_t (\rho Y) &= 0, \\ \partial_t (\rho u) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x p) &= 0, \\ \partial_t (\rho e) &+ \underbrace{((1 - \mathcal{E}_0^2(t)) \partial_x (p u)}_{\mathcal{A}} &= 0. \end{aligned}$$

Hyperbolicity & Eigenvalues :

- $\rho c_{\mathcal{A}}^{2}(\rho, p) = \left(\partial_{\rho} \varepsilon_{|\rho}\right)^{-1} \frac{\rho}{\rho}$ acoustic sound speed.
- $\rho c_{\mathcal{C}}^2(\rho, p) = \left(\partial_{\rho} \varepsilon_{|\rho}\right)^{-1} \left(\mathscr{E}_0^2 \frac{\rho}{\rho} \rho \partial_{\rho} \varepsilon_{|\rho}\right)$ convective sound speed.
- $c_{\mathcal{C}}^2 + (1 \mathscr{E}_0^2) \ c_{\mathcal{A}}^2 = c^2.$

• edf

- Stiffened gas thermodynamics : ∀(x, t), p(x, t) > 0 ⇒ c²_A > 0, and A is strictly hyperbolic.
- Eigenvalues : $\lambda_1^{\mathcal{A}} = -\left(1 \mathscr{E}_0^2\right) \, \mathbf{c}_{\mathcal{A}} < \lambda_{2,3}^{\mathcal{A}} = 0 < \lambda_4^{\mathcal{A}} = \left(1 \mathscr{E}_0^2\right) \, \mathbf{c}_{\mathcal{A}}.$

$$\begin{aligned} \partial_t \rho &= 0, \\ \partial_t (\rho Y) &= 0, \\ \partial_t (\rho u) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x p) &= 0, \\ \partial_t (\rho e) &+ \underbrace{((1 - \mathcal{E}_0^2(t)) \partial_x (p u)}_{\mathcal{A}} &= 0. \end{aligned}$$

$$\begin{aligned} \partial_t \rho &= 0, \\ \partial_t (\rho Y) &= 0, \\ \partial_t (\rho u) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x p) &= 0, \\ \partial_t (\rho e) &+ ((1 - \mathcal{E}_0^2(t)) \partial_x (p u)) &= 0. \end{aligned}$$

• Suliciu-like relaxation technique : Π , μ , a_A

$$\begin{array}{ll} \partial_t \rho &= 0 \\ \partial_t \left(\rho Y \right) &= 0 \\ \partial_t \left(\rho u \right) &+ \left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \Pi &= 0 \\ \partial_t \left(\rho e \right) &+ \left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \left(\Pi u \right) &= 0 \\ \partial_t \left(\rho \Pi \right) &+ \underbrace{\left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \left(a_{\mathcal{A}}^2 u \right) }_{\mathcal{A}^{\mu}} &= \rho \left(\rho(\mathsf{U}) - \Pi \right) / \mu \end{array}$$

- Suliciu-like relaxation technique : Π , μ , a_A
- $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) \Pi) / \mu]^T$, $\tau = 1/\rho$, Whitam's condition : $a_A > \rho c_A$.

$$\begin{array}{ll} \partial_t \rho &= 0 \\ \partial_t \left(\rho Y \right) &= 0 \\ \partial_t \left(\rho u \right) &+ \left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \Pi &= 0 \\ \partial_t \left(\rho e \right) &+ \left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \left(\Pi u \right) &= 0 \\ \partial_t \left(\rho \Pi \right) &+ \underbrace{\left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \left(a_{\mathcal{A}}^2 u \right) }_{\mathcal{A}^{\mu}} &= \rho \left(\rho(\mathsf{U}) - \Pi \right) / \mu \end{array}$$

- Suliciu-like relaxation technique : Π , μ , a_A
- $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) \Pi) / \mu]^T$, $\tau = 1/\rho$, Whitam's condition : $a_A > \rho c_A$.
- 1. Resolution of the homogeneous system :

$$\begin{array}{l} \partial_t \rho &= 0 \\ \partial_t \left(\rho Y \right) &= 0 \\ \partial_t \left(\rho u \right) &+ \left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \Pi \right) &= 0 \\ \partial_t \left(\rho e \right) &+ \left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \left(\Pi u \right) \right) &= 0 \\ \partial_t \left(\rho \Pi \right) &+ \left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \left(\mathscr{E}_{\mathcal{A}}^2 u \right) \right) &= 0 \\ \mathcal{A}_{\mu}^{\mu} &= 0 \end{array}$$

- Suliciu-like relaxation technique : Π , μ , a_A
- $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) \Pi) / \mu]^T$, $\tau = 1/\rho$, Whitam's condition : $a_A > \rho c_A$.
- 1. Resolution of the homogeneous system :
 - Eigenvalues : $\lambda_{\mathcal{A}}^{1} = -((1 - \mathscr{E}_{0}^{2}(t))a_{\mathcal{A}}\tau < \lambda_{\mathcal{A}}^{2,3} = 0 < \lambda_{\mathcal{A}}^{4} = +((1 - \mathscr{E}_{0}^{2}(t))a_{\mathcal{A}}\tau)a_{\mathcal{A}}\tau$

$$\begin{array}{l} \partial_t \rho &= 0 \\ \partial_t \left(\rho Y \right) &= 0 \\ \partial_t \left(\rho u \right) &+ \left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \Pi \right) &= 0 \\ \partial_t \left(\rho e \right) &+ \left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \left(\Pi u \right) \right) &= 0 \\ \partial_t \left(\rho \Pi \right) &+ \left(\left(1 - \mathscr{E}_0^2(t) \right) \partial_x \left(\mathscr{E}_{\mathcal{A}}^2 u \right) \right) &= 0 \\ \mathcal{A}_{\mu}^{\mu} &= 0 \end{array}$$

- Suliciu-like relaxation technique : Π , μ , a_A
- $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) \Pi) / \mu]^T$, $\tau = 1/\rho$, Whitam's condition : $a_{\mathcal{A}} > \rho c_{\mathcal{A}}$.
- 1. Resolution of the homogeneous system :

Pedf

• Eigenvalues : $\lambda_{\mathcal{A}}^{1} = -((1 - \mathscr{E}_{0}^{2}(t))a_{\mathcal{A}}\tau < \lambda_{\mathcal{A}}^{2,3} = 0 < \lambda_{\mathcal{A}}^{4} = +((1 - \mathscr{E}_{0}^{2}(t))a_{\mathcal{A}}\tau)$ • Strong Riemann invariants : $W \equiv u - \frac{\Pi}{a_{\mathcal{A}}}, R \equiv u + \frac{\Pi}{a_{\mathcal{A}}}$

$$\begin{aligned} \partial_t \tau &= 0 \\ \partial_t Y &= 0 \\ \partial_t W &-((1 - \mathscr{E}_0^2(t))a_{\mathcal{A}}\tau \,\partial_x W &= 0 \\ \partial_t R &+((1 - \mathscr{E}_0^2(t))a_{\mathcal{A}}\tau \,\partial_x R &= 0 \\ \partial_t (\rho e) &+((1 - \mathscr{E}_0^2(t))\partial_x (\Pi u) &= 0 \end{aligned}$$

- Suliciu-like relaxation technique : Π , μ , a_A
- $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) \Pi) / \mu]^T$, $\tau = 1/\rho$, Whitam's condition : $a_{\mathcal{A}} > \rho c_{\mathcal{A}}$.
- 1. Resolution of the homogeneous system :

• edf

• Eigenvalues : $\lambda_{\mathcal{A}}^{1} = -((1 - \mathscr{E}_{0}^{2}(t))a_{\mathcal{A}}\tau < \lambda_{\mathcal{A}}^{2,3} = 0 < \lambda_{\mathcal{A}}^{4} = +((1 - \mathscr{E}_{0}^{2}(t))a_{\mathcal{A}}\tau)$ • Strong Riemann invariants : $W \equiv u - \frac{\Pi}{a_{\mathcal{A}}}, \ R \equiv u + \frac{\Pi}{a_{\mathcal{A}}}$

$\partial_t au$		=0
$\partial_t Y$		=0
$\partial_t W$	$+\lambda^1_{\mathcal{A}} \partial_x \mathcal{W}$	=0
$\partial_t R$	$+\lambda_{\mathcal{A}}^{4}\partial_{x}R$	=0
$\partial_t (\rho e)$	$+((1-\mathscr{E}_0^2(t))\partial_x(\Pi u))$	=0

- Suliciu-like relaxation technique : Π , μ , a_A
- $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) \Pi) / \mu]^T$, $\tau = 1/\rho$, Whitam's condition : $a_{\mathcal{A}} > \rho c_{\mathcal{A}}$.
- 1. Resolution of the homogeneous system :

• edf

• Eigenvalues : $\lambda_{\mathcal{A}}^{1} = -((1 - \mathscr{E}_{0}^{2}(t))a_{\mathcal{A}}\tau < \lambda_{\mathcal{A}}^{2,3} = 0 < \lambda_{\mathcal{A}}^{4} = +((1 - \mathscr{E}_{0}^{2}(t))a_{\mathcal{A}}\tau)$ • Strong Riemann invariants : $W \equiv u - \frac{\Pi}{a_{\mathcal{A}}}, \ R \equiv u + \frac{\Pi}{a_{\mathcal{A}}}$

- Suliciu-like relaxation technique : Π , μ , a_A
- $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) \Pi) / \mu]^T$, $\tau = 1/\rho$, Whitam's condition : $a_A > \rho c_A$.
- 1. Resolution of the homogeneous system :
 - Eigenvalues : $\lambda_{\mathcal{A}}^{1} = -((1 - \mathscr{E}_{0}^{2}(t))a_{\mathcal{A}}\tau < \lambda_{\mathcal{A}}^{2,3} = 0 < \lambda_{\mathcal{A}}^{4} = +((1 - \mathscr{E}_{0}^{2}(t))a_{\mathcal{A}}\tau)a_{\mathcal{A}}\tau$
 - Strong Riemann invariants : $W \equiv u - \frac{\Pi}{a_A}, \ R \equiv u + \frac{\Pi}{a_A}$

- Suliciu-like relaxation technique : Π , μ , a_A
- $\mathbf{U} = [\rho, \rho Y, \rho u, \rho e]^T$, $\mathbf{W} = [\mathbf{U}, \rho \Pi]$, $\mathbf{S} = [\mathbf{0}, \rho (\rho(\mathbf{U}) \Pi) / \mu]^T$, $\tau = 1/\rho$, Whitam's condition : $a_A > \rho c_A$.
- 1. Resolution of the homogeneous system :
 - Eigenvalues : $\lambda_{\mathcal{A}}^{1} = -((1 - \mathscr{E}_{0}^{2}(t))a_{\mathcal{A}}\tau < \lambda_{\mathcal{A}}^{2,3} = 0 < \lambda_{\mathcal{A}}^{4} = +((1 - \mathscr{E}_{0}^{2}(t))a_{\mathcal{A}}\tau)a_{\mathcal{A}}\tau$
 - Strong Riemann invariants : $W \equiv u - \frac{\Pi}{a_A}, \ R \equiv u + \frac{\Pi}{a_A}$

$$\begin{array}{l} \partial_t \tau & = 0 \\ \partial_t Y & = 0 \end{array}$$

$$\partial_t W - ((1 - \mathscr{E}_0^2(t)) a_{\mathcal{A}} \tau \partial_x W = 0$$

$$\partial_t R + ((1 - \mathscr{E}_0^2(t))a_{\mathcal{A}}\tau \partial_x R = 0$$

$$\partial_t (\rho e) + ((1 - \mathscr{E}_0^2(t)) \partial_x (\Pi u)) = 0$$

• Time-implicit scheme based on a strong Riemann invariants formulation (Coquel et al., 2010, Math. Comp.)

$$\begin{split} \tau_i^{n+} &= \tau_i^n, \\ Y_i^{n+} &= Y_i^n, \\ \frac{W_i^{n+} - W_i^n}{\Delta t} - \frac{\left(1 - \left(\mathscr{E}_0^n\right)^2\right) \left(\mathfrak{a}_{\mathcal{A}}\right)^n \tau_i^n}{\Delta x} \left(W_{i+1/2}^{n+} - W_{i-1/2}^{n+}\right) = 0, \\ \frac{R_i^{n+} - R_i^n}{\Delta t} + \frac{\left(1 - \left(\mathscr{E}_0^n\right)^2\right) \left(\mathfrak{a}_{\mathcal{A}}\right)^n \tau_i^n}{\Delta x} \left(R_{i+1/2}^{n+} - R_{i-1/2}^{n+}\right) = 0, \\ \frac{\left(\rho e\right)_i^{n+} - \left(\rho e\right)_i^n}{\Delta t} + \frac{\left(1 - \left(\mathscr{E}_0^n\right)^2\right)}{\Delta x} \left((\Pi u)_{i+1/2}^{n+} - (\Pi u)_{i-1/2}^{n+}\right) = 0. \end{split}$$

• Time-implicit scheme based on a strong Riemann invariants formulation (Coquel et al., 2010, Math. Comp.)

$$\begin{split} \tau_i^{n+} &= \tau_i^n, \\ Y_i^{n+} &= Y_i^n, \\ \frac{W_i^{n+} - W_i^n}{\Delta t} - \frac{\left(1 - (\mathscr{E}_0^n)^2\right) (\mathfrak{a}_{\mathcal{A}})^n \tau_i^n}{\Delta x} \left(W_{i+1/2}^{n+} - W_{i-1/2}^{n+}\right) = 0, \\ \frac{R_i^{n+} - R_i^n}{\Delta t} + \frac{\left(1 - (\mathscr{E}_0^n)^2\right) (\mathfrak{a}_{\mathcal{A}})^n \tau_i^n}{\Delta x} \left(R_{i+1/2}^{n+} - R_{i-1/2}^{n+}\right) = 0, \\ \frac{(\rho e)_i^{n+} - (\rho e)_i^n}{\Delta t} + \frac{\left(1 - (\mathscr{E}_0^n)^2\right)}{\Delta x} \left((\Pi u)_{i+1/2}^{n+} - (\Pi u)_{i-1/2}^{n+}\right) = 0. \end{split}$$

- Time-implicit scheme based on a strong Riemann invariants formulation (Coquel et al., 2010, Math. Comp.)
- Face values :

$$\begin{split} \mathcal{W}_{i+1/2}^{n+} &\equiv \mathcal{W}_{i+1}^{n+}, \ \mathcal{R}_{i+1/2}^{n+} \equiv \mathcal{R}_{i}^{n+} \\ u_{i+1/2}^{n+} &= \frac{\mathcal{R}_{i}^{n+} + \mathcal{W}_{i+1}^{n+}}{2}, \ \Pi_{i+1/2}^{n+} &= \frac{a_{\mathcal{A}}^{n} \left(\mathcal{R}_{i}^{n+} - \mathcal{W}_{i+1}^{n+}\right)}{2} \end{split}$$

$$\begin{split} \tau_i^{n+} &= \tau_i^n, \\ Y_i^{n+} &= Y_i^n, \\ \frac{W_i^{n+} - W_i^n}{\Delta t} - \frac{\left(1 - (\mathscr{E}_0^n)^2\right) (\mathfrak{a}_{\mathcal{A}})^n \tau_i^n}{\Delta x} \left(W_{i+1}^{n+} - W_i^{n+}\right) = 0, \\ \frac{R_i^{n+} - R_i^n}{\Delta t} + \frac{\left(1 - (\mathscr{E}_0^n)^2\right) (\mathfrak{a}_{\mathcal{A}})^n \tau_i^n}{\Delta x} \left(R_i^{n+} - R_{i-1}^{n+}\right) = 0 \\ \frac{(\rho e)_i^{n+} - (\rho e)_i^n}{\Delta t} + \frac{\left(1 - (\mathscr{E}_0^n)^2\right)}{\Delta x} \left((\Pi u)_{i+1/2}^{n+} - (\Pi u)_{i-1/2}^{n+}\right) = 0. \end{split}$$

- Time-implicit scheme based on a strong Riemann invariants formulation (Coquel et al., 2010, Math. Comp.)
- Face values :

$$\begin{split} \mathcal{W}_{i+1/2}^{n+} &\equiv \mathcal{W}_{i+1}^{n+}, \ \mathcal{R}_{i+1/2}^{n+} \equiv \mathcal{R}_{i}^{n+} \\ u_{i+1/2}^{n+} &= \frac{\mathcal{R}_{i}^{n+} + \mathcal{W}_{i+1}^{n+}}{2}, \ \Pi_{i+1/2}^{n+} &= \frac{a_{\mathcal{A}}^{n} \left(\mathcal{R}_{i}^{n+} - \mathcal{W}_{i+1}^{n+}\right)}{2} \end{split}$$

Discretization of the Acoustic Subsystem \mathcal{A}

$$\begin{split} \tau_i^{n+} &= \tau_i^n, \\ Y_i^{n+} &= Y_i^n, \\ \frac{W_i^{n+} - W_i^n}{\Delta t} - \frac{\left(1 - (\mathscr{E}_0^n)^2\right) (\mathfrak{a}_{\mathcal{A}})^n \tau_i^n}{\Delta x} \left(W_{i+1}^{n+} - W_i^{n+}\right) = 0, \\ \frac{R_i^{n+} - R_i^n}{\Delta t} + \frac{\left(1 - (\mathscr{E}_0^n)^2\right) (\mathfrak{a}_{\mathcal{A}})^n \tau_i^n}{\Delta x} \left(R_i^{n+} - R_{i-1}^{n+}\right) = 0 \\ \frac{(\rho e)_i^{n+} - (\rho e)_i^n}{\Delta t} + \frac{\left(1 - (\mathscr{E}_0^n)^2\right)}{\Delta x} \left((\Pi u)_{i+1/2}^{n+} - (\Pi u)_{i-1/2}^{n+}\right) = 0. \end{split}$$

2. Instantaneous projection on the equilibrium manifold :

$$\mathscr{H}^{\mathsf{eq}} = \{ \mathbf{W}, \, \mathsf{s.t.} \, \Pi = p\left(\mathbf{U}\right) \} \qquad \mathscr{P} : \mathbf{U} \to \left[\mathbf{U}, \, \rho \, p\left(\mathbf{U}\right)\right]^{\mathsf{T}}$$

Discretization of the Acoustic Subsystem \mathcal{A}

$$\begin{split} \tau_i^{n+} &= \tau_i^n, \\ Y_i^{n+} &= Y_i^n, \\ \frac{W_i^{n+} - W_i^n}{\Delta t} - \frac{\left(1 - \left(\mathscr{E}_0^n\right)^2\right) \left(\mathfrak{a}_{\mathcal{A}}\right)^n \tau_i^n}{\Delta x} \left(W_{i+1}^{n+} - W_i^{n+}\right) = 0, \\ \frac{R_i^{n+} - R_i^n}{\Delta t} + \frac{\left(1 - \left(\mathscr{E}_0^n\right)^2\right) \left(\mathfrak{a}_{\mathcal{A}}\right)^n \tau_i^n}{\Delta x} \left(R_i^{n+} - R_{i-1}^{n+}\right) = 0 \\ \frac{\left(\rho e\right)_i^{n+} - \left(\rho e\right)_i^n}{\Delta t} + \frac{\left(1 - \left(\mathscr{E}_0^n\right)^2\right)}{\Delta x} \left(\left(\Pi u\right)_{i+1/2}^{n+} - \left(\Pi u\right)_{i-1/2}^{n+}\right) = 0. \end{split}$$

2. Instantaneous projection on the equilibrium manifold :

$$\mathscr{H}^{\mathsf{eq}} = \{ \mathsf{W}, \, \mathsf{s.t.} \,\, \mathsf{\Pi} = p\left(\mathsf{U}\right) \} \qquad \mathscr{P} : \mathsf{U} \to \left[\mathsf{U}, \, \rho \, p\left(\mathsf{U}\right)\right]^{\mathsf{T}}$$

$$\rho_i^{n+1} = \rho_i^{n+}, \ (\rho u)_i^{n+1} = (\rho u)_i^{n+}, \ (\rho e)_i^{n+1} = (\rho e)_i^{n+} \Rightarrow \mathbf{U}_i^{n+1} = \mathbf{U}_i^{n+}$$
$$\Pi_i^{n+1} = p\left(\mathbf{U}_i^{n+1}\right)$$

D. lampietro A self-adaptive IMEX scheme [17/29]

Definition of the Splitting Parameter $\mathscr{E}_0(t)$

D. lampietro A self-adaptive IMEX scheme [18/29]

edf

Definition of the Splitting Parameter $\mathcal{E}_0(t)$

D. lampietro A self-adaptive IMEX scheme [18/29]

Definition of the shock detector S(t)

Isothermal water hammer : Joukowski's jump relation

 $[p] = \pm \rho_0 c_0 [u]$ (Joukowski, 1898)

Definition of the shock detector S(t)

Isothermal water hammer : Joukowski's jump relation

 $[p] = \pm \rho_0 c_0 [u] \quad (\text{Joukowski, 1898})$

Discrete shock detector : $S(t^n)$

$$\mathcal{S}(t^{n}) = \sup_{i+1/2} \left(\frac{|(\sigma_{S})_{i+1/2}^{n}|}{\max(c_{i+1}^{n}, c_{i}^{n})} \right),$$

$$(\sigma_{S})_{i+1/2}^{n} = \begin{cases} \frac{p_{i+1}^{n} - p_{i}^{n}}{\frac{p_{i+1}^{n} + p_{i}^{n}}{2}} & \text{if } |u_{i+1}^{n} - u_{i}^{n}| > \epsilon^{\text{thres}} \max\left(|u_{i+1}^{n}|, |u_{i}^{n}|\right) \\ 0 & \text{otherwise,} \end{cases}$$

1 Low-velocity flows endowed with a stiff equation of state

2 A dynamic Implicit-Explicit scheme

3 Numerical results

D. lampietro A self-adaptive IMEX scheme [20/29]

Initial conditions : single contact discontinuity

- S(t) = 0 imposed
- $\Delta t^n = \mathscr{C}_{|u|} rac{\Delta x}{\max_i (|u_i^n|)}$
- Transmissive boundary conditions

• $\rho_L^0 = 1 \ kg.m^{-3},$ $\rho_R^0 = 0.125 \ kg.m^{-3}$

•
$$p^0 = 0.1 \, \text{bar}$$

• Ideal gas :
$$\gamma = 7/5$$

• M_{min} input parameter, $u^0 = M_{min} c_R^0$, $c_R^0 = \sqrt{(\gamma p^0) / \rho_R^0}$, $M_{max} = u^0 / c_L^0 =$ $M_{min} \sqrt{\rho_L^0 / \rho_R^0}$

edf

Pressure, $M_{min} = 10^{-2}$, with $N_{cells} = 10^3$, $C_{|u|} = 0.49$, iteration 270, $(t = 2.496 \times 10^{-2} s)$

D. lampietro A self-adaptive IMEX scheme [22/29]

Cede

Numerically measured stable Courant numbers : $M_{min} \in [10^{-4}, 1]$

D. lampietro A self-adaptive IMEX scheme [22/29]

Tentative of explanation of the curve :

$$\begin{split} \mathscr{C}_{\mathcal{C}} &= \frac{\left(\left|u^{0}\right| + \mathscr{E}_{0}^{n} c_{\mathcal{C}}^{0, R}\right) \Delta t}{\Delta x}, \mathscr{C}_{\left|u\right|} = \frac{\left|u^{0}\right| \Delta t}{\Delta x} \\ \text{with} : c_{\mathcal{C}}^{0, R} &= c_{\mathcal{C}} \left(\rho_{\mathcal{R}}^{0}, p^{0}\right). \\ \mathscr{C}_{\left|u\right|} &= \left(1 + \mathscr{E}_{0}^{n} \frac{c_{\mathcal{C}}^{0, R}}{\left|u^{0}\right|}\right)^{-1} \mathscr{C}_{\mathcal{C}} = \left(1 + \frac{\mathscr{E}_{0}^{n}}{M_{\min}} \frac{c_{\mathcal{C}}^{0, R}}{c^{0, R}}\right)^{-1} \mathscr{C}_{\mathcal{C}} \\ \text{and} : \frac{c_{\mathcal{C}}^{0, R}}{c^{0, R}} = \sqrt{(\mathscr{E}_{0}^{n})^{2} \frac{\gamma - 1}{\gamma} + \frac{1}{\gamma}} \in [1/\gamma, 1] \end{split}$$

Tentative of explanation of the curve :

Cc

Tentative of explanation of the curve :

D. lampietro A self-adaptive IMEX scheme [23/29]

Cede

Numerically measured stable Courant numbers : $M_{min} \in [10^{-4}, 1]$

D. lampietro A self-adaptive IMEX scheme [24/29]

Cede

Numerically measured stable Courant numbers : $M_{min} \in [10^{-4}, 1]$

D. lampietro A self-adaptive IMEX scheme [24/29]

Shock tube initial conditions : L = 2 m, $x_0 = 0.55 m$, $x_1 = 1.23 m$

	Left state $(x < x_0)$	Intermediate state $(x_0 < x < x_1)$	Right state (x1 < x)
ρ (kg.m ⁻³)	$ ho_L^0=10^3$	$ ho_{ m interm}^{ m 0}=9.98 imes10^2$	$ ho_R^0=9.97 imes10^2$
$u(m.s^{-1})$	$u_{L}^{0} = 1$	$u_{ m interm}^0=1$	$u_R^0 = 1$
p (bar)	$p_{L}^{0}=10^{3}$	$p_{ m interm}^0=10$	$ ho_R^0=1$
Y	$Y_{L}^{0} = 0.7$	$Y_{\rm interm}^0 = 0.2$	$Y_{R}^{0} = 0.1$

• Thermodynamics : stiffened gas, $\rho \varepsilon = (p + \gamma P_{\infty})/(\gamma - 1)$ with $\gamma = 7.5$ and $P_{\infty} = 3 \times 10^3$ bar.

edf

Time-steps :

• edf

Convective time steps Sp-(*M*)-Imp : $\Delta t_{C}^{n} = \mathscr{C}_{C} \frac{\Delta x}{\max_{i+1/2} \left(\max\left(\left| u_{i}^{n} - \mathscr{C}_{0}^{n} (\mathfrak{a}_{C})_{i+1/2}^{n} \tau_{i}^{n} \right|, \left| u_{i+1}^{n} + \mathscr{C}_{0}^{n} (\mathfrak{a}_{C})_{i+1/2}^{n} \tau_{i+1}^{n} \right| \right) \right)}, \ \mathscr{C}_{C} = 0.9$ • $(a_{C}^{n})_{i+1/2} = K \max(\rho_{i}^{n} (c_{C})_{i}^{n}, \rho_{i+1}^{n} (c_{C})_{i+1}^{n}), \ K > 1$

$$\begin{split} & \text{Convective time steps LP-Imp (Chalons et al., 2016, Com. in Comp. Phys.) :} \\ & \Delta t_{\mathcal{C}}^n = \mathscr{C}_{\mathcal{C}} \frac{\Delta x}{\prod_{i+1/2}^{max} \left(\left((u_{\mathcal{A}}^*)_{i-1/2}^n \right)^+ - \left((u_{\mathcal{A}}^*)_{i+1/2}^n \right)^- \right)} , \ \mathscr{C}_{\mathcal{C}} = 0.9 \\ & \bullet \ \left(u_{\mathcal{A}}^* \right)_{i+1/2}^n = \frac{u_{i+1}^n + u_i^n}{2} - \frac{1}{2 \, a_{i+1/2}^n} \left(p_{i+1}^n - p_i^n \right) \\ & \bullet \ a_{i+1/2}^n = K \max \left(\rho_i^n \, c_i^n, \, \rho_{i+1}^n \, c_{i+1}^n \right), \ K > 1 \end{split}$$

Mach number profile : overall area

Mach number profile : low velocity area

Discrete shock detector : $S(t^n)$

$$(\sigma_{S})_{i+1/2}^{n} = \begin{cases} S(t^{n}) = \sup_{i+1/2} \left(\frac{\left| (\sigma_{S})_{i+1/2}^{n} \right|}{\max(c_{i+1}^{n}, c_{i}^{n})} \right) = \sup_{i+1/2} s_{i+1/2}^{n}, \\ \frac{p_{i+1}^{n} - p_{i}^{n}}{\frac{\rho_{i+1}^{n} + \rho_{i}^{n}}{2} \left(u_{i+1}^{n} - u_{i}^{n} \right)}} & \text{if } |u_{i+1}^{n} - u_{i}^{n}| > \epsilon^{\text{thres}} \max\left(|u_{i+1}^{n}|, |u_{i}^{n}| \right) \\ 0 & \text{otherwise,} \end{cases}$$

Local shock detector : overall area

Time : $t = 1.46 \times 10^{-4} s$

Pressure profile : high velocity area

Pressure profile : low velocity area

Velocity profile : high velocity area

Velocity profile : low velocity area

	(zone 1) : x < 0.2 or x > 0.8	(zone 2) : x ∈ [0.2, 0.25] or x ∈ [0.75, 0.8]	(zone 3) : $x \in [0.25, 0.75]$
ρ(kg.m⁻	$^{-3}) \rho^{0}$	$ ho^0$	$ ho^0$
u (m.s ⁻¹	$) u_L^0 = u^0 imes \left(1 - M^0/2\right)$	$u_R^0 = u^0 \times \left(1 + M^0/2\right)$	$u_{\rm m}^0 = u^0$
p (bar)	p ⁰	p ⁰	p ⁰

Table: (Dimarco et al., 2017)'s Riemann Problem : initial conditions

- $ho^0=1\,kg.m^{-3}$, $ho^0=1$ bar, $c^0\equiv\sqrt{
 ho^0/
 ho^0}$
- $u^0 \equiv M^0 \times c^0$, M^0 input parameter : $M^0 = 3.2 \times 10^{-3} \Rightarrow u^0 \approx 1 \, m.s^{-1}$
- Length of reference $L^0 = 1 m$. Time of reference $t^0 = L^0/u^0$
- Physical time of simulation : $T_{\rm end} = 0.05 \times t^0$
- Ideal gas thermodynamics $\gamma = 7/5$, $\mathcal{S}(t) = 0$
- Periodic boundary conditions

Pedf

Velocity,
$$M^0 = 3.2 \times 10^{-3}$$

An Asymptotic-Preserving Scheme? (Dimarco et al., 2017, J. of Sci. Comp.)

Velocity profile : $M^0 = 3.2 \times 10^{-3}$

Velocity profile (zoom) : $M^0 = 3.2 \times 10^{-3}$

• $u(T_{end})$ such that :

edf

$$\int_{\Omega}
ho u(., t = 0) \, d\Omega = \int_{\Omega}
ho u(., t = T_{end}) \, d\Omega$$

D. lampietro A self-adaptive IMEX scheme [26/29]

Pressure profile (zoom) : $M^0 = 3.2 \times 10^{-3}$

Conclusion and Perspectives

Main ideas :

- Construction of a self-adaptive IMEX scheme
- "self-adaptative" aspect due to $\mathscr{E}_0(t)$ \Rightarrow automatically select the appropriate spatial flux discretization
- $\Delta t^n \leftrightarrow |u_i^n \pm \mathscr{E}_0^n(c_{\mathcal{C}})_i^n| \Rightarrow$ automatically select the appropriate time-step

Perspectives :

- Amelioration of the shock detector $\mathcal{S}(t^n)$ in the ideal gas thermodynamics case
- Local formulation of the dynamic parameter : $\mathscr{E}_0(t) \to \mathscr{E}_0(x, t)$
- Perform a proper stability analysis (linearized case, periodic BC...)

Merci de votre attention !

D. lampietro A self-adaptive IMEX scheme [28/29]

- L. Allievi. Teoria generale del moto perturbato dell'acqua nei tubi in pressione (coplo d'ariete). Tip. del Genio civile, 1902.
- C. Chalons, M. Girardin, and S. Kokh. An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes. *Communications in Computational Physics*, 20 :188–233, 2016.
- F. Coquel, Q. L. Nguyen, M. Postel, and Q. H. Tran. Entropy-satisfying relaxation method with large time-steps for Euler IBVPS. *Mathematics of Computation*, 79 :1493–1533, 2010.
- G. Dimarco, R. Loubère, and M-H. Vignal. Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit. *SIAM : Journal of Scientific Computing*, 2017.
- N. E. Joukowski. Memoirs of the Imperial Academy Society of St. Petersburg. Proceedings of the American Water Works Association, 24 :341–424, 1898.
- A. R. Simpson. Large water hammer pressures due to column separation in sloping pipes. PhD thesis, Diss. University of Michigan, 1986.
- Suliciu. On the thermodynamics of fluids with relaxation and phase transitions. International Journal of Engineering Science, 36:921–947, 1998.
- J. B. Whitham. Linear and Non Linear Waves. John Wiley & Sons Inc, 1974.

