Convergence of the MAC scheme

for incompressible flows

T. Gallouët ${ }^{\star}$, R. Herbin${ }^{\star}$, J.-C. Latché**, K. Mallem ${ }^{\star \star \star}$

Aix-Marseille Université I.R.S.N. Cadarache Université d'Annaba

Calanque de Cortiou Marseille main sewer

Incompressible Variable density flows

- Bounded domain $\Omega \times(0, T), \Omega \subset \mathbb{R}^{d}, T>0$.
- Non homogeneous fluid : density ρ is not constant
- Incompressible fluid : div $\overline{\boldsymbol{u}}=0$,
- Incompressible variable density Navier-Stokes equations:

$$
\begin{aligned}
& \partial_{t} \bar{\rho}+\operatorname{div}(\bar{\rho} \overline{\boldsymbol{u}})=0, \\
& \partial_{t} \bar{\rho} \overline{\boldsymbol{u}}+\operatorname{div}(\bar{\rho} \overline{\boldsymbol{u}} \otimes \overline{\boldsymbol{u}})-\Delta \overline{\boldsymbol{u}}+\nabla \bar{p}=0, \\
& \operatorname{div} \overline{\boldsymbol{u}}=0 \\
& \left.\boldsymbol{u}\right|_{\partial \Omega}=0,\left.\boldsymbol{u}\right|_{t=0}=\boldsymbol{u}_{0},\left.\rho\right|_{t=0}=\rho_{0} \geq \rho_{\min }>0,
\end{aligned}
$$

Variable density NS equations: a priori estimates

- maximum principle for ρ

$$
\begin{gathered}
\operatorname{div} \bar{u}=0 \text { and } \partial_{t} \bar{\rho}+\operatorname{div}(\bar{\rho} \overline{\boldsymbol{u}})=0 \rightsquigarrow \partial_{t} \bar{\rho}+\overline{\boldsymbol{u}} \cdot \nabla \bar{\rho}=0 \text { (transport equation) } \\
0<\min _{\Omega} \rho_{0} \leq \bar{\rho} \leq \max _{\Omega} \rho_{0} .
\end{gathered}
$$

- kinetic energy balance:

Multiply momentum balance eq by \bar{u} and use mass balance (twice) \rightsquigarrow

$$
\partial_{t}\left(\frac{1}{2} \bar{\rho}|\overline{\boldsymbol{u}}|^{2}\right)+\operatorname{div}\left(\frac{1}{2} \bar{\rho}|\overline{\boldsymbol{u}}|^{2} \boldsymbol{u}\right)-\Delta \overline{\boldsymbol{u}} \cdot \overline{\boldsymbol{u}}+\nabla \bar{p} \cdot \overline{\boldsymbol{u}}=0 .
$$

- $\mathrm{L}^{\infty}\left((0, T) ; \mathrm{L}^{2}(\Omega)^{d}\right)$ and $\mathrm{L}^{2}\left((0, T) ; \mathrm{H}_{0}^{1}(\Omega)^{d}\right)$ bound:

$$
\frac{1}{2} \int_{\Omega} \bar{\rho}(., t)|\overline{\boldsymbol{u}}(., t)|^{2} \mathrm{~d} \boldsymbol{x}+\int_{0}^{t} \int_{\Omega}|\nabla \overline{\boldsymbol{u}}|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t=\frac{1}{2} \int_{\Omega} \bar{\rho}_{0}\left|\overline{\boldsymbol{u}}_{0}\right|^{2} \mathrm{~d} \boldsymbol{x}, \quad \forall t \in(0, T)
$$

Variable density NS equations: weak solutions

- Weak Solutions:
$\rho_{0} \in \mathrm{~L}^{\infty}(\Omega)$ such that $\rho_{0}>0$ and $\boldsymbol{u}_{0} \in \mathrm{~L}^{2}(\Omega)^{d}$. A weak solution is a pair (ρ, \boldsymbol{u}) such that:
- $\bar{\rho} \in \mathrm{L}^{\infty}((0, T) \times \Omega)$ and $\bar{\rho}>0$ a.e. in $\Omega \times(0, T)$.
- $\bar{u} \in \mathrm{~L}^{\infty}\left((0, T) ; \mathrm{L}^{2}(\Omega)^{d}\right) \cap \mathrm{L}^{2}\left((0, T) ; \mathrm{H}_{0}^{1}(\Omega)^{d}\right)$ et div $\bar{u}=0$ a.e. in $\Omega \times(0, T)$.
- For any ϕ in $\mathrm{C}_{c}^{\infty}(\Omega \times[0, T))$,

$$
-\int_{0}^{T} \int_{\Omega}\left(\bar{\rho} \partial_{t} \phi+\bar{\rho} \overline{\boldsymbol{u}} \cdot \nabla \phi\right) \mathrm{d} \boldsymbol{x} \mathrm{~d} t=\int_{\Omega} \bar{\rho}_{0} \phi(., 0) \mathrm{d} \boldsymbol{x} .
$$

- for any \boldsymbol{v} in $\mathrm{C}_{c}^{\infty}(\Omega \times[0, T))^{d}$ such that $\operatorname{div} \boldsymbol{v}=0$,

$$
\int_{0}^{T} \int_{\Omega}\left(-\bar{\rho} \overline{\boldsymbol{u}} \cdot \partial_{t} \boldsymbol{v}-(\bar{\rho} \overline{\boldsymbol{u}} \otimes \overline{\boldsymbol{u}}): \nabla \boldsymbol{v}+\nabla \overline{\boldsymbol{u}}: \nabla \boldsymbol{v}\right) \mathrm{d} \boldsymbol{x} \mathrm{~d} t=\int_{\Omega} \bar{\rho}_{0} \overline{\boldsymbol{u}}_{0} \cdot \boldsymbol{v}(., 0) \mathrm{d} \boldsymbol{x}
$$

- Existence of a weak solution Simon '90.
- Discretization
- Liu Walkington Discontinuous Galerkin 2007
- Latché Saleh Rannacher Turek 2016

The standard Marker-And-Cell scheme

(Harlow Welsh 65)

- structured grids,
- pressure at the cell-center and normal velocity components at mid-edges,
- staggered meshes.

Advantages and drawback

+ minimal number of unknowns,
+ no pressure stabilization needed,
+ simplicity and robustness of the scheme,
- needs local refinement for complex geometries.

Convergence analysis:
Shin Strickwerda 96, 97, stability, inf-sup condidion
Nicolaides Wu '96, (ω, ψ) formulation
Blanc '05 irregular rectangles, finite volume approach

The MAC grid (or Arakawa C)

Primal mesh (pressure) \mathcal{T} :

- K : Primal cell.
- \mathcal{E} set of faces of \mathcal{T}.
- $\mathcal{E}^{(i)} ; i=1, \ldots, d$: set of faces orthogonal to the i-th component of e_{i}.
Dual mesh (velocity) :
- D_{σ} dual cell associate to the face $\sigma \in \mathcal{E}^{(i)}$.

$$
\rho=\sum_{K \in \mathcal{T}} \rho_{K} \chi_{K}, \quad u^{(i)}=\sum_{\sigma \in \mathcal{E}^{(i)}} u_{\sigma} \chi_{D_{\sigma}}
$$

From the continuous to the discrete equations: time-implicit discretization

- Continuous equations

$$
\begin{aligned}
& \bar{\rho} \in \mathrm{L}^{\infty}((0, T) \times \Omega), \overline{\boldsymbol{u}} \in \mathrm{L}^{\infty}\left((0, T) ; \mathrm{L}^{2}(\Omega)^{d}\right) \cap \mathrm{L}^{2}\left((0, T) ; \mathrm{H}_{0}^{1}(\Omega)^{d}\right), \\
& \operatorname{div} \overline{\boldsymbol{u}}=0 \\
& \partial_{t} \bar{\rho}+\operatorname{div}(\bar{\rho} \overline{\boldsymbol{u}})=0 \\
& \partial_{t}(\bar{\rho}) \bar{u}+\operatorname{div}(\bar{\rho} \overline{\boldsymbol{u}} \otimes \overline{\boldsymbol{u}})-\Delta \overline{\boldsymbol{u}}+\nabla \bar{p}=0,
\end{aligned}
$$

- Discrete equations

$$
\begin{aligned}
& \rho^{(n+1)}, p^{(n+1)} \in L_{\mathcal{T}}, \boldsymbol{u}^{(n+1)} \in \mathbf{H}_{\mathcal{E}} \\
& \operatorname{div}_{\mathcal{T}} \boldsymbol{u}^{(n+1)}=0 \\
& \partial_{t} \rho_{\mathcal{T}}^{(n+1)}+\operatorname{div}_{\mathcal{T}}\left((\rho \boldsymbol{u})^{(n+1)}\right)=0 \\
& \partial_{t}(\rho \boldsymbol{u})^{(n+1)}+\boldsymbol{c}_{\mathcal{E}}\left((\rho \boldsymbol{u})^{(n+1)}\right) \boldsymbol{u}^{(n+1)}-\Delta_{\mathcal{E}} u^{(n+1)}+\nabla_{\mathcal{E}} p^{(n+1)}=0,
\end{aligned}
$$

- Discrete time derivative:

$$
\partial_{t}(\phi)^{(n+1)}=\frac{1}{\delta t}\left(\phi\left(\cdot, t_{n+1}\right)-\phi\left(\cdot, t_{n}\right)\right), \phi \in H_{\mathcal{T}} \text { or } \phi \in \mathbf{H}_{\mathcal{E}}
$$

- Discrete operators:

$$
\operatorname{div}_{\mathcal{T}} \boldsymbol{U}, \quad \operatorname{div}_{\mathcal{T}} \rho \boldsymbol{U}, \quad \boldsymbol{c}_{\mathcal{E}}((\rho \boldsymbol{u})) \boldsymbol{u}, \quad-\Delta_{\mathcal{E}} \boldsymbol{u}, \quad \nabla_{\mathcal{E}} p \ldots
$$

The time-implicit MAC scheme

- Discrete equations
ρ, p piecewise constant on the primal mesh,
u piecewise constant on the dual mesh

$$
\begin{aligned}
& \rho^{(n+1)}, p^{(n+1)} \in L_{\mathcal{T}}, \boldsymbol{u}^{(n+1)} \in \mathbf{H}_{\mathcal{E}}, \\
& \operatorname{div}_{\mathcal{T}} \boldsymbol{u}^{(n+1)}=0, \\
& \partial_{t} \rho_{\mathcal{T}}^{(n+1)}+\operatorname{div}_{\mathcal{T}}\left((\rho \boldsymbol{u})^{(n+1)}\right)=0 \\
& \partial_{t}(\rho \boldsymbol{u})^{(n+1)}+\boldsymbol{c}_{\mathcal{E}}\left((\rho \boldsymbol{u})^{(n+1)}\right) \boldsymbol{u}^{(n+1)}-\Delta_{\mathcal{E}} u^{(n+1)}+\nabla_{\mathcal{E}} p^{(n+1)}=0,
\end{aligned}
$$

- Discrete operators $\operatorname{div}_{\mathcal{T}} \boldsymbol{u}, \quad \operatorname{div}_{\mathcal{T}}(\rho \boldsymbol{u}):$

For $K \in \mathcal{T}$:

$$
\begin{aligned}
& \operatorname{div}_{K} u^{(n+1)}=\frac{1}{|K|} \sum_{\sigma \in \mathcal{E}(K)}|\sigma| u_{K, \sigma}=0, \text { with } u_{K, \sigma}= \pm u_{\sigma}, \\
& \frac{1}{\delta t}\left(\rho_{K}^{(n+1)}-\rho_{K}^{(n)}\right)+\frac{1}{|K|} \sum_{\sigma \in \mathcal{E}(K)} F_{K, \sigma}^{(n+1)}=0,
\end{aligned}
$$

with $F_{K, \sigma}=|\sigma| \rho_{\sigma}^{\mathrm{up}} u_{K, \sigma}, \quad \rho_{\sigma}^{\mathrm{up}}:$ upwind approximation of ρ on $\sigma \Longrightarrow \rho_{K}^{(n+1)}>0$.

The time-implicit MAC scheme

Discrete equations, ρ, p piecewise constant on the primal mesh, and \boldsymbol{u} piecewise constant on the dual mesh

$$
\begin{aligned}
& \rho^{(n+1)}, p^{(n+1)} \in L_{\mathcal{T}}, \boldsymbol{u}^{(n+1)} \in \mathbf{H}_{\mathcal{E}} \\
& \operatorname{div}_{\mathcal{T}} u^{(n+1)}=0 \\
& \partial_{t} \rho_{\mathcal{T}}^{(n+1)}+\operatorname{div}_{\mathcal{T}}\left((\rho \boldsymbol{u})^{(n+1)}\right)=0 \\
& \partial_{t}(\rho \boldsymbol{u})^{(n+1)}+\boldsymbol{c}_{\mathcal{E}}\left((\rho \boldsymbol{u})^{(n+1)}\right) \boldsymbol{u}^{(n+1)}-\Delta_{\mathcal{E}} \boldsymbol{u}^{(n+1)}+\nabla_{\mathcal{E}} p^{(n+1)}=0,
\end{aligned}
$$

For $\sigma \in \mathcal{E}$:

$$
\frac{1}{\delta t}\left(\rho_{\sigma}^{(n+1)} \boldsymbol{u}_{\sigma}-\rho_{\sigma}^{(n)} \boldsymbol{u}_{\sigma}^{(n)}\right)+\frac{1}{\left|D_{\sigma}\right|} \sum_{\epsilon \in \overline{\mathcal{E}}\left(D_{\sigma}\right)} F_{\sigma, \epsilon}^{(n+1)} \boldsymbol{u}_{\epsilon}^{(n+1)}-(\Delta \boldsymbol{u})_{\sigma}^{(n+1)}+(\nabla p)_{\sigma}^{(n+1)}=0, \sigma \in \mathcal{E}_{\text {int }}
$$

ρ_{σ} and $F_{\sigma, \epsilon}$ chosen later.
centered approximation for $\boldsymbol{u}_{\epsilon}$,
with:
$-(\Delta \boldsymbol{u})_{\sigma}=$ two point flux FV approximation on the velocity meshes,
$\nabla_{\mathcal{E}} p^{(n+1)}=\sum_{\sigma \in \mathcal{E}_{\text {int }}}(\nabla p)_{\sigma}$,
$(\nabla p)_{\sigma}=\frac{|\sigma|}{\left|D_{\sigma}\right|}\left(p_{L}-p_{K}\right) \boldsymbol{n}_{K, \sigma}$,

Discrete duality, coercivity, inf-sup property

- Discrete divergence-gradient duality

$$
\int_{\Omega} q \operatorname{div}_{\mathcal{T}} \boldsymbol{v}+\int_{\Omega} \nabla_{\mathcal{E}} q \cdot \boldsymbol{v}=0
$$

- Coercivity
- $\|\boldsymbol{u}\|_{1, \mathcal{E}}=\sum_{i=1}^{d} \sum_{\sigma \in \mathcal{E}^{(i)}}\left|D_{\sigma}\right| \Delta_{\mathcal{E}^{(i)}} u^{(i)} u_{\sigma}=\left\|\nabla_{\mathcal{E}} u\right\|_{L^{2}(\Omega)^{d}} \geq C\|\boldsymbol{u}\|_{L^{2}(\Omega)^{d}}$
- Inf-sup property
- $\forall q \in L_{\mathcal{T}}, \exists \boldsymbol{v} \in H_{\mathcal{E}} ; q=\operatorname{div}_{\mathcal{T}} \boldsymbol{v}$ and $\|\boldsymbol{v}\|_{\mathcal{E}} \leq C\|p\|_{L^{2}(\Omega)^{d}}$ (discrete version of Necas' Lemma, Strickwerda '90, Blanc '05)

Discrete kinetic energy inequality, choice of ρ_{σ} and

- Discrete equations If a mass balance holds on the dual cells:

$$
\frac{\left|D_{\sigma}\right|}{2 \delta t}\left(\rho_{\sigma}-\rho_{\sigma}^{*}\right)+\sum_{\sigma \in \mathcal{E}} F_{\sigma, \epsilon}=0,
$$

and $\rho_{\sigma}>0$, then

$$
\frac{1}{\substack{2 \delta t}}\left(\rho_{\sigma} u_{\sigma}^{2}-\rho_{\sigma}^{*}\left(u_{\sigma}^{*}\right)^{2}\right)+\frac{1}{2\left|D_{\sigma}\right|} \sum_{\substack{\epsilon \in \tilde{\mathcal{E}}\left(D_{\sigma}\right) \\ \epsilon=\sigma \mid \sigma^{\prime}}} F_{\sigma, \epsilon} u_{\sigma} u_{\sigma^{\prime}}-(\Delta u)_{\sigma} u_{\sigma}+(\partial p)_{\sigma} u_{\sigma} \leq 0
$$

- Choice of ρ_{σ} and $F_{\sigma, \epsilon}$

Herbin, Kheriji, Latché 2013

$$
\left|D_{\sigma}\right| \rho_{\sigma}=\left|D_{K, \sigma}\right| \rho_{K}+\left|D_{L, \sigma}\right| \rho_{L},
$$

$$
F_{\sigma, \epsilon}=\left\lvert\, \begin{aligned}
& \frac{1}{2}\left(F_{K, \tau}+F_{K, \tau^{\prime}}\right) \text { if } \epsilon \perp \sigma, \epsilon \subset \tau \cup \tau^{\prime} \\
& \frac{1}{2}\left(-F_{K, \sigma}+F_{K, \sigma^{\prime}}\right) \text { if } \epsilon \subset K=\left[\sigma, \sigma^{\prime}\right]
\end{aligned}\right.
$$

Convergence analysis

Theorem : $\left(\mathcal{T}_{m}, \mathcal{E}_{m}\right), \delta t_{m}$ sequence of meshes and time steps $h_{m} \rightarrow 0, \delta t_{m} \rightarrow 0+$ suitable assumptions on the mesh,

There exists $\rho_{m}, \boldsymbol{u}_{m}$ solution to the scheme, and, up to a subsequence

$$
\begin{aligned}
& \rho_{m} \rightarrow \bar{\rho} \text { in } L^{p}(\Omega \times(0, T)), p \in[1,+\infty[\\
& \boldsymbol{u}_{m} \rightarrow \overline{\boldsymbol{u}} \text { in } L^{2}(\Omega \times(0, T))
\end{aligned}
$$

$(\bar{\rho}, \overline{\boldsymbol{u}})$ is a weak solution to (VDNS)

Sketch of proof

- A priori estimates on the approximate solutions $\rho_{m}, \boldsymbol{u}_{m} \rightsquigarrow$ existence of a solution to the scheme.
- Compactness thanks to discrete functional analysis tools: Up to a subsequence, $\rho_{m} \rightarrow \bar{\rho}, \boldsymbol{u}_{m} \rightarrow \overline{\boldsymbol{u}}$ for some norms.
- Passage to the limit in the weak form of the scheme, $\rightsquigarrow(\bar{\rho}, \overline{\boldsymbol{u}})$ is a weak solution to (VDNS).

Convergence analysis: estimates and existence

- 1-A priori estimates.
- Maximum principle (upwind discretization of the mass balance):

$$
\min _{\boldsymbol{x} \in \Omega} \rho_{0}(\boldsymbol{x}) \leq \rho \leq \max _{\boldsymbol{x} \in \Omega} \rho_{0}(\boldsymbol{x}) .
$$

- Kinetic energy identity + grad-div duality:

$$
\|\boldsymbol{u}\|_{L^{\infty}\left((0, T) \mathrm{L}^{2}(\Omega)^{d}\right)}+\|\boldsymbol{u}\|_{L^{2}\left((0, T) ; H_{\mathcal{E}, 0}^{1}\right)} \leq C
$$

- Estimate of the momentum balance convection form:

$$
\begin{aligned}
\left|\boldsymbol{C}_{\mathcal{E}}(\rho \boldsymbol{u}) \boldsymbol{v} \cdot \boldsymbol{w}\right| & \leq C_{\eta_{\mathcal{T}}}\|\rho\|_{L^{\infty}(\Omega)}\|\boldsymbol{u}\|_{L^{4}(\Omega)}\|\boldsymbol{v}\|_{L^{4}(\Omega)}\|\boldsymbol{w}\|_{1, \mathcal{E}, 0} \\
& \leq C_{\eta_{\mathcal{T}}}\|\rho\|_{L^{\infty}(\Omega)}\|\boldsymbol{u}\|_{1, \mathcal{E}, 0}\|\boldsymbol{v}\|_{1, \mathcal{E}, 0}\|\boldsymbol{w}\|_{1, \mathcal{E}, 0} .
\end{aligned}
$$

- 2 - Existence of a solution thanks to a topological degree argument.

"Easy case" : homogeneous fluid, constant density

- Estimate on u_{m} in $L^{2}\left(0, T ; H_{\mathcal{E}, 0}^{1}\right)$
- Estimate on $\partial_{t} u_{m}$

$$
\left\|\partial_{t} \boldsymbol{u}_{m}\right\|_{L^{1}\left(0, T ; E_{\mathcal{E}}^{\prime}\right)}=\sum_{n=0}^{N-1} \delta t\left\|\check{\partial}_{t} \boldsymbol{u}\right\|_{E_{\mathcal{E}}^{\prime}} \leq C \text { where }\|\boldsymbol{v}\|_{E_{\mathcal{E}}^{\prime}}=\max _{\substack{\boldsymbol{\varphi} \in E_{\mathcal{E}} \\\|\boldsymbol{\varphi}\|_{1, \mathcal{E}, 0} \leq 1}}\left|\int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{\varphi} \mathrm{d} \boldsymbol{x}\right|
$$

- Discrete Aubin-Simon theorem \Longrightarrow compactness on \boldsymbol{u}_{m} in $L^{2}\left((0, T), L^{2}(\Omega)\right)$

Discrete Aubin-Simon theorem $1 \leq p<+\infty, \quad B$ Banach space, $B_{m} \subset B$, dim $B_{m}<+\infty,\|\cdot\|_{X_{m}}$ and $\|\cdot\| Y_{m}$ norms on B_{m} s.t. : if $\left\|w_{m}\right\|_{X_{m}}$ is bounded then:
(i) $\exists w \in B ; w_{m} \rightarrow w$ in B up to a subsequence,
(ii) If $w_{m} \rightarrow w$ in B, and $\left\|w_{m}\right\|_{Y_{m}} \rightarrow 0$ then $w=0$.

Let $T>0$ and $\left(u_{m}\right)_{m \in \mathbb{N}}$ be a sequence of $L^{p}((0, T), B)$, piecewise constant on the time intervals, such that

1. $\left(\int_{0}^{T}\left\|u_{m}\right\|_{X_{m}}^{p} d t\right)_{m \in \mathbb{N}}$ is bounded,
2. $\left(\int_{0}^{T}\left\|\partial u_{m}\right\|_{y_{m}} d t\right)_{m \in \mathbb{N}}$ is bounded.

Then there exists $u \in L^{p}((0, T), B)$ such that, up to a subsequence, $u_{m} \rightarrow u$ in $L^{p}((0, T), B)$.

- $u_{m} \rightarrow \bar{u} \in L^{2}\left((0, T), L^{2}(\Omega)\right)+\left(u_{m}\right)_{m \in \mathbb{N}}$ bounded in $L^{2}\left((0, T), H_{\mathcal{E}, 0}^{1}\right)$
$\rightsquigarrow \bar{u} \in L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)$.

Variable density, estimate on the translates

- No estimate on $\partial_{t} u_{m}$
- Estimate on the time translates (continuous case: Boyer Fabrie '13 chapter 2);

$$
\int_{0}^{T-\tau} \int_{\Omega}\left|\boldsymbol{u}_{m}(\boldsymbol{x}, t+\tau)-\boldsymbol{u}_{m}(\boldsymbol{x}, t)\right|^{2} \mathrm{~d} \boldsymbol{x} \mathrm{~d} t \leq C_{\eta \mathcal{T}, T} \frac{\rho_{\max }}{\rho_{\min }}\left(\left\|\boldsymbol{u}_{m}\right\|_{L^{2}\left(\boldsymbol{H}_{\mathcal{E}}, 0\right.}^{3}+1\right) \sqrt{\tau+\delta t}
$$

Kolmogorov compactness theorem \rightsquigarrow compactness of \boldsymbol{u}_{m} in $L^{2}\left((0, T), L^{2}(\Omega)\right)$.

- $\sqrt{\tau+\delta t}:$ No estimate on time derivative.
- Will not generalize to the compressible case because of $\rho_{\text {min }}$

Variable density, convergence

- Convergence proof, sketch :
- $\boldsymbol{u}_{m} \rightarrow \overline{\boldsymbol{u}}$ in $L^{2}\left(0, T ; L^{2}(\Omega)^{d}\right), \rho_{m} \rightarrow \bar{\rho}$ weakly in $L^{2}\left(0, T ; L^{2}(\Omega)\right)$

$$
\begin{equation*}
\rightsquigarrow \int_{0}^{T} \int_{\Omega} \rho_{m} \boldsymbol{u}_{m} \psi \rightarrow \int_{0}^{T} \int_{\Omega} \bar{\rho} \overline{\boldsymbol{u}} \psi \text { for any } \psi \in L^{\infty}(\Omega \times(0, T))^{d} \tag{*}
\end{equation*}
$$

- In particular for $\boldsymbol{\psi}=\nabla_{m} \varphi$,

$$
\int_{0}^{T} \int_{\Omega} \operatorname{div}_{m}\left(\rho_{m} \boldsymbol{u}_{m}\right) \varphi \mathrm{d} \boldsymbol{x} d t=\int_{0}^{T} \int_{\Omega} \rho_{m} \boldsymbol{u}_{m} \nabla_{m} \varphi \mathrm{~d} \boldsymbol{x} d t \rightarrow \int_{\Omega}(\bar{\rho} \overline{\boldsymbol{u}}) \nabla \varphi \mathrm{d} \boldsymbol{x} d t
$$

(thanks to weak BV estimate)
$-\check{\partial}_{t} \rho_{m} \rightarrow \partial_{t} \rho, \check{\partial}_{t}\left(\rho_{m} \boldsymbol{u}_{m}\right) \rightarrow \partial_{t}(\rho \boldsymbol{u}), \operatorname{div} \boldsymbol{u}_{m} \rightarrow \operatorname{div} \overline{\boldsymbol{u}} \Rightarrow \operatorname{div}_{m} \overline{\boldsymbol{u}}=0$ (linear operators)

- $\rho_{m} \boldsymbol{u}_{m}$ bounded in $L^{2}\left(0, T ; L^{2}(\Omega)^{d}\right) \Longrightarrow \rho_{m} \boldsymbol{u}_{m}$ converges weakly in $L^{2}\left(0, T ; L^{2}(\Omega)^{d}\right)$. Hence by $(*), \rho_{m} \boldsymbol{u}_{m} \rightarrow \bar{\rho} \overline{\boldsymbol{u}}$ weakly in $L^{2}\left(0, T ; L^{2}(\Omega)^{d}\right)$ and since $\boldsymbol{u}_{m} \rightarrow \boldsymbol{u}$ in $L^{2}\left(0, T ; L^{2}(\Omega)^{d}\right)$

$$
\int_{\Omega} \rho_{m} \boldsymbol{u}_{m} \otimes \boldsymbol{u}_{m} \nabla \boldsymbol{\varphi} \rightarrow \int_{\Omega} \bar{\rho} \overline{\boldsymbol{u}} \otimes \boldsymbol{u} \nabla \boldsymbol{\varphi}
$$

Variable density case, convergence, alternate proof

- Compactness of ρ_{m} in $L^{2}\left(H^{-1}\right)$ thanks to Aubin-Simon with $B=H^{-1}(\Omega) X=L^{2}(\Omega)$ $Y=W^{-1,1}(\Omega)$
- $X=L^{2}(\Omega)$ compactly embedded in $B=H^{-1}(\Omega)$
- $\partial_{t} \rho_{m}$ bounded in $L^{1}\left(0, T, W^{-1,1}(\Omega)\right)$
- ρ_{m} bounded in $L^{2}\left(0, T, L^{2}(\Omega)\right) \rightsquigarrow \rho_{m}$ compact in $L^{2}\left(0, T, H^{-1}(\Omega)\right)$
- \boldsymbol{u}_{m} bounded in $L^{2}\left(0, T, H_{0}^{1}(\Omega)\right)$ hence (weak strong product)
- $\rho_{m} \boldsymbol{u}_{m} \rightarrow \bar{\rho} \bar{u}$ weakly in L^{1}.
- Same ideas for the convergence of $\rho_{m} \boldsymbol{u}_{m} \otimes \boldsymbol{u}_{m} \ldots$

Thierry Gallouët, 2017

Recent and on going work

- Locally refined grids : with Chénier, Eymard, Gallouët for modified MAC, Latché, Piar, Saleh for RT grids.
- Stability and weak consistency for the full NS equations (with D. Grapsas, W. Kheriji, J.-C. Latché)
- Convergence for steady-state barotropic NS $(\gamma \geq 3)$ (with J.-C. Latché, T. Gallouët and D. Maltese)
- Error estimates for barotropic NS, adaptation of strong weak uniqueness (with D. Maltese, and A. Novotny).
- Stability and weak consistency for the Euler equations with higher order schemes and entropy consistency (with T. Gallouët, J.-C. Latché, N. Therme)
- Low Mach limit for barotropic NS (with J.-C. Latché, K. Saleh).
- Convergence of the fully discrete pressure correction scheme. TODO
- Convergence for the time-dependent barotropic compressible Navier-Stokes. TODO

