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Fast waves in hyperbolic problem

∂tW ε +
∑
j

Aj(W ε, ε)∂xjW
ε = 0

Smooth solutions are non-linear waves moving with velocity λj(W ).

Two time scales pb :

∃ 2 sets F ,S s.t λk >> λj , k ∈ F , j ∈ S

Usually associated to the existence of a small parameter
The “limit” system ε→ 0 is no more hyperbolic : singular limit
Usually associated to an stationary incompressible constraint :

∃ L s.t L(W 0) = 0

why “random” interaction fast waves ⇒ incompressible constraint ?
why non-linear interactions of fast waves do not modify the “slow” dynamics ?
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Singular limit of hyperbolic PDEs

Let W ∈ IRN solution of the hyperbolic system with a large operator{
∂tW +

∑
j [Aj(W , ε) +

1

ε
Cj ]∂xjW = 0

W (0, x , ε) = W 0(x , ε)

What is the behavior of the solutions when ε→ 0 ?

Let n be a arbitrary direction, then some eigenvalues of
∑

j nj(Aj +
1

ε
Cj) are of

the form ak +
1

ε
ck → ±∞ while the others (kernel of

∑
j njCj) are simply ak

What is the behavior of the solutions when Slow and Fast waves co-exist ?
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Singular limit of hyperbolic PDEs : Slow limit

∂tW +
∑
j

Aj(W , ε)∂xjW +
1

ε

∑
j

Cj∂xjW = 0

LW =
∑

j Cj∂xjW has to be O(ε)

Look for the solution as W = W 0 + εW 1 with LW 0 = 0, obtain :

∂tW 0 +
∑
j

Aj(W , ε)∂xjW 0 + LW 1 = O(ε)

and the solutions converge to W 0 defined by :{
LW 0 = 0
∂tW 0 + P

∑
j Aj(W 0, 0)∂xjW = 0

P projection on the kernel of L
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But the system has also a fast limit

∂tW +
∑
j

Aj(W , ε)∂xjW +
1

ε

∑
j

Cj∂xjW = 0

Let us do the simple change of variable : t = ετ :

1

ε
∂τW +

∑
j

Aj(W , ε)∂xjW +
1

ε

∑
j

Cj∂xjW = 0

and when ε→ 0 the limiting form becomes :

∂τW +
∑
j

Cj∂xjW = 0

Solution are fast waves moving at velocity
1

ε
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First example : Low Mach number flows
Superposition incompressible + acoustics

Compressible Euler equations :

∂tρ+ div ρu+ = 0 ρ = ρ∗ ρ

∂tρu + div ρu ⊗ u +∇p = 0 u = u∗ u

∂tp + u.∇p + ρa2 div u+ = 0 p = ρ∗(a∗)
2 p

xi = L∗ xi ; t = L∗/u∗ t ε = u∗/a∗

∂tρ+ div ρu = 0

∂tρu + div ρu ⊗ u +
1

ε2
∇p = 0

∂tp + u.∇p + ρa2 div u = 0
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First example : Low Mach number flows
Superposition incompressible + acoustics

The incompressible limit :

f = f0 + M∗f1 + M2
∗ f2

O(1/M2
∗) : ∇p0 = 0

if∂tp0 = 0→ div u0 = 0
ifDρ0/Dt = 0→ ρ0 = constant

O(1/M∗) same analysis

O(1) ρ0Du0/Dt +∇p2 = 0

Incompressible Euler equations

ρDu/Dt +∇p = 0
div u = 0
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First example : Low Mach number flows
Superposition incompressible + acoustics

Incompressible limit is not the unique low Mach limit of compressible eqs

hidden assumption in incompressible asymptotic analysis

time scale t∗ = L∗/u∗ : large time scale

choose instead t∗ = L∗/a∗ : short time scale

scaling becomes



1

ε
∂tρ+ div ρu+ = 0

1

ε
∂tρu + div ρu ⊗ u +

1

M2
∗
∇p = 0

1

ε
∂tp + u.∇p + ρa2 div u = 0
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First example : Low Mach number flows
Superposition incompressible + acoustics

Asymptotic analysis of the acoustic limit

f = f0 + M∗f1 + M2
∗ f2

O(1/M2
∗) : ∇p0 = 0

O(1/M∗)
∂tp0 = ∂tp0 = 0
ρ0∂tu0 +∇p1 = 0

O(1) : ∂tp1 + ρ0a
2
0∇.u0 = 0

Linear Acoustic equations

ρ0∂tu +∇p = 0

∂tp + ρ0a
2
0 div u = 0
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Incompressible + Acoustic superposition

Provisional conclusion General solution = Slow (incompressible) + fast
(Acoustic) component

Does acoustic-acoustic interactions are able to modify the dynamics of the
incompressible component ?
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Acoustic stirring

Not only a jet can generate sound but also sound can generate a jet!
S. J., Lighthill, Acoustic streaming, J. Sound Vibr. 61, pp. 391418 (1978)

Figure: Reproduced from : V. Botton, , T. Cambonie, B. Moudjed, S. Miralles, D. Henry
and H. Ben Hadid : How to drive a square flow in a liquid: acoustic stirring, 7th
International Conference on Computational Methods for Coupled Problems in Science
and Engineering, June 2017
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2nd example : reduced MHD in nuclear fusion

Goal : controlled nuclear fusion
“Lawson” criterion : nτET >
5.1021m−3 s keV

Tokamaks : Toroidal cham-
ber where a very hot plasma
(150M oK ) is confined thanks to
very large magnetic field (200 K
x earth magnetic field)
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THE (ideal) MHD MODEL

Hydrodynamics :
∂

∂t
ρ+∇ · (ρu) = 0

∂

∂t
ρu +∇ · (ρu ⊗ u) +∇p = FL

∂

∂t
p + u · ∇p + γp∇ · u = 0

+ Maxwell (Maxwell-Ampère) equations :

∂

∂t
B +∇× E = 0

�
�
��1

c2

∂

∂t
E +∇× B = J

systems coupled by Ohm’s law E + u × B = 0

and the def of the Lorentz force FL = ∇× B × B
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THE MHD MODEL

First-order Hyperbolic system intensively studied from a mathematical and numerical view point

1 Nice properties :

existence of a conservative form, existence of an entropy
symmetry form
hyperbolic
eigensystem with explicit analytic expression

2 Not so nice :

not strictly hyperbolic
some fields are neither gnl nor ld
existence of the involution ∇ · B = 0
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MHD waves

Hyperbolic system with 3 different types of waves (+ material or entropy waves) If
n is the direction of propagation of the wave

Fast Magnetosonic waves : λF = u.n ± CF

C 2
F =

1

2
(V 2

t + v2
A +

√
(V 2

t + v2
A)2 − 4V 2

t C
2
A)

Alfvén waves : λF = u.n ± CA C 2
A = (B.n)2/ρ

Slow Magnetosonic waves : λS = u.n ± CS

C 2
S =

1

2
(V 2

t + v2
A −

√
(V 2

t + v2
A)2 − 4V 2

t C
2
A)

v2
A = |B|2/ρ vA : Alfvén speed
V 2
t = γp/ρ Vt : acoustic speed

Hervé Guillard Toulouse, November 21st 2017- 15



Introduction Low Mach number flows Reduced MHD Interaction of fast waves

Transverse MHD waves

propagation speed depends on the direction w r to the magnetic field.

If n · B = 0 (transverse waves) :

Alfvén waves : λF = 0

Slow Magnetosonic waves : λS = 0

Fast Magnetosonic waves : λF = ±CF with C 2
F = V 2

t + v2
A

only the Fast Magnetosonic waves survive !
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Limit of the MHD for small aspect ratio tokamaks

1 Tokamak geometry

2 Large dominant toroidal magnetic field B⊥/Bz = ε << 1

3 equivalent to ε = a/R0 is small

4 small parameter is here a geometrical parameter
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Scaled full MHD equations

∂

∂τ
v⊥ + (v⊥ · ∇⊥)v⊥ − (B⊥ · ∇⊥)B⊥ +∇⊥(B2/2 + q)− ∂zB⊥ +

1

ε
∇⊥Bz = O(ε) (3.2)

∂

∂τ
Bz + (v⊥ · ∇⊥)Bz + Bz∇⊥ · v⊥ +

1

ε
∇⊥ · v⊥ = O(ε) (3.1)

∂

∂τ
B⊥ + (v⊥ · ∇⊥)B⊥ − (B⊥ · ∇⊥)v⊥ + B⊥∇⊥ · v⊥ − ∂zv⊥ = O(ε) (3.3)

1

γp
(
∂

∂τ
p + v⊥ · ∇⊥p) +∇⊥.u = 0

Indeed of the form :

∂tW +
∑
j

Aj (W , ε)∂xj W +
1

ε
LW = 0 with LW =


0 ∇⊥ 0 0
∇⊥· 0 0 0

0 0 0 0
0 0 0 0

W
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Reduced MHD model

Plug these assumptions into the full compressible MHD system and obtain (after
some calculus) :

∂

∂τ
v⊥ + (v⊥ · ∇⊥)v⊥ − (B⊥ · ∇⊥)B⊥ +∇⊥π − ∂zB⊥

∂

∂τ
B⊥ + (v⊥ · ∇⊥)B⊥ − (B⊥ · ∇⊥)v⊥ − ∂zv⊥ = 0

∇⊥ · v⊥ = ∇⊥ · B⊥ = 0

In the presence of a large dominant magnetic field, the dynamic can be described by

2D incompressible MHD in the transverse direction and

Alfvén waves propagating in the direction of the dominant magnetic field.
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Reduced MHD and fast transverse magnetosonic wave

Fast transverse magnetosonic waves are absent from reduced MHD

incompressible 2D model in the transverse direction !

Aerodynamics,

small parameter ε = Mach number
Acoutics vs incompressible

MHD

small parameter ε = Tokamak aspect ratio
Fast transverse magnetosonic waves vs reduced MHD
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Singular limit of hyperbolic PDEs

Let W ∈ IRN solution of the hyperbolic system with a large operator{
∂tW +

∑
j [Aj(W , ε) +

1

ε
Cj ]∂xjW = 0

W (0, x , ε) = W 0(x , ε)

What is the behavior of the solutions when ε→ 0 ?

How Slow and Fast waves co-exist ?
Why do we think that we can split the fast and slow phenomena ?
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An Explicit linear example I

Consider the linear system

∂r

∂t
+a.∇r +

1

ε
divu = 0

∂u
∂t

+a.∇u +
1

ε
∇r = 0
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Warm-up : Explicit linear example II

Compact form :

∂tv + Hv +
1

ε
Lv = 0

Notations :

v =

(
r
u

)
Lv =

(
∇ · u
∇r

)
Hv = a.∇v is a constant velocity linear advection operator

In Fourier space

∂v̂(k)

∂t
+ i [Ĥ(k) +

1

ε
L̂ (k)]v̂(k) = 0 for k ∈ Z 2 (5)

where the matrix Ĥ(k) + 1/εL̂(k) is equal to :
a.k k1/ε k2/ε

k1/ε a.k 0

k2/ε 0 a.k

 (6)
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This matrix is diagonalizable, its eigenvectors are :

s1(k) =
1√
2

 1
−k1/ | k |
−k2/ | k |

 , s2(k) =
1

| k |

 0
−k2

k1



, s3(k) =
1√
2

 1
k1/ | k |
k2/ | k |


(7)

with associated eigenvalues λ1 = a.k − | k |
ε
, λ2 = a.k and λ3 = a.k +

| k |
ε

.

Note : L̂s2(k) = 0 ;in physical space s2(k) corresponds to constant density

(∇r = 0) and div free vectors (∇ . u = 0)
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Explicit linear example III

v̂(k , t) =

1√
2

(r̂(k , 0)− k1

| k | û(k , 0)− k2

| k | v̂(k , 0))e−i(a.k−|k |/ε)ts1(k)

+
1

| k | (−k2û(k , 0) + k1v̂(k , 0))e−ia.k ts2(k)

+
1√
2

(r̂(k , 0) +
k1

| k | û(k , 0) +
k2

| k | v̂(k , 0))e−i(a.k+|k |/ε)ts3(k)
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Explicit linear example IV

Fast oscillatory component v̂ f (k , t, t/ε)

1√
2



(r̂(k , 0)− k1

| k | û(k , 0)− k2

| k | v̂(k , 0))e
−i(a.k−

| k |
ε

)t
s1(k)

+

(r̂(k , 0) +
k1

| k | û(k , 0) +
k2

| k | v̂(k , 0))e
−i(a.k+

| k |
ε

)t
s3(k)

(8)
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Explicit linear example V

Slow component belonging to the kernel of L

v̂ s(k , τ) =
1

| k |
(−k2û(k , 0) + k1v̂(k , 0))e−ia.k ts2(k)

This component belongs to the kernel of L and satisfies the incompressible system
∂v s

∂t
+ Hv s = 0

Lv s = 0
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Explicit linear example VI

What is the behavior of the solutions when ε→ 0 ?
For any ε the solution is composed of a superposition of fast and slow waves.
Does the solution converge toward something when ε→ 0 ?

In a point-wise : NO : faster and faster oscillations

In a weak sense (average or distribution) YES

e
±i(
| k |
ε

)t
→ 0

thus the oscillatory part of the solution → 0
and the solutions converge (weakly) toward v 0 that satisfies the
incompressible system : 

∂v 0

∂t
+ Hv 0 = 0

Lv 0 = 0
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Is it true also for non-linear systems ?

Can we discard the fast component of the solution ?

How to deal with non-linear interactions of the fast waves :
non linear system contain quadratic terms e.g : Q(U,U) = (v · ∇)v

W = W Slow + W Fast

thus

Q(W ,W ) = Q(W Slow,W Slow) +Q(W Slow,W Fast) +Q(W Fast ,W Slow)
+Q(W Fast,W Fast)

Can we prove that non-linear interaction of fast waves : Q(W Fast ,W Fast ) is not
important for the slow dynamics of the system ?

Counter-example : Turbulence and Reynolds stresses !
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Some notations

The variables : V ε = (Bεz , vε⊥,Bε⊥)t or = (pε, v)t

The equations : ∂tV
ε + H(V ε,V ε) +

1

ε
LV ε = O(ε)

H(V ,V ) is a non-linear operator (at most quadratic)

H(V ,V ) =

 (v⊥ · ∇⊥)Bz + Bz∇⊥ · v⊥
(v⊥ · ∇⊥)v − (B⊥ · ∇⊥)B⊥ +∇⊥(B2/2 + q)− ∂zB⊥
(v⊥ · ∇⊥)B⊥ − (B⊥ · ∇⊥)v⊥ + B⊥∇⊥ · v⊥ − ∂zv⊥


LV is the constant coefficient linear operator

LV =

 ∇ · v⊥∇Bz
0


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The proof strategy
S. Schochet, E. Grenier, P.L.Lions-N.Masmoudi, B. Desjardins...

1 Introduce a filtered variable Ṽ
ε

= FV ε to remove the oscillations

2 Prove that the filtered variable Ṽ
ε → Ṽ

0
satisfying some equation

∂tV
0 + H(V 0,V 0) = 0 with H time-independent.

3 Prove that the original variable V ε → F−1Ṽ
0

4 Since F−1Ṽ
0 → PṼ

0
where P is the L2 projection on the kernel of L

Result

V ε → V = PṼ
0

and V satisfies :
∂tV + PH(V 0,V 0) = 0
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The wave operator L

LV =

 ∇ · v∇Bz
0


L2(Ω)× (L2(Ω))2 = KerL⊕ ImL
KerL = {(Bz , v);Bz = cte,∇ · v = 0}
ImL = {(Bz , v);

∫
Bz = 0,∃Φv = ∇Φ}

Spectrum of L on ImL
Let {ψk , k ≥ 1} the eigenvectors of the Laplace operator

−∆ψk = λ2
kψk λk > 0

then the eigenvectors of L are :

Φ±k =

 ψk

±∇ψk

iλk

 with LΦ±k = ±iλkΦ±k
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The solution operator L of the wave equation

Let L(t) be the semi-group (L(t), t ∈ IR) defined by

L(t) = exp(−Lt) (9)

In other words

V (t, x) = L(t)V 0(x) means that
∂V

∂t
+ LV = 0 with V (t = 0, x) = V 0(x)

Using the expression of the spectrum of L we can have an explicit representation of the solution
operator L(t) : Let P be the L2 projection on KerL

on the velocity component Lv (t)V

if V − PV =
∑
k,±

a±k Φ±k then Lv (t)V = πv⊥ +
∑
k,±
±a±k e±iλk t

∇ψk

iλk

a−k = (a+
k )∗ conjugate (real functions)
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Step 1 : Equation satisfied by the filtered variable Ṽ
ε

∂tV
ε + H(V ε,V ε) +

1

ε
LV ε = O(ε)

introduce the filtered variable Ṽ
ε

= L(−t/ε)V ε

with
L(t) = exp(−Lt)

From the definition of L, we deduce that

∂Ṽ
ε

∂t
=

L
ε

Ṽ
ε

+ L(−t/ε)
∂V ε

∂t

=
L
ε

Ṽ
ε − L(−t/ε)H(L(t/ε)Ṽ

ε
,L(t/ε)Ṽ

ε
)− L(−t/ε)

L
ε
L(t/ε)Ṽ

ε
+O(ε)

= −L(−t/ε)H(L(t/ε)Ṽ
ε
,L(t/ε)Ṽ

ε
) +O(ε)

since L(t/ε) and L commute.

Initial data : Ṽ
ε
(t = 0) = V ε(t = 0) since L(0) is the identity
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Limit Equation

Step 2 : Limit Equation for the filtered variable Ṽ
ε

∂Ṽ
ε

∂t
+ L(−t/ε)H(L(t/ε)Ṽ

ε
,L(t/ε)Ṽ

ε
) = O(ε)

Ṽ
0

= limε→0 Ṽ
ε

∂Ṽ
0

∂t
+H(Ṽ

0
, Ṽ

0
) = 0

where H(Ṽ
0
, Ṽ

0
) = limε→0 L(−t/ε)H(L(t/ε)Ṽ

0
,L(t/ε)Ṽ

0
) is a time-independent operator

whose expression can be computed explicitly (see next slides)

Step 3 : Go back to the unfiltered variable V ε

V ε → L(t/ε)Ṽ
0
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Limit for the original variable

But we have
L(t/ε)Ṽ

0
→ PṼ

0

since
L(t/ε)Ṽ

0
= L(t/ε)(PṼ

0
+
∑
k,±

±a±k e
±iλk t/εΦ±k ) ⇀ PṼ

0

Final result : weak limit of V ε = PṼ
0

that satisfies

∂PṼ
0

∂t
+ PH(Ṽ

0
, Ṽ

0
) = 0
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Explicit form of the limit equation for PṼ
0

example : computation of the quadratic term Q(WFast ,WFast ) = (v⊥ · ∇)v⊥ = (v⊥)j∂jv⊥

(Lv (t/ε)QV · ∇)Lv (t/ε)QV =

{
∑
k

(a+
k e

iλk t/ε − a−k e−iλk t/ε)
∇ψk

iλk
}j∂j{

∑
l (a

+
l e

iλl t/ε − a−l e−iλl t/ε)
∇ψl

iλl
} =∑

k,l
[−a+

k a
+
l e

i(λk+λl )t/ε − a−k a−l e−i(λk+λl )t/ε]
1

λkλl
(∇ψk )j∂j (∇ψl )

+
∑
k,l

[a−k a+
l e

i(λl−λk )t/ε + a+
k a
−
l e i(λk−λl )t/ε]

1

λkλl
(∇ψk )j∂j (∇ψl )

limε→0 (distribution) of all the terms is 0 except when k = l and we get :

(Lv (t/ε)QV ·∇)Lv (t/ε)QV →
∑
k

[a−k a+
k + a+

k a
−
k ]

1

λ2
k

(∇ψk )j∂j (∇ψk ) =
∑
k

|a+
k |

2

λ2
k

∇(|∇ψk |2/2)

On the average (weak limit) fast k-waves interact with l-waves only if k = l and the result is a
gradient

the result of the interaction between fast waves and slow dynamics is a gradient !
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Summary

When it goes well :

Weak limit of the solutions of compressible systems :{
∂tW +

∑
j Aj (W , ε)∂xj W +

1

ε
LW = 0

W (0, x , ε) = W 0(x , ε)

are the solutions of the incompressible system
∂tW + P

∑
j Aj (W , 0)∂xj W = 0

LW = 0
W (0, x) = PW 0(x)

where P is the projection on ker(L).

In general for these systems :

decoupling between fast waves and slow dynamics
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Comments and perspectives

Understanding of the interactions between fast and slow dynamics

Some implications for numerical methods :

compressible solvers are usually inaccurate when computing low Mach flows
modification are required : this workshop !

At present, modification of compressible solvers allows to compute near
incompressible flows

I do not know if they can compute low Mach number interaction of acoustic
and incompressible phenomena
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