Schémas asymptotiquement stables dans la limite quasi-neutre pour Euler-Poisson

Marie-Hélène Vignal

Lab. MIP : Mathématiques pour l'Industrie et la Physique Univ. Paul Sabatier, Toulouse 3

Collaboration avec P. Crispel et P. Degond

1. Introduction

- 2. Le modèle d'Euler-Poisson et sa limite quasi-neutre
- 3. Discrétisation classique pour Euler-Poisson (EP)
- 4. Nouvelle approche : schéma "AP"
- 5. Résultats numériques
- 6. Conclusion

1. Introduction

Qu'est ce qu'un plasma ?

- Gaz contenant des particules chargées
 - → Charges < 0 : électrons, ions négatifs
 - \rightarrow Charges > 0 : ions positifs
 - → Charges = 0 : atomes neutres ou molécules

- Specificité des plasmas (comparés aux gaz)
 - interactions électromagnétiques

Echelle d'espace : Long. de Debye

- Les électrons sont attirés par $q_i > 0$
- Un nuage de charges < 0 autour de q_i
- Ecrantage de q_i au delà de la distance λ_D
- Longueur de Debye :

$$\lambda_D = \left(\frac{\epsilon_0 k_B T}{q^2 n}\right)^{1/2}$$

\Rightarrow Déséquilibres de charges élec. aux échelles $\leq \lambda_D$

Quasi-neutralité

Plasma quasi-neutre : (très fréquent)

$$\lambda = \frac{\lambda_D}{L} \ll 1 \qquad \Rightarrow \qquad \begin{array}{l} \text{Déséq. de charges} \\ \text{négligeables} \\ n_+(x,t) \approx n_-(x,t) \end{array}$$

L = long. caract. du pb.

Plasma non quasi-neutre : (gaines, faisceaux, ...)

 $\lambda \sim 1 \implies \frac{\text{Déséq. de charges}}{n_+(x,t) \neq n_-(x,t)}$

Echelle de temps : oscillations plasma 7

- Oscillations plasma :
 - → Déséq. de charges
 - → Forces élec. de rappel
 - Oscillations

Fréquence plasma (électronique)

Echelle de temps liée à la quasi-neutralité 8

Dans le régime quasi-neutre

 $\omega := \omega_{Pe} t_0 \gg 1$

 $t_0 = \text{temps caract. du pb.}$

 Etat quasi-neutre = moyenne d'un très grand nbre de périodes plasma

Contraintes numériques

- Modèle non quasi-neutre, valide dans tout régime
 - Schémas classiques

$\Delta x \le \lambda_D \,, \quad \omega_{Pe} \,\Delta t \le 1$

→ Très coûteux en régime quasi-neutre (QN)

Modèle (Non-QN) en régime quasi-neutre inutilisable en dim. > 1

 Un modèle (QN) est nécessaire pour décrire les régimes quasi-neutres

Problèmes avec les modèles quasi-neutre 10

- Contrainte de quasi-neutralité difficile à traiter numériquement quand le courant est non nul.
- Si zones quasi et non quasi-neutres
 Interface (mobile) entre modèles (QN) et (Non-QN) Dériv. formelle de la dynamique : [Degond, Parzani, V., SIAM MMS 04]
 [Slemrod, Ha, ARMA 05]
 - Interface mobile : Pb. numérique difficile en 2-D et 3-D
 Interface tracking [Tryggvason, ...], Level set [Osher, Sethian, ...]
 VoF [Youngs, Zaleski, ...], Mélanges fictifs [Karni, Abgrall& Saurel, ...

Ex 1 : arcs sur les panneaux solaires (I) 11

Figure d'un satellite et de ses panneaux solaires

Panneau solaire endomagé par des arcs électriques

Ex1 : arcs sur les panneaux solaires (II) 12

- Une decharge a neu.
- Un plasma haute densité est créé et se détend.
- ➡ Le plasma remplit l'espace, un arc apparait.

Ex2 : diodes à forts courants

Diode plane conventionelle

Diode à fort courant

13

Courrant limité

$$j \le j_{max} \left(\frac{1}{L^2}\right)$$

- Plasma se détend
- Interface avance
- Courrant extrait augmente

Modèle (Non-QN) pour toutes les zones discrétisation avec un schéma non contraint par

$$\Delta x \leq \lambda_D, \quad \omega_{Pe} \,\Delta t \leq 1$$

→ Schémas "AP" pour "Asymptotic Preserving"
 ([Jin] cinétique → Hydro)

Notre contribution : un schéma AP pour Euler-Poisson
 qui a un coût explicite comme les schémas classiques

⁽Plan) M.-H. Vignal - schémas asymptotiquement stables - Rennes, Janvier 06 (Conclusion)

Quelques références supplémentaires 15

Limites quasi-neutre rigoureuses

- → Euler-Poisson (1D, courant nul): [Cordier & Grenier]
- Vlasov-Poisson: [Brenier, Brenier & Grenier, Brenier & Corrias]

Schémas AP, limite quasi-neutre, modèles fluides

- ➡ [Fabre]
- ➡ [Choe, Yoon, Kim, Choi]
- ➡ [Colella, Dorr, Wake]
- → [Crispel, Degond, V]

2. Le modèle d'Euler-Poisson et sa limite quasi-neutre

Modèle d'Euler-Poisson

Modèle à une espèce pour simplifier

$$(EP) \begin{cases} \partial_t n + \nabla \cdot q = 0, \\ \partial_t q + \nabla \left(\frac{q \otimes q}{n}\right) + \nabla p(n) = n \nabla \phi, \\ \lambda^2 \Delta \phi = n - n_0, \end{cases}$$

$$n_{0} = \text{densité constante des ions,}$$

$$n = \text{densité élec.,} \qquad p(n) = \text{pression élec.,}$$

$$q = \text{quantité de mvt élec.,} \qquad \phi = \text{potentiel.}$$

$$\lambda = \frac{\lambda_{D}}{L} = \frac{\text{longueur de Debye}}{\text{longueur caractéristique}}$$

$\lambda \rightarrow 0$: Limite quasi-neutre (I) 18

$$(QN) \begin{cases} \partial_t n + \nabla \cdot q = 0\\ \partial_t q + \nabla \left(\frac{q \otimes q}{n}\right) + \nabla(p(n)) = n \nabla \phi,\\ n = n_0. \end{cases}$$

Soit encore :
$$\begin{cases} \nabla \cdot q = 0, \\ \partial_t q + \nabla \left(\frac{q \otimes q}{n_0}\right) = n_0 \nabla \phi, \\ n = n_0. \end{cases}$$

 $n_0 = 1 \Rightarrow \text{Eqs. d'Euler Incompressible (pression} = -\phi)$ $\Rightarrow \phi = \text{multiplicateurs de Lagrange de } \nabla \cdot q = 0$

$\lambda \rightarrow 0$: Limite quasi-neutre (II) 19

Eq. explicite pour le potentiel

$$\nabla \cdot \left(\partial_t q + \nabla \left(\frac{q \otimes q}{n_0} \right) = n_0 \, \nabla \phi \right)$$

 $\Downarrow \nabla \cdot q = 0$

Eq. elliptique :
$$\nabla^2$$
 : $\left(\frac{q \otimes q}{n_0}\right) = \nabla \cdot (n_0 \nabla \phi)$

Unifier (EP) et (QN) (I)

20

 \blacksquare Différentes eqs. pour ϕ

$$(\text{EP}): \text{Poisson } \lambda^2 \Delta \phi = n - 1$$
$$(\text{QN}): \text{Eq.} \quad \nabla \cdot (n_0 \nabla \phi) = \nabla^2 : \left(\frac{q \otimes q}{n_0}\right)$$

Pas la même homogénéïté ↓ Est-il possible de les unifier ?

Unifier (EP) et (QN) (II)

21

→ Dans (EP) : $\nabla \cdot$ de l'eq. de quantité de mvt $\nabla \cdot (\partial_t q) + \nabla^2 : f(n,q) = \nabla \cdot (n\nabla \phi)$ avec $f(n,q) = \frac{q \otimes q}{n} + p(n)$ Id \rightarrow Dans (EP) : ∂_t de l'eq. de masse $\partial_{tt}^2 n + \partial_t (\nabla \cdot q) = 0$ Différence $\Rightarrow -\partial_{tt}^2 n + \nabla^2 : f(n,q) = \nabla \cdot (n\nabla \phi)$

Unifier (EP) et (QN) (III)

22

• On utilise eq. de Poisson $n = n_0 + \lambda^2 \Delta \phi$

$$-\lambda^2 \Delta(\partial_{tt}^2 \phi) + \nabla^2 : f(n,q) = \nabla \cdot (n\nabla \phi)$$

Eq. de Poisson reformulée

$$\lambda^2 \partial_{tt}^2 (-\Delta \phi) - \nabla \cdot (n \nabla \phi) = -\nabla^2 : f(n,q)$$

Unifier (EP) et (QN): commentaires 23

$$n = cste \Rightarrow \lambda^2 \partial_{tt}^2 (-\Delta \phi) - n\Delta \phi = -\nabla^2 : f(n,q)$$

Eq. du pendule sur $\Delta \phi$

🗰 Eq. équivalente à eq. Poisson si

$$(\lambda^2 \Delta \phi = n - n_0)|_{t=0}$$
 et $\frac{d}{dt} (\lambda^2 \Delta \phi = n - n_0)|_{t=0}$.

▶ Ne dégénère pas quand $\lambda \rightarrow 0$.

 $\rightarrow \lambda = 0$: on retrouve l'eq. pour ϕ du modèle (QN).

(Plan) M.-H. Vignal - schémas asymptotiquement stables - Rennes, Janvier 06 (Conclusion)

3. Discrétisation classique pour Euler-Poisson (EP)

25

Système (EP) : $\begin{cases}
\partial_t n + \nabla \cdot q = 0 \\
\partial_t q + \nabla f(n, q) = n \nabla \phi \\
\lambda^2 \Delta \phi = n - n_0
\end{cases}$

$$f(n,q) = \frac{q \otimes q}{n} + p(n) \text{Id}$$

 \blacksquare Rmq : fréq. plasma adimensionnée $w \sim \lambda^{-1}$

(EP) discrétisation en temps

- Schéma classique :
 - → Flux hydro explicites
 - Poisson et terme de force électrique implicites

26

→ Si
$$n^m$$
, q^m , ϕ^m approx. au temps t^m connues

$$\begin{cases} \frac{n^{m+1}-n^m}{\Delta t} + \nabla \cdot q^m = 0, \\ \frac{q^{m+1}-q^m}{\Delta t} + \nabla f(n^m, q^m) = n^{m+1} \nabla \phi^{m+1}, \\ \lambda^2 \Delta \phi^{m+1} = n^{m+1} - n_0. \end{cases}$$

Coût du schéma

Résolution explicite

Condition de stabilité liée à la quasi-neutralité :

$$w\,\Delta t \le 1 \quad \Rightarrow \quad \Delta t \sim \lambda$$

→ Régime QN : $\lambda \ll 1$, contrainte importante

Schéma classique non "AP" (I) 28

 \rightarrow $\nabla \cdot$ de l'eq. de quantité de mvt

$$\frac{\nabla \cdot q^{m+1} - \nabla \cdot q^m}{\Delta t} + \nabla^2 : f(n^m, q^m) = \nabla \cdot \left(n^{m+1} \nabla \phi^{m+1} \right),$$

\rightarrow ∂_t discrète de l'eq. de masse

$$\frac{n^{m+2} - 2n^{m+1} + n^m}{\Delta t^2} + \frac{\nabla \cdot q^{m+1} - \nabla \cdot q^m}{\Delta t} = 0,$$

Schéma classique non "AP" (II) 29

Diff. et utilisation de l'eq. de Poisson discrète

Discrétisation de l'eq. de Poisson reformulée

$$-\lambda^2 \frac{\Delta \phi^{m+2} - 2 \Delta \phi^{m+1} + \Delta \phi^m}{\Delta t^2} - \nabla \cdot \left(n^{m+1} \nabla \phi^{m+1} \right)$$
$$= -\nabla^2 : f(n^m, q^m)$$

Discrétisation explicite conditionnellement stable

4. Nouvelle approche : schéma "AP"

Schéma "AP" pour Euler-Poisson 31

- ➡ Schéma "AP" :
 - Poisson et flux masse implicites
 - → Terme de force électrique semi-implicite

$$\begin{cases} \frac{n^{m+1} - n^m}{\Delta t} + \nabla \cdot q^{m+1} = 0, \\ \frac{q^{m+1} - q^m}{\Delta t} + \nabla f(n^m, q^m) = n^m \nabla \phi^{m+1}, \\ \lambda^2 \Delta \phi^{m+1} = n^{m+1} - n_0. \end{cases}$$

Coût et comportement dans la limite quasi-neutre ?

Eq. Poisson reformulée discrète associée 32

$$-\lambda^2 \frac{\Delta \phi^{m+1} - 2 \Delta \phi^m + \Delta \phi^{m-1}}{\Delta t^2} - \nabla \cdot \left(n^m \nabla \phi^{m+1} \right)$$
$$= -\nabla^2 : f(n^m, q^m)$$

On a gagné en implicitation de l'eq. du pendule.

 ϕ^{m+1} explicite en fonction des données aux temps t^m et t^{m-1}

Formulation explicite du schéma "AP" 33

$$\begin{cases} \frac{n^{m+1} - n^m}{\Delta t} + \nabla \cdot q^{m+1} = 0, \\ \frac{q^{m+1} - q^m}{\Delta t} + \nabla f(n^m, q^m) = n^m \nabla \phi^{m+1}, \\ -\lambda^2 \frac{\Delta \phi^{m+1} - 2\Delta \phi^m + \Delta \phi^{m-1}}{\Delta t^2} - \nabla \cdot \left(n^m \nabla \phi^{m+1}\right) \\ = -\nabla^2 : f(n^m, q^m) \end{cases}$$

- Résolution explicite
- Stab. du linéarisé : $\Delta t = O(1)$ même si $\lambda \to 0$. Travail en cours avec J-G. Liu (Maryland)

Schéma "AP" : commentaires

- Contrainte CFL du syst. hydro. toujours présente
 Peut être pénalisante pour les électrons
- Peut se traiter avec la même méthodologie
 - Eq. de Poisson est remplacée par une eq.
 elliptique du 4^{ème} ordre
 - Travail en cours avec J-G. Liu
- La même idée peut s'appliquer à la limite faible nombre de Mach d'Euler compressible (en cours)

Discrétisation en espace

35

$$\begin{aligned} \Delta t^{-1} \left(n^{m+1} - n^m \right) + \nabla \cdot q^{m+1} &= 0 \\ \Delta t^{-1} \left(q^{m+1} - q^m \right) + \nabla f(n^m, q^m) &= n^m \nabla \phi^{m+1} \\ \lambda^2 \Delta \phi^{m+1} &= n^{m+1} - 1 \end{aligned}$$

- \blacksquare Elimination de $q \Rightarrow$ Formul. explicite
- Flux de Lax-Friedrichs modifié
 Flux num. de masse = q + viscosité num.(n)
- Extension solveurs de type Roe en cours

5. Résultats numériques

Perturbation d'un équilibre QN (I) 37

Deux espèces : ions et électrons

$$\begin{cases} \partial_t n_i + \nabla \cdot q_i = 0, \\ \partial_t q_i + \nabla \left(\frac{q_i \otimes q_i}{n_i}\right) + \nabla p_i(n_i) = -n_i \nabla \phi, \\ \left\{ \begin{array}{l} \partial_t n_e + \nabla \cdot q_e = 0, \\ \varepsilon \partial_t q_e + \varepsilon \nabla \left(\frac{q_e \otimes q_e}{n_e}\right) + \nabla p_e(n_e) = n_e \nabla \phi \\ \lambda^2 \Delta \phi = n_e - n_i, \end{array} \right.$$

Perturbation autour d'un équilibre

$$n_i = n_e = 1, \quad q_i = 0, \quad q_e = 1.$$

Perturbation d'un équilibre QN (II) 38

Perturbation initiale :

$$n_i = n_e = 1$$
, $q_i = 10^{-2} \cos 2\pi x$, $q_e = 1 + 10^{-2} \cos 2\pi x$.

Solutions explicites du système linéarisé connues

Paramètres du pb

rapport masses $= \varepsilon = 10^{-4}$, long. Debye $= \lambda = 10^{-4}$,

freq. plasma =
$$\omega = (\varepsilon \lambda)^{-1} = 10^6$$

Classique et AP : $\Delta x < \lambda$ $\omega \Delta t < 1$ 39

Classique et AP : $\Delta x > \lambda$ $\omega \Delta t < 1$ 40

Classique : $\Delta x > \lambda$ $\omega \Delta t > 1$ 41

42

Expansion de plasma entre 2 électrodes 44

Au départ, domaine vide de plasma

Injection en x = 0, la cathode :

$$n_i = n_e = 1$$
 $u_i = u_e = 1$ $\phi = 0$

D.D.P. appliquée

$$\phi(x=1) = \phi_1$$

Paramètres

$$\varepsilon = 10^{-4} \quad \lambda = 10^{-4} \quad \phi_1 = 100$$

Classique et AP : comparaison $\omega \Delta t \gtrsim 1$ 45

schéma AP : résultats 2D t = 0.00 46

schéma AP : résultats 2D t = 0.005 47

schéma AP : résultats 2D t = 0.01 48

schéma AP : résultats 2D t = 0.015 49

schéma AP : résultats 2D t = 0.02 50

6. Perspectives

Perspectives

- Autres solveurs
 - → Lax-Wendroff
 - → Solveurs de type Roe
- Autres modèles
 - → Euler complet (eqs. energies)
 - → Vlasov-Poisson
 - Dérive-Diffusion
- Euler-Maxwell