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Introduction

Fast waves in hyperbolic problem

OW +) AW, £)o W =0
J
Smooth solutions are non-linear waves moving with velocity A;(W).

Two time scales pb :

d2sets F,S s.t Ak >> N\, keF,je$s

@ Usually associated to the existence of a small parameter
@ The "“limit" system € — 0 is no more hyperbolic : singular limit
@ Usually associated to an stationary incompressible constraint :

3L st L(W° =0

why “random” interaction fast waves = incompressible constraint ?
why non-linear interactions of fast waves do not modify the “slow” dynamics 7
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Introduction

Singular limit of hyperbolic PDEs

Let W € RN solution of the hyperbolic system with a _

1
oW + 35 [Ai(W.e) + ECJ]&(JW =0
W(0, x,e) = Wo(x,¢)

What is the behavior of the solutions when ¢ — 0 ?

1
Let n be a arbitrary direction, then some eigenvalues of >~ n;j(A; + - ;) are of
€

1
the form a, + SOk +o0 while the others (kernel of _ n;C;) are simply ax

What is the behavior of the solutions when Slow and Fast waves co-exist ?
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Introduction

Singular limit of hyperbolic PDEs : Slow limit

1

atW+ZAj(W,a)axjw+Echaxjwzo
J J

LW =3, GO, W has to be O(¢)

Look for the solution as W = Wy + eW; with LW = 0, obtain :

DeWo + > Ai(W,2)d Wo + LW, = O(¢)
J

and the solutions converge to Wy defined by :

LW, =0
0: Wy +]PZJ-AJ'(W0,O)3XJ.W =0

P projection on the kernel of L
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Introduction

But the system has also a fast limit

atw+zAj(w,g)axjw+§chaxjwzo
J J

Let us do the simple change of variable : t =e7 :
1 1
gaTw+ZA,-(W,s)anWJr EZ GO, W =0
J J

and when ¢ — 0 the limiting form becomes :

W+ GoW =0

J

. . .1
Solution are fast waves moving at velocity —
€

Hervé Guillard Toulouse, November 21st 2017- 5



Low Mach number flows

First example : Low Mach number flows

Superposition incompressible 4+ acoustics

Compressible Euler equations :

Orp+ div pu+ =0 p:-p

Opu+ divpu@u+Vp=0 u

8ep+ u.NVp+ pa® divu+ =0 p:_

u

p

Otp+ divpu=20
. 1
Orpu + div pu @ u + ?szo

Op+uNp+pa®divu=0
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Low Mach number flows

First example : Low Mach number flows

Superposition incompressible + acoustics

The incompressible limit :

f=fy+ M.A + M?h

o O(1/M?): Vpy=0
e if0ipo=0— divuo =0
e ifDpo/Dt = 0 — po = constant

o O(1/M.) same analysis
e O(1) poDug/Dt+Vp, =0

Incompressible Euler equations

pDu/Dt +Vp =0
divu =0

R
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Low Mach number flows

First example : Low Mach number flows

Superposition incompressible 4+ acoustics

Incompressible limit is - the unique low Mach limit of compressible eqs J

@ hidden assumption in incompressible asymptotic analysis
o time scale t, = L, /u, : large time scale
@ choose instead t, = L./a. : short time scale

1
gatp—I— div pu+ =10

1 . 1
scaling becomes gatpu + div pu®@ u+ WVP =0

*

1
gatp +uVp+pa®divu=0

Hervé Guillard Toulouse, November 21st 2017- 8



Low Mach number flows

First example : Low Mach number flows

Superposition incompressible + acoustics

Asymptotic analysis of the acoustic limit

o O(1/M?): Vpy=0
o O(1/M,)
@ Otpo = Otpo =0
e poOiug +Vpr =0
) 0(1) D Oip1 + poagv.uO =0

Linear Acoustic equations

poO:u +Vp=0

0:p + poa3 divu =0

R
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Low Mach number flows

Incompressible 4+ Acoustic superposition

@ Provisional conclusion General solution = Slow (incompressible) + fast
(Acoustic) component

@ Does acoustic-acoustic interactions are able to modify the dynamics of the
incompressible component ?
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Low Mach number flows

Acoustic stirring

Not only a jet can generate sound but also sound can generate a jet!
S. J., Lighthill, Acoustic streaming, J. Sound Vibr. 61, pp. 391418 (1978)

Acoustic
beam

circular 3§ §
opening ©

Figure: Reproduced from : V. Botton, , T. Cambonie, B. Moudjed, S. Miralles, D. Henry
and H. Ben Hadid : How to drive a square flow in a liquid: acoustic stirring, 7th
International Conference on Computational Methods for Coupled Problems in Science
and Engineel’., ,'une 2017

. 29 “
2 ]
I &’m‘- . Hervé Guillard Toulouse, November 21st 2017- 11




Reduced MHD

2nd example : reduced MHD in nuclear fusion

Deuterium tritium fusion

— e
repulsion Tepulsion

) 15kev
Teritium) D (deuterium)

Goal : controlled nuclear fusion 1200m
“Lawson” criterion : ntg T > Q?ﬁ\. eieertoree

5.10'm=3 s keV

A

|7 80%energy

20% enert
M * al V=4vy
- O e—

3.5 Mev aparticule

Tokamaks :  Toroidal cham-
ber where a very hot plasma
(150M °K) is confined thanks to
very large magnetic field (200 K
x earth magnetic field)
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Reduced MHD

THE (ideal) MHD MODEL

Hydrodynamics :

9 v (pu)=0

ot
0
apu+V~(pu®u)+Vp: Fi
10}
—p+u-Vp+4pV-u=0
ot
+ Maxwell (Maxwell-Ampére) equations :

0

—B E =

En +V x 0

P +VxB=1J

systems coupled by Ohm's law E+u x B=0
and the def of the Lorentz force F =V x B x B

R
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Reduced MHD

THE MHD MODEL

First-order Hyperbolic system intensively studied from a mathematical and numerical view point
© Nice properties :

e existence of a conservative form, existence of an entropy
e symmetry form

e hyperbolic

o eigensystem with explicit analytic expression

@ Not so nice :

e not strictly hyperbolic
o some fields are neither gnl nor Id
e existence of the involution V- B =0

. > Qg{
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Reduced MHD

MHD waves

Hyperbolic system with 3 different types of waves (4+ material or entropy waves) If
n is the direction of propagation of the wave

o Fast Magnetosonic waves : A\f = u.n+ Cr

1
C2=3(V2 + G+ IVET P~ 4VEC))

o Alfvén waves : \f = u.n+ C4 C3 = (B.n)?/p
@ Slow Magnetosonic waves : A\s = u.n+ Cs

1
C2= (V2 + i~ (V2 + 37— AVEC))
va=|B?/p va : Alfvén speed
VZ2=n~p/p V; : acoustic speed

R
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Reduced MHD

Transverse MHD waves

propagation speed depends on the direction w r to the magnetic field.

If n- B =0 (transverse waves) : |

o Alfvén waves : A\p =0
@ Slow Magnetosonic waves : As =0
o Fast Magnetosonic waves : \g = +=Cg with CE— = V,_? + vf‘

only the Fast Magnetosonic waves survive ! J
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Reduced MHD

Limit of the MHD for small aspect ratio tokamaks

@ Tokamak geometry

2%R,

@ Large dominant toroidal magnetic field B, /B, = ¢ << 1
@ equivalent to e = a/Ry is small
@ small parameter is here a geometrical parameter

R
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Reduced MHD

Scaled full MHD equations

o 1
SoVLH (Ve Vive = (B V1Bl + V.i(B*/2+q)— 0B, + “ViB: =0() (32)

0 1

8782+(VJ_-VJ_)BZ+BZVJ_-VJ_+ EVJ_’VJ_ = 0(¢) (3.1)
0

EBJ_ +(ve-V)BL —(BL-Vi)vy +B1V) v —0vy =0() (3.3)
1

0
—(z=p+vL -Vip)+V L u=0
vp Ot

Indeed of the form :

<
}7

1
8tW+ZAj(W,5)3ij+g]LW:O with LW =
j

OO|_<]O
o oo

oo oo
oo oo
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Reduced MHD

Reduced MHD model

Plug these assumptions into the full compressible MHD system and obtain (after
some calculus) :

14]
VLT (vi-Vi)vi —(BL-Vi)BL+V.m —-

1o}
EBJ_“F(VJ_’VJ_)BJ_—(BJ_‘VJ_)VJ_ —-:0

Vi-vy =V, -B, =0

In the presence of a large dominant magnetic field, the dynamic can be described by

@ 2D incompressible MHD in the transverse direction and

) _ propagating in the direction of the dominant magnetic field.
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Reduced MHD

Reduced MHD and fast transverse magnetosonic wave

o Fast transverse magnetosonic waves are absent from reduced MHD
@ incompressible 2D model in the transverse direction !
@ Aerodynamics,

o small parameter € = Mach number
e Acoutics vs incompressible

e MHD

o small parameter ¢ = Tokamak aspect ratio
e Fast transverse magnetosonic waves vs reduced MHD
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Reduced MHD

Singular limit of hyperbolic PDEs

Let W € RN solution of the hyperbolic system with a _

1
oW + ZJ[AJ-(Wﬁ) + ECJ]OXJW =0
W(0, x,e) = Wo(x,¢)

What is the behavior of the solutions when ¢ — 0 ?

How Slow and Fast waves co-exist ?
Why do we think that we can split the fast and slow phenomena 7
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Reduced MHD

An Explicit linear example |

Consider the - system

Q +a.Vr +1divu =0
ot €

Ou +a.Vu +lVr =0
ot €
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Reduced MHD

Warm-up : Explicit linear example Il

Compact form :

1
Oiv + HV+E Lv=0

r V-u
v= Lv =
Hv = a.Vv is a constant velocity linear advection operator
In Fourier space

W0 i + L (e =0 for ke 22 (5)

Notations :

where the matrix H(k) + 1/elL(k) is equal to :
a.k kl/&‘ kz/&‘

ki/e ak 0 (6)

ka/e 0 a.k

Hervé Guillard
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Reduced MHD

This matrix is diagonalizable, its eigenvectors are :

1 1 1 0
si(k) = 2 —ki/ k| |, sak)= Tk] —ko
—ka/ | k| ky
(7)
1 1
o ss(k)=—| k/|k|
2\ ko/| k|
with associated eigenvalues \; = a.k — %, X = ak and \3 = ak + %

Note : - ;in physical space s,(k) corresponds to constant density
(Vr =0) and div free vectors (V . u =0)

- Y
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Reduced MHD

Explicit linear example Il

vk, t) =
%W’O) |I;<1|ﬁ( 00— |l;<2|0("’ 0))e @ k=1K1/%5, (k)
+‘17|(—kzﬁ(k, 0) + kio(k,0))e~"@Kts, (k)
+\1[(r(k 0) + |I;(1| Gi(k,0) + | k2|O(k’0))e_i(a'k+|k‘/5)t53(k)
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Reduced MHD

Explicit linear example |V

Fast oscillatory component ¢(k, t, t/e)

K]
1 5 —ia.k- t
(F(k.0) — 3 700k.0) ~ Erokone ™= e
i (®)
e L]
- R i@k
(.0 + 100k, 0) + Eokone e Mss(h)
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Reduced MHD

Explicit linear example V

Slow component belonging to the kernel of L.

1 .
(k. 7) = 1y (—ke(k.0) + kio(k 0))e~'a-kts, (k)

This component belongs to the kernel of I and satisfies the incompressible system

ov
8ts + Hv, =0
Lvs=0
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Reduced MHD

Explicit linear example VI

What is the behavior of the solutions when ¢ — 0 7

For any e the solution is composed of a superposition of fast and slow waves.
Does the solution converge toward something when ¢ — 0 7

@ In a point-wise : - : faster and faster oscillations

o In a weak sense (average or distribution) [WES|
| k|
+i(—)t
e e =0
thus the oscillatory part of the solution — 0
and the solutions converge (weakly) toward vq that satisfies the
incompressible system :

aVO

024 Hyvo=0
3t+ Vo
LVOZO

Hervé Guillard
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Reduced MHD

Is it true also for non-linear systems ?

Can we discard the fast component of the solution ?

@ How to deal with non-linear interactions of the fast waves :
non linear system contain quadratic terms e.g : Q(U,U) = (v-V)v

W= WSlow + WFast
thus

Q(W7 W) = Q( WSIOW7 WSlow) + Q( WSlowu WFast) + Q(WFast P WSIOW)
+Q(WFast; WFast)

Can we prove that non-linear interaction of fast waves : Q(Wast , Wrast ) is not
important for the slow dynamics of the system 7

Hervé Guillard
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Reduced MHD

Is it true also for non-linear systems ?

Can we discard the fast component of the solution ?

@ How to deal with non-linear interactions of the fast waves :
non linear system contain quadratic terms e.g : Q(U,U) = (v-V)v

W= WSlow + WFast

- Q( WSIOW7 WSlow) + Q( WSlowu WFast) + Q(WFast ) WSIOW)
+Q(WFast; WFast)

Can we prove that non-linear interaction of fast waves : Q(Wast , Wrast ) is not
important for the slow dynamics of the system 7

Counter-example : Turbulence and Reynolds stresses !

A.
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Interaction of fast waves

Some notations

The variables :  ¥° = (B, v ,B7)  or = (p°,v)*

The equations :  9,%°+ H(¥*,¥°)+ é Lv*® = O(e)

H(¥,¥') is a non-linear operator (at most quadratic)

(VJ_'VL)BZ“FBZVL'VJ_
H(V,”f/)z (VJ_'VJ_)V—(BJ_'VJ_)BJ_+VJ_(82/2+q)_aZBJ_
(VJ_'VJ_)BJ__(BJ_'VJ_)VJ_+BJ_VJ_'VJ_—aZVJ_

LY is the constant coefficient linear operator
V- "N

LY =| VB,
0

<3
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Interaction of fast waves

The proof strategy

S. Schochet, E. Grenier, P.L.Lions-N.Masmoudi, B. Desjardins...

@ Introduce a filtered variable ¥ = F¥¢ to remove the oscillations

@ Prove that the filtered variable #° — 7° satisfying some equation
V% + H(¥°,¥°) = 0 with H time-independent.

© Prove that the original variable ¥¢ — F1y°

@ Since ]—'_1“170 — P170 where P is the L? projection on the kernel of L

Ve —>? — P¥° and 7 satisfies :
%V + PH°, 7% =0
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Interaction of fast waves

The wave operator L

V-v
Ly = VB,
0

o [%(Q) x (L?(R2))? = KerL & ImL
KerL = {(Bz, v) B, = cte,V-v =0}
InL = {(B,,v); [ B, = 0,30v = Vo)
@ Spectrum of ]L on ImlL
Let {4k, k > 1} the eigenvectors of the Laplace operator

— Bk = Xt A >0
then the eigenvectors of LL are :
(o
+ . + : +
o = Vi with L = £iX P
+—
I)\k
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Interaction of fast waves

The solution operator £ of the wave equation

Let £(t) be the semi-group (L(t), t € R) defined by
L(t) = exp(—Lt) (9)

In other words
o .
Y (t,x) = L(t)Vo(x) means that B +L¥ =0 with  7(t=0,x) = ¥o(x)

Using the expression of the spectrum of I we can have an explicit representation of the solution
operator £(t) : Let P be the L? projection on KerlL

on the velocity component £, (t)7

eV
if ¥—PY¥ = Zakicbki then L,(t)¥ =wv, + Z:I:akiei"\ktka
kox kot e

a, = (a])* conjugate (real functions)

2 ]
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Interaction of fast waves

C

Step 1 : Equation satisfied by the filtered variable Y4

1
OVE+ H(VE,VE)+ = LYE =0(e)
€
introduce the filtered variable ¥° = £(—t/e)¥®
with
L(t) = exp(—Lt)
From the definition of £, we deduce that

e L .e ave
= 29 (-t
ot c Tt
L

= ;«/75 — L(—t/e)H(L(t/e)V ", L(t)e) V") — E(—t/s)%ﬁ(t/a)”is + O(e)
= —L(—t/e)H(L(t/e) ¥, L(t/e) V) + O(e)

since £(t/e) and L commute.

Initial data : ¥ (t = 0) = ¥°(t = 0) since £(0) is the identity

- s
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Interaction of fast waves

Limit Equation

Step 2 : Limit Equation for the filtered variable e J

~E
% + L(—t/e)H(L(t/e) V5, L(t)e) V) = O(e)
70 = lime_yo ¥
~0
oY ~0 .~0

—_— Y,¥Y)=0

ot +H( )
where 7-[(“170, V~0) = lims—o E(f1.“/5)1[-]I(£(t/z-:)7707 L(t/s)fo) is a time-independent operator
whose expression can be computed explicitly (see next slides)

Step 3 : Go back to the unfiltered variable ¥© J

Ve o L(t)e) P
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Interaction of fast waves

Limit for the original variable

But we have i ”
L(t/e)V — PV

since
L(t/e)7” = L(t)e)(PT° + Y taferMt/eof) — P77
k,+

. .. ~0 .
Final result : weak limit of ¥° = P¥ " that satisfies

op7°
ot

+ PR, 7% =0
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Interaction of fast waves

. . . . . A
Explicit form of the limit equation for P¥

example : computation of the quadratic term Q(Wras; , Wragt ) = (v - V)vy = (v1);0ve

(Lo(t/E)QY - V)Lu(t/e)QY =

{Z(a ei\kt/e _ a; e—:Akt/s)vw 1oAY, (a eiNit/e _ a) e—:A,t/s)vd}/

Y

} =
Z[_a a; el(/\k+)\,)t/s _ ak 3/ e I(>\k+>\/ t/s] (vd)k) -0: (v,(r/)l)

+Z[ak ei(A— >\k)f/5+a 3 — el Mk— >\/)f/6] (V¢k)1 i (Vi)
k,l

lim.—o (distribution) of all the terms is 0 except when k = / and we get :

+
(EA/EIQY VIEA/QY —+ S 3+ 7 )35 (Ve (T) = > B vava)
k

On the average (weak limit) fast k-waves interact with l-waves only if k =/ and the result is a
gradient

the result of the interaction between fast waves and slow dynamics is a gradient ! J

A.
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Interaction of fast waves

Summary

When it goes well :

Weak limit of the solutions of _ systems :

1

{ DWW + 3 Ai(W, )0 W + LW =0

€
W(0, x,e) = Wo(x,¢)

are the solutions of the _ system

AW +PY; AW, 000 W =0
LW=0
W(0, x) = PWoy(x)

where P is the projection on ker(L).
In general for these systems :

decoupling between fast waves and slow dynamics J
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Interaction of fast waves

Comments and perspectives

Understanding of the interactions between fast and slow dynamics

Some implications for numerical methods :
e compressible solvers are usually inaccurate when computing low Mach flows
e modification are required : this workshop !

@ At present, modification of compressible solvers allows to compute near
incompressible flows

@ | do not know if they can compute low Mach number interaction of acoustic

and incompressible phenomena
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