Schémas asymptotiquement préservants dans la limite quasi-neutre

Marie Hélène Vignal

Paris le 27 Novembre 2012

Collaborations : Claire Chainais-Hillairet (Lille)

M. Bessemoulin-Chatard (Clermont-Ferrand)

Plan

Motivations et contexte général

2 Le modèle de dérive-diffusion-Poisson et sa limite quasineutre

3 Les discrétisations asymptotiquement préservantes

- Le schéma implicite
- Le schéma asymptotiquement préservant découplé

Résultats Numériques

- Cas test en dimension une
- Résultats bidimensionnels

Travaux en cours et perspectives

Motivation : modélisation des semi-conducteurs

Modèle de dérive-diffusion-Poisson adimensionné

$$(DD)_{\lambda} \begin{cases} \partial_t N - \nabla \cdot \left(\nabla r(N) - N \nabla \psi \right) = 0, \\ \partial_t P - \nabla \cdot \left(\nabla r(P) + P \nabla \psi \right) = 0, \\ -\lambda^2 \Delta \psi = P - N + C, \end{cases} \qquad r(s) = s^{\gamma}, \quad \gamma \ge 1.$$

 $\lambda = \frac{\text{Longueur de Debye}}{\text{taille du domaine}} = \text{longueur de Debye adimensionnée} \ll 1$

Inconnues

- N, P : densités de charges
- ψ : potentiel électrique

Données

- Dopage (préconcentration) : C(x)
- Densités initiales : N_0 , P_0
- Conditions aux limites : N_D, P_D

Stockage de déchets nucléaires

Modèle de corrosion d'acier

BATAILLON, BOUCHON, CHAINAIS-HILLAIRET, DESGRANGES, HOARAU, MARTIN, TUPIN, TALANDIER, EA 2010

$$\begin{cases} \boldsymbol{\varepsilon}\partial_t N - \partial_x \left(\partial_x N - N \partial_x \psi \right) = 0, \\ \partial_t P - \partial_x \left(\partial_x P + P \partial_x \psi \right) = 0, \\ -\boldsymbol{\lambda}^2 \partial_{xx}^2 \psi = P - N + C. \end{cases} \qquad x \in [X_0(t), X_1(t)], \quad t \ge 0. \end{cases}$$

 $\lambda =$ longueur de Debye adimensionnée $\ll 1$

 $\epsilon = rapport des masses \ll 1$

Inconnues

• *N*,*P* : densités d'ions et de cathions

ψ : potentiel électrique

Données

- Dopage ionique : C = cste > 0
- Densités initiales : N₀, P₀
- Conditions aux limites de Fourier

Contexte général : problèmes multi-échelles

Modèle M_{μ} multi-échelles :

échelle micro. ($\mu = \lambda, \varepsilon$ ou (λ, ε)) et échelle macro. (μ ou échelle de réf)

Difficultés :

- Schémas explicites stables et consistants ssi µ est résolu par le maillage
- Schémas implicites inconditionnellement stables et consistants mais souvent non linéaires
- Coût trop/très important

Une solution : Utiliser un schéma préservant l'asymptotique $\mu \rightarrow 0$

- Maillage indépendant de μ : Stabilité asymptotique.
- Donne une approximation de M_0 si $\lambda \rightarrow 0$: Consistance asymptotique.

Schéma asymptotiquement stable et consistant \Rightarrow Schéma asymptotiquement préservant (AP) ([S.Jin] cinétique \rightarrow fluide)

Plan

Motivations et contexte général

2) Le modèle de dérive-diffusion-Poisson et sa limite quasineutre

Les discrétisations asymptotiquement préservantes

- Le schéma implicite
- Le schéma asymptotiquement préservant découplé

Résultats Numériques

- Cas test en dimension une
- Résultats bidimensionnels

Travaux en cours et perspectives

Le modèle de dérive-diffusion-Poisson adimensionné

Pour
$$x \in \Omega \subset \mathbb{R}^d$$
 ($d = 1, 2 \text{ ou } 3$) borné, et $t > 0$
 $(DD)_{\lambda} \begin{cases} \partial_t N - \nabla \cdot (\nabla N - N \nabla \psi) = 0, \\ \partial_t P - \nabla \cdot (\nabla P + P \nabla \psi) = 0, \\ -\lambda^2 \Delta \psi = P - N + C. \end{cases}$

Conditions aux limites :

- Sur les contacts ohmiques : $\partial \Omega_D$ Dirichlet : N_D , P_D , ψ_D
- Ailleurs : $\partial \Omega_N$ Flux nuls

Existence, parfois unicité :

- T. SEIDMAN, G. TROIANELLO (1985), H. GAJEWSKI (1985), P.A. MARKOWITCH, C.A. RINGHOFER, C. SCHMEISER (1990).
- Preuve basée sur : estimations L^{∞} , $L^{2}(0,T;H^{1}(\Omega))$

La limite quasineutre

- I. GASSER, C.D. LEVERMORE, P.A. MARKOWICH, C. SCHMEISER (2001)
 A. JÜNGEL, Y.J. PENG (2001)
- Preuve basée sur : → la dissipation d'entropie (Point clé de la preuve)

Modèle limite :

$$(DD)_0 \begin{cases} \partial_t N - \nabla \cdot \left(\nabla N - N \nabla \psi \right) = 0, \\ \partial_t P - \nabla \cdot \left(\nabla P + P \nabla \psi \right) = 0, \\ 0 = P - N + C. \end{cases}$$

- Sur $\partial \Omega_D$: $N = N_D$, $P = P_D$, $\psi = \psi_D$.

- Sur $\partial \Omega_N$: $(\nabla N - N \nabla \psi) \cdot \nu = 0$, $(\nabla P + P \nabla \psi) \cdot \nu = 0$.

Reformulation du modèle limite

Idée :

- On choisit P + N, P N et ψ comme inconnues
- On utilise la contrainte de quasineutralité

Modèle équivalent bien posé :

$$(DD)_0 \Leftrightarrow (RDD)_0 \left\{ \begin{array}{l} \partial_t (P+N) - \nabla \cdot \left(\nabla (P+N) - C \, \nabla \psi \right) = 0, \\ -\nabla \cdot \left(-\nabla C + (P+N) \, \nabla \psi \right) = 0, \\ P-N = -C. \end{array} \right.$$

- Sur $\partial \Omega_D$: $P + N = P_D + N_D$, $P - N = P_D - N_D = -C$, $\Psi = \Psi_D$. - Sur $\partial \Omega_N$: $(\nabla (P + N) - C \nabla \Psi) \cdot \nu = 0$, $(-\nabla C + (P + N) \nabla \Psi) \cdot \nu = 0$.

Insertion du modèle macro dans le modèle micro

Il faut compléter le diagrame

$$\partial_t (P-N) - \Delta (P-N) - \nabla \cdot ((P+N) \nabla \psi) = 0.$$

• On utilise Poisson \Rightarrow

 $-\lambda^2 \partial_t \Delta \psi - \nabla \cdot \left((P+N) \nabla \psi \right) = \Delta (P-N), \qquad \text{Poisson reformulé}$

• Equation équivalente à Poisson ssi $\left(-\lambda^2 \Delta \psi = P - N + C\right)_{t=0}$

- Si $\lambda > 0$: donne une condition initiale pour Poisson reformulé

→ Si $\lambda = 0$: impose la quasi-neutralité des conditions initiales

La limite quasineutre : Bilan

Dérive-Diffusion-Poisson Reformulé : Système "équivalent" à $(DD)_{\lambda}$

$$(RDD)_{\lambda} \begin{cases} \partial_{t}N - \nabla \cdot \left(\nabla r(N) - N \nabla \psi\right) = 0, \\ \partial_{t}P - \nabla \cdot \left(\nabla r(P) + P \nabla \psi\right) = 0, \\ -\lambda^{2} \partial_{t} \Delta \psi - \nabla \cdot \left((P + N) \nabla \psi\right) = \Delta(r(P) - r(N)). \end{cases}$$

- Ne dégénère pas lorsque $\lambda \to 0$.
- Pour $\lambda = 0$ redonne (RDD_0)

 \Rightarrow Consistance avec $\lambda \rightarrow 0$

• Présence d'oscillations en temps à la période λ^2

→ Schémas explicites \Rightarrow Stab. Conditionnelle : $\Delta t \leq \lambda^2$

→ Schémas implicites ⇒ Stabilité inconditionnelle

• La dissipation d'entropie doit être préservée numériquement.

Plan

Motivations et contexte général

Le modèle de dérive-diffusion-Poisson et sa limite quasineutre

3 Les discrétisations asymptotiquement préservantes

- Le schéma implicite
- Le schéma asymptotiquement préservant découplé

Résultats Numériques

- Cas test en dimension une
- Résultats bidimensionnels

Travaux en cours et perspectives

Le schéma implicite

Discrétisation en temps

si N^n , P^n , ψ^n sont des approximations connues au temps t^n

$$\begin{cases} N^{n+1} - N^n - \Delta t \,\nabla \cdot \left(\nabla N^{n+1} - N^{n+1} \nabla \psi^{n+1} \right) = 0, \\ P^{n+1} - P^n - \Delta t \,\nabla \cdot \left(\nabla P^{n+1} + P^{n+1} \nabla \psi^{n+1} \right) = 0, \\ -\lambda^2 \Delta \psi^{n+1} = P^{n+1} - N^{n+1} + C. \end{cases}$$

Discrétisation en espace

- Eqs. paraboliques : solveur de Scharfetter Gummel
 - ightarrow Flux approchés non linéaires en Ψ
 - Préserve la dissipation d'entropie.
- Eq. de Poisson : Différences finis standards.

Schéma couplé

- Système non linéaire en (N, P, Ψ)
- Algorithme de Newton.

Le schéma implicite - Résultats

Convergence non uniforme en λ :

- C. Chainais-Hillairet, Y.J. Peng, 2003
 - C. CHAINAIS-HILLAIRET, Y.J. PENG, J.G. LIU, ,2004

Dissipation discrète d'entropie

MARIANNE CHATARD, À PARAÎTRE

Estimations uniformes en λ : C = 0.

- M. BESSEMOULIN-CHATARD, C. CHAINAIS-HILLAIRET, MHV, en cours de rédaction.
- Estimations L[∞], L²(0,T;H¹(Ω)) BV-faible uniforme en λ
 Discrétisation de la preuve de Gasser-Levermore-Markowich-Schmeiser.

Le schéma AP découplé

Reformulation du schéma implicite

$$\begin{cases} N^{n+1} = N^n + \Delta t \,\nabla \cdot \left(\nabla N^{n+1} - N^{n+1} \nabla \psi^{n+1}\right), & (1) \\ P^{n+1} = P^n + \Delta t \,\nabla \cdot \left(\nabla P^{n+1} + P^{n+1} \nabla \psi^{n+1}\right), & (2) \\ -\lambda^2 \Delta \psi^{n+1} = P^{n+1} - N^{n+1} + C, & (3) \end{cases}$$

• On injecte (1) et (2) dans (3)

$$-\lambda^2 \Delta \psi^{n+1} - \Delta t \nabla \cdot \left((N^{n+1} + P^{n+1}) \nabla \psi^{n+1} \right) = P^n - N^n + C + \Delta t \Delta (P^{n+1} - N^{n+1}).$$

Discrétisation de Poisson reformulé

Pour découpler, on remplace cette équation par

$$-\lambda^2 \Delta \psi^{n+1} - \Delta t \,\nabla \cdot \left((N^n + P^n) \,\nabla \psi^{n+1} \right) = P^n - N^n + C + \Delta t \,\Delta (P^n - N^n).$$

Le schéma AP découplé

Discrétisation en temps

$$\begin{cases} N^{n+1} - N^n - \Delta t \,\nabla \cdot \left(\nabla N^{n+1} - N^{n+1} \nabla \psi^{n+1}\right) = 0, \\ P^{n+1} - P^n - \Delta t \,\nabla \cdot \left(\nabla P^{n+1} + P^{n+1} \nabla \psi^{n+1}\right) = 0, \\ -\nabla \cdot \left(\left(\lambda^2 + \Delta t \left(N^n + P^n\right)\right) \nabla \psi^{n+1}\right) = P^n - N^n + C + \Delta t \,\Delta (P^n - N^n). \end{cases}$$

Discrétisation en espace

- Eqs. paraboliques : solveur de Scharfetter Gummel
 Flux approchés non linéaires en Ψ mais linéaires en N et P.
- Eq. de Poisson reformulée :

$$-\lambda^2 \Delta \psi^{n+1} - \Delta t \,\nabla \cdot \left(\underbrace{(\nabla P^n + P^n \nabla \psi^{n+1})}_{-J_P} - \underbrace{(\nabla N^n - N^n \nabla \psi^{n+1})}_{-J_N} \right) = P^n - N^n + C.$$

Flux de Scharfetter Gummel non linéaires en Ψ

• Un système non linéaire en Ψ et deux systèmes linéaires en N et P

Plan

Motivations et contexte général

- 2 Le modèle de dérive-diffusion-Poisson et sa limite quasineutre
- 3 Les discrétisations asymptotiquement préservantes
 - Le schéma implicite
 - Le schéma asymptotiquement préservant découplé

Résultats Numériques

- Cas test en dimension une
- Résultats bidimensionnels

Travaux en cours et perspectives

Cas test en dimension une

- Domaine $x \in]0,1[$, Temps final T = 1.5,
- $\Delta t = 10^{-3}$ $\Delta x = 10^{-2}$ ou 10^{-3} maillages uniformes.

•
$$\lambda^2 = 1$$
 ou 10^{-3} ou 10^{-10}

- Profil de dopage non constant : $C(x) = \begin{cases} -0.8, & \text{for } x < 1/2, \\ +0.8, & \text{for } x > 1/2. \end{cases}$
- CL de Dirichlet quasineutres

$$P_D - N_D + C = 0.$$

Conditions initiales quasineutres

$$P_0 - N_0 + C = 0.$$

Comparaison des schémas $\lambda^2 = 1$, $\Delta t = 10^{-3}$

Comparaison des schémas $\lambda^2 = 10^{-3}$, $\Delta t = 10^{-3}$

CL et CI non quasineutres $\lambda^2 = 10^{-10}$, $\Delta t = 10^{-3}$

λ variable en espace, C = 0

Courbes d'erreurs, C = 0

Schémas d'ordre 1

Diode - Jonction PN

•
$$\lambda^2 = 10^{-10}$$
,

•
$$\Delta t = 5 \ 10^{-4}$$
.

- Maillage en espace : 896 triangles.
- Conditions aux limites :
 - \rightarrow Sur $\partial \Omega_D$: Dirichlet quasineutres.
 - Ailleurs : Neumann homogènes.
- Conditions initiales quasineutres.

Diode - Jonction PN, $\lambda^2 = 10^{-10}$, $\Delta t = 5 \ 10^{-4}$

0.6

0.8

1

1

Diode - Jonction PN, $\lambda^2 = 10^{-10}$, $\Delta t = 5 \ 10^{-4}$

-Temps CPU schéma implicite : 90s. -Temps CPU schéma AP : 13s.

 \Rightarrow gain \approx 7.

-Erreurs relatives en norme L^2 : Sur N : 2%,

Sur P : 2%,

Sur ψ : 3%.

Schéma AP découplé : résultats

Existence unicité de la solution : idem schéma implicite

Numériquement : Schéma asymptotiquement stable et consistant

Premiers pas vers la convergence uniforme :

- Semi-discrétisé 1-D
- $\lambda = 0$ et C = 0

• Inconnues
$$S = P + N$$
 et $D = P - N$

• Système diff. en
$$(S^{n+1}, D^{n+1})$$

Plan

Motivations et contexte général

- 2 Le modèle de dérive-diffusion-Poisson et sa limite quasineutre
- 3 Les discrétisations asymptotiquement préservantes
 - Le schéma implicite
 - Le schéma asymptotiquement préservant découplé

Résultats Numériques

- Cas test en dimension une
- Résultats bidimensionnels

Travaux en cours et perspectives

Travaux en cours et perspectives

- Convergence uniforme en λ du schéma AP découplé.
- Schémas asymptotiquement précis dans les limites fluide et quasineutre pour Vlasov-BGK-Poisson : N. CROUSEILLES, G. DIMARCO, MHV
- Problème multi-micro-échelles singulier :

Problème de corrosion d'acier C. CHAINAIS-HILLAIRET, MHV

$$\begin{aligned} \varepsilon \partial_t N - \nabla \cdot \left(\nabla N - N \nabla \psi \right) &= 0, \\ \partial_t P - \nabla \cdot \left(\nabla P + P \nabla \psi \right) &= 0, \\ - \lambda^2 \Delta \psi &= P - N + C. \end{aligned}$$

 $\label{eq:sigma} \text{Si} \; (\epsilon, \lambda) \to 0, \qquad \text{Poisson reformul} \acute{e} \to - \nabla \cdot \left(\nabla N - N \, \nabla \psi \right) = 0.$