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Context and motivation

Magnetic confinement fusion

Figure: Tokamak ITER. Source :
www.iter.org

Imposed external magnetic
field.
Particles trajectories enroll
along the magnetic field lines.
An important Small parameter:√
ε (normalized ionic Larmor

radius).
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Context and motivation

Strongly magnetized (kinetic or fluid) plasma simulations (ε→ 0)
may be very costly.
Two approach for a model Pε :

Hilbert expansion of the solutions to Pε yields new models consistent
with P0 but increases the number of unknowns.
AP schemes : discretize the original model Pε,∆t,∆x and design a
scheme that is consistent with P0,∆t,∆x and stable independently on
ε.
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The mathematical model

Quasi-neutral plasma with adiabatic electron response

Assumptions

Quasi-neutral plasma.
Boltzmannian electrons.

d ∈ {1, 2, 3}, Ω ⊂ Rd , unknown (n, u,w) : (t, x) ∈ [0,T )× Ω→ R+ × R3 × R+

∂tn +∇ · (nu) = 0 in (0,T )× Ω,
∂t(nu) +∇ · (nu⊗ u) + 1

m∇p = q
m (nE + nu× B)︸ ︷︷ ︸

Lorentz-Force

in (0,T )× Ω,

∂t(w) +∇ · (u(w + p)) = qnu · E in (0,T )× Ω,
w = mn|u|2

2 + 1
γ−1p,

E = −∇φ where φ = kbTe
q ln

(
n
nc

)
→ n = nce

qφ
kbTe︸ ︷︷ ︸

Boltzmann

where γ − 1 = 2
d , m > 0 is the ion mass, q > 0 is the electric charge,nc > 0 is given,

and B is a constant magnetic field.
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The mathematical model

Dimensionless model
Still denote (n,u,w) the dimensionless unknown.

∂tn +∇ · (nu) = 0 in (0,T )× Ω,
∂t(nu) +∇ · (nu⊗ u) + 1

ε∇p = 1
ε (nE + nu× b) in (0,T )× Ω,

∂t(w) +∇ · (u(w + p)) = nu · E in (0,T )× Ω,
w = εn|u|2

2 + 1
γ−1p,

E = −∇φ where φ = Te ln
(

n
nc

)
√
ε > 0 is the ionic Larmor radius and also the ions Mach number,
|b| = 1 and Te > 0 is a normalized electronic temperature. Remark that,

nu · E = −Tenu · ∇ ln(n) = −Te∇ · (nu ln(n))− Te∂t(n(ln(n)− 1)).

nE = Te∇n,
Notation : (.)‖ = (.) · b, (.)⊥ = (Id − b⊗ b)(.),

∀q ∈ R3, q = q‖b + q⊥,
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The numerical difficulties

Three numerical difficulties

D1 : Capture the drift limit
Letting ε→ 0 in the momentum eq yields the balance:

∇⊥p = nE⊥ + nu⊥ × b⇒ nu⊥ = nE⊥ × B︸ ︷︷ ︸
Electric drift

− ∇⊥p × b︸ ︷︷ ︸
Diamagnetic drift

,

∇‖p = nE‖ → u‖ ?

D2 : Preserve the energy and the positivity
Assume u · ν = 0 on ∂Ω then ∀t > 0,

d
dt

∫
Ω

εnu2

2
+

1
γ − 1

p + Ten(ln(n)− 1)dx = 0,

n(t),w(t) and p(t) are positive provided they are at initial time.
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The numerical difficulties

Three numerical difficulties : the third

Assume d = 1 and look at the dynamic in the parallel direction to the magnetic field.
The E-L system can be re-cast into:∂tU + ∂x f (U) = 0,

U = (n, nu,w + Ten(ln(n)− 1))t ,
f (U) = (nu, nu2 + 1

ε
p, u(w + p + Ten ln(n))),

The system is strictly hyperbolic : the jacobian of f has three distinct eigen values

λ− = u −
√

γp
n +Te
ε

, λ0 = u, λ+ = u +
√

γ
p
n +Te
ε

.

D3 : Infinite acoustic waves speed
As ε→ 0, the parallel acoustic wave speed becomes infinite. For explicit discretization
it yields a CFL stability condition restricted

√
ε.
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The numerical difficulties

What do we exactly need to implicit ?

Linearize the previous hyperbolic system around a constant state (n0, u0, p0,w0) and
consider a semi-discretization in time:

∀k ∈ {0, ..., b T
∆t c},

ñk+1−ñk
∆t + u0∂xñk + n0∂x ũk∗ = 0,

ũk+1−ũk
∆t + u0∂x ũk + 1

εn0 ∂x (p̃k+1 + Te ñk+1) = 0,
p̃k+1−p̃k

∆t + u0∂x p̃k + γp0∂x ũk∗ = 0,
w̃k = εn0ũk + εu0 ñk

2 + p̃k
γ−1

k∗ = k yields an explicit stiff term 1
ε
∂xx (pk + Tenk), k∗ = k + 1 yields an implicit stiff

term 1
ε
∂xx (pk+1 + Tenk+1).

Summary
We need to implicit the gradient of total pressure and the gradient of velocity in the
continuity and pressure equation.
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The strategy

The strategy

D1 The parallel momentum equation does not degenerate if we ensure
numerically ∇‖(p − Ten) = O(ε) for some norm.

D2 Reformulate the equations and work with the non conservative
variable (n,u, p), so as to ensure the positivity of the ionic
temperature.

D3 Implicit the acoustic and gradient of velocity → use an equation on
the pressure.
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The strategy

Non conservative form brings another difficulty D4

For a smooth solution (n, u,w) the E-L system is equivalent to its non conservative
from of unknown (n, u, p)

∂tn +∇ · (nu) = 0 in Ω× (0,T ),
∂t(nu) +∇ · (nu⊗ u) + 1

ε
∇p = 1

ε
(nE + nu× b) in Ω× (0,T ),

∂t(p) +∇ · (up) + (γ − 1)p∇ · u = 0 in Ω× (0,T ),
p = nT ,
E = −∇φ where φ = Te ln

(
n
nc

)
For a solution with discontinuities it is not equivalent ! Measure should appear at the
r.h.s of the pressure eq.

D4 : How to compute correct shock speeds
Toy example : 1d Burger equation, u = ul1x<σt + ur1x≥σt R-H condition gives

∂tu + ∂x
u2

2
= 0→ σ =

ur + ul
2

,

∂t(u2) + ∂x
2u3

3
= 0→ σ =

2
3

(ur + ul ).
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The strategy

The tool to circumvent D4 and get the conservative
properties

Use an idea of R.Herbin, W.Kheriji and J-C Latché :

Staggered grids
Use staggered grids : scalar quantities are discretized on a primal mesh, while the
velocity is discretized on a dual mesh to ensure the duality formula∫

Ω
p∇ · udx = −

∫
Ω
∇p · udx .

The continuity equation

The continuity equation ∂tn +∇ · (nu) = 0 plays a crucial role at the continuous level
to go from conservative equations to non conservative ones. We must ensure that it is
valid on both the primal and dual mesh !

Recover a consistent discretization of the energy equation
We shall ad corrective source term in the pressure equation so as to recover a
consistent discretization of the energy equation → Recover the R-H relations.
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The strategy

References

G.Bispen, M. Lukacova-Medvidova, L.Yelash, Asymptotic preserving IMEX finite
volume scheme for low Mac number Euler with gravitation, JCP 2017.
F.Deluzet, M. Ottaviani, S. Possaner, A drift asymptotic scheme for a fluid
description in strong magnetic-fields, CICP 2016.
G. Dimarco, R.Loubère, M-H Vignal, Study of a new asymptotic preserving
scheme for the Euler in the low Mach number limit.
R.Herbin, W.Kheriji, J-C Latché, On some implicit and semi-implicit staggered
schemes for the shallow wanter and Euler equations, M2AN 2014.
R.Herbin, W. Kheriji, J-C Latché, Staggered schemes for all speed flows, ESAIM
proc, 2012.
S.Brull, P.Degond, F.Deluzet, A.Mouton, Asymptotic preserving scheme for a
bi-fluid Euler-Lorentz model, KRM 2011.

November 20, 2017 14 / 36



Physical introduction The Euler-Lorentz-Boltzmann system A non linear finite volume schemes for the parallel dynamic A linear iterative scheme to approach the non linear one Numerical results Conclusion and perspectives

Outline

1 Physical introduction

2 The Euler-Lorentz-Boltzmann system

3 A non linear finite volume schemes for the parallel dynamic

4 A linear iterative scheme to approach the non linear one

5 Numerical results

6 Conclusion and perspectives

November 20, 2017 15 / 36



Physical introduction The Euler-Lorentz-Boltzmann system A non linear finite volume schemes for the parallel dynamic A linear iterative scheme to approach the non linear one Numerical results Conclusion and perspectives

The simplified parallel dynamic

[0, 1]per = R/Z. Consider the model of unknown
(n, u, p) : [0,T )× [0, 1]per → R+ × R× R+

∂tn + ∂x (nu) = 0,
∂t(nu) + ∂x (nu⊗ u) + 1

ε
∂xp = −Te

∂x n
ε
,

∂t(p) + ∂x (up) + (γ − 1)p∂xu = 0,
+ initial condition
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The discretization
Let N ∈ N∗,∆x := 1

N+1 , ∆t > 0, xi := i∆x , tk := k∆t. For all i ∈ Z the primal cell
is Ci := [xi− 1

2
, xi+ 1

2
), the dual cells of Ci are Ci− 1

2
:= [xi−1, xi ) and Ci+ 1

2
:= [xi , xi+1).

Primal mesh T :=
N+1⋃
i=0

Ci , Dual mesh T ∗ =
N+1⋃
i=0

Ci− 1
2
.

We approach the solution at time tk by :
n(tk , x) ≈ nk∆x (x) :=

∑N+1
i=0 nki 1Ci (x),

p(tk , x) ≈ pk∆x (x) :=
∑N+1

i=0 pki 1Ci (x),
u(tk , x) ≈ uk∆x (x) :=

∑N+1
i=0 ui− 1

2
1Ci− 1

2
(x).

Duality formula∫
[0,1]per

pk∆x (x)∂xuk∆x (x) = −
∫

[0,1]per

∂xpk∆x (x)uk∆x (x)dx ,

∂xu∆x (x) =
N∑
i=0

ui+ 1
2
− ui− 1

2

∆x
1Ci (x), ∂xp∆x (x) =

N∑
i=0

pi+1 − pi
∆x

1Ci+ 1
2

(x).
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A non linear implicit scheme
Integrate the continuity and the internal energy eq on Ci and the momentum eq on
Ci− 1

2
and defines the approximation :

∀k ∈ N,∀i ∈ {0, ...N},
∆x
∆t (nk+1

i − nki ) + F k+1
i+ 1

2
− F k+1

i− 1
2

= 0,
∆x
∆t (pk+1

i − pki ) + (up)k+1
i+ 1

2
− (up)k+1

i− 1
2

+ (γ − 1)(pk+1
i )+δi (uk+1) = Sk+1

i ,

∆x
∆t (nk+1

i− 1
2
uk+1
i− 1

2
− nk

i− 1
2
uk
i− 1

2
) + F k+1

i uk+1
i − F k+1

i−1 u
k+1
i−1 + 1

ε
δi− 1

2
(pk+1 + Tenk+1) = 0,

+ periodic b.c

F k+1
i+ 1

2
:= nk+1

i (uk+1
i+ 1

2
)+−nk+1

i+1 (uk+1
i+ 1

2
)−, F k+1

i :=
F k+1
i+ 1

2
+ F k+1

i− 1
2

2
, δi (·) = (·)i+ 1

2
−(·)i− 1

2
.

Upwind w.r.t the sign of the velocity:

(up)i+ 1
2

:=
{
pi if ui+ 1

2
≥ 0,

pi+1 else
ui :=

{
ui− 1

2
if Fi ≥ 0,

ui+ 1
2
else.

Sk+1
i ≥ 0 is designed to compensate the residual term that comes from a kinetic

energy balance ! We want to be consistent with the energy equation.
How to recover the discrete energy balance ?
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The non linear implicit scheme : kinetic energy balance

One has the following kinetic energy balance :

Kinetic energy balance

∀k ∈ N, ∀i ∈ {0, ...,N},

ε∆x
2∆t

(
nk+1
i− 1

2
(uk+1

i− 1
2

)2 − nki− 1
2

(uki− 1
2

)2
)

+
εF k

i (uki )2

2
−
εF k

i−1(uki−1)2

2
+ δi− 1

2
(pk+1 + Tenk+1)uk+1

i− 1
2

= −Rk+1
i− 1

2
, where Rk+1

i− 1
2
≥ 0.

Define Sk+1
i to compensate the contribution in the cell Ci of Rk+1

i− 1
2
and Rk+1

i+ 1
2
so as∑N

i=1 S
k+1
i − Rk+1

i− 1
2

= 0. To get this balance we use the important property :

∆x
∆t

(nk+1
i − nki ) + F k+1

i+ 1
2
− F k+1

i− 1
2

= 0⇒
∆x
∆t

(nk+1
i− 1

2
− nki− 1

2
) + F k+1

i − F k+1
i−1 = 0.
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A non linear implicit scheme : discrete potential balance

One has also the potential energy balance :

Potential energy balance

∀k ∈ N, ∀i ∈ {0, ...,N},

∆x
∆t
(
nk+1
i (ln(nk+1

i )− 1)− nki (ln(nki )− 1)
)

+ F k+1
i+ 1

2
ln(nk+1

i+1 )− F k+1
i− 1

2
ln(nk+1

i )

− uk+1
i+ 1

2
δi+ 1

2
(nk+1) = −Dk+1

i ≤ 0

The proof uses Taylor Expansion + the fact that the flux is upwind with respect the
velocity.
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A non linear implicit scheme : energy dissipation

Define the discrete energy
Ek = ∆x

∑N
i=0

ε
2 n

k
i− 1

2
(uk

i− 1
2

)2 + 1
γ−1p

k
i + Tenki (ln(nki )− 1).Then for all k ∈ N one

has :

Ek+1 − Ek = −Te∆x
N∑
i=0

Dk+1
i .

Thus, −Te ≤ Ek ≤ E0. One has eventually:

Energy dissipation + unconditional positivity of density and pressure +
conservation of the total mass.
Uniform in ε estimates for the pressure and density. Estimate for the velocity is
still an open question.
Existence proof based on the Brouwer fixed point theorem: the key point energy
decay + control of the density (lower bound).
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A linear iterative scheme to solve the non linear one
Energy control : −Te ≤ Ek ≤ E0.
Unconditionnal positivity of pressure and density.
Unconditionnal linear L2 stability around constant state.
Need to solve it but not anyhow ! We want to avoid the CFL number being
restricted by

√
ε !

Given the solution at step k ∈ N, define the iterative scheme (two step recursive):
(n−1,0i = nki , u

−1,0
i = uki , p

−1,0
i = pki ) and for all r ∈ N

∆x
∆t (nr+1,k

i − nki ) + F r+1,k
i+ 1

2
− F r+1,k

i− 1
2

= 0
∆x
∆t

(pr+1,k
i − pki ) + (up)r,k

i+ 1
2
− (up)r,k

i− 1
2

+ (γ − 1)pr,ki δi (ur+1,k) = Sr,k
i

∆x
∆t

(nr,k
i− 1

2
ur+1,k
i− 1

2
− nki− 1

2
uki− 1

2
) + F r,k

i ur,ki − F r,k
i−1u

r,k
i−1

+
1
ε
δi− 1

2
(pr+1,k + Tenr+1,k) = 0,

The trick is in the definition of the flux of mass :
F r+1,k
i+ 1

2
:= nr,k

i+ 1
2
ur+1,k
i+ 1

2
−

(nr,ki+1−n
r,k
i )

2 |ur,k
i+ 1

2
|.
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Reduction to an elliptic system

Linear elliptic system on pressure and density

(Lr+1,k
ε ) :



∀i ∈ {0, ...,N},
nr+1,k
i − (∆t)2

ε(∆x)2 ∆i(pr+1,k + Tenr+1,k) = nkε,i + n̄r ,ki ,

pr+1,k
i − (γ − 1)(pr ,k

i )+ (∆t)2
ε(∆x)2 ∆n−1

i (pr+1,k + Tenr+1,k) = pk
ε,i + p̄r ,k

i ,

with n̄r ,ki p̄r ,k
i some residual terms .

+ periodic b.c

The velocity update becomes explicit.
The well-posedness of (Lr+1,k

ε ) follows from its elliptic structure.
It enjoys a maximum principle → positivity under a CFL that does
not depend on ε.
Linear L2 stability analysis shows that the CFL depends on ur but
not on ε.
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Shock speed computation Te = 0
Riemann problem : (n0, u0, p0)t =
(1, 0, 103)t1x<0.5(x) + (1, 0, 10−3)1x≥0.5(x), tfinal = 0.012,∆x = 10−3, ε = 1. The
iterative scheme stops when the relative L2 error between two iterations is lower than
10−8.

Figure: Implicit scheme ∆t = ∆x/50
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A plasma expansion problem: Te = 1 and asymptotic
ε→ 0.

Riemann problem:
(n0ε, u0ε, p0ε)t = (1, 0, 1)t1x<0.5(x) + (1− ε, 0, 1− ε)1x≥0.5(x), tfinal = 0.002. The
physical scaling is ∂x (p + Ten) = O(ε). ∆x = 1

29+1 . The iterative scheme stops when
the relative L2 error between two iterations is lower than 10−8. Comparison with an
explicit version of the scheme.

ε CFL EXP IT IMP IT EXP R CPU IMP(s) CPU EXP(s) R

10−1 10−1 78 11 7.09 77.4158 0.002266 34164
10−2 10−2 78 103 0.75 77.5185 0.01706 4542
10−4 10−3 67 1026 0.06 64.2173 0.1879 341.7
10−8 10−5 24 102600 0.0002 22.8352 17.6862 1.2
10−10 10−6 12 1026000 0.00001 12.2736 185.55 0.06

Table: Number of total iterations and computational time as function of ε with
∆x = 1

29+1 , CFL IMP = 10−1.
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A plasma expansion problem: Te = 1 and ε = 10−1.
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(a) Approximate density in space
computed with the iterative linear
implicit scheme (black) and the explicit
scheme (red) at time T = 0.002 for
ε = 10−1.
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scheme (red) at time T = 0.002 for
ε = 10−1
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A plasma expansion problem: Te = 1 and ε = 10−1.
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(c) Approximate total pressure in space
computed with the iterative linear
implicit scheme (black) and the explicit
scheme (red) at time T = 0.002 for
ε = 10−1.
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(d) Evolution in time of the energy
computed with the iterative linear
implicit scheme (black) and the explicit
scheme (red) for ε = 10−1.
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A plasma expansion problem: Te = 1 and ε = 10−2
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(e) Approximate density in space
computed with the iterative linear
implicit scheme (black) and the explicit
scheme (red) at time T = 0.002 for
ε = 10−2.
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(f) Approximate velocity in space
computed with the iterative linear
implicit scheme (black) and the explicit
scheme (red) at time T = 0.002 for
ε = 10−2
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A plasma expansion problem: Te = 1 and ε = 10−2
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(g) Approximate total pressure in space
computed with the iterative linear
implicit scheme (black) and the explicit
scheme (red) at time T = 0.002 for
ε = 10−2.
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(h) Evolution in time of the energy
computed with the iterative linear
implicit scheme (black) and the explicit
scheme (red) for ε = 10−2.
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A plasma expansion problem: Te = 1 and ε = 10−8
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(i) Approximate density in space
computed with the iterative linear
implicit scheme (black) and the explicit
scheme (red) at time T = 0.002 for
ε = 10−8.
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(j) Approximate velocity in space
computed with the iterative linear
implicit scheme (black) and the explicit
scheme (red) at time T = 0.002 for
ε = 10−8
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A plasma expansion problem: Te = 1 and ε = 10−8
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(k) Approximate total pressure in space
computed with the iterative linear
implicit scheme (black) and the explicit
scheme (red) at time T = 0.002 for
ε = 10−8.
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(l) Evolution in time of the energy
computed with the iterative linear
implicit scheme (black) and the explicit
scheme (red) for ε = 10−8.
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On going work

Non linear scheme and iterative scheme are stable (Positivity +
Energy dissipation) independently on ε.
Numerical results shows the AP property of the scheme, though
uniform in ε estimate for the velocity is missing.
Discrete entropy inequality ?
Extension of the scheme to the diffusion limit for the electrons,
capture the Boltzman regime.
On going work : Implementation for the three dimensional
Euler-Lorentz model with magnetic field.
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Thank you for paying attention.
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