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mon jury.

Je salue tous mes collaborateurs, Pierre Crispel, Fabrice Deluzet, Pierre Degond,
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Chapter 1

Introduction

1.1 Research activities

The research activities presented in this report are related to three different fields:
First the coupling of models describing plasmas and containing both quasi-neutral
and non quasi-neutral zones, then the development and the analysis of an asymptotic
preserving scheme in the quasi-neutral limit and finally the modeling of transport of
charged or non charged particles.

Before describing these three different studies, I summarize in Chapter 2 the work
performed in my PhD studies. It deals with the numerical analysis of finite volume
schemes for elliptic and hyperbolic equations, with a particular interest in boundary
condition problems. Even if the research done after my PhD studies is not closely
related to my PhD work, the knowledge that I have gained during this period has
guided me all along my work: First, on criteria to construct an efficient finite volume
scheme and above all for boundary condition problems. Furthermore, I have paid a
particular attention on recent developments published since this period.

The first field of my research is devoted to the coupling of models describing the
expansion of a quasi-neutral plasma bubble between two electrodes. The plasma,
containing electrons and one ion species, is injected from the cathode and expands
in the gap between the electrodes. During expansion, some electrons are attracted
by the positive anode potential and form a beam in the vacuum. Then, two regions
with different properties are present in the domain. The first region being the plasma
bubble: It is quasi-neutral, meaning that electric unbalances take place at a very
small scale length called the Debye length. The second region is the electron beam.
This zone contains only electrons and so can not be at equilibrium. Thus, the Debye
length is of order one in the beam.

We start with a fluid model constituted by the isentropic Euler equations for each
species coupled with the Poisson equation for the description of electric effects. This
model is called the two-fluid Euler-Poisson model. Unfortunately, classical discretiza-
tions of this model are subject to severe numerical constraints in quasi-neutral zones.
Moreover, numerical simulations are two much expensive to be performed in practical
multi-dimensional cases.

There are two possible ways to overcome this limitation. The first way, described
in Chapter 3, consists in finding an asymptotic model for which discretizations are
not constrained. Starting from the two-fluid Euler-Poisson model, we derive a quasi-
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neutral model describing the plasma bubble. However, this model is not valid any-
more in non quasi-neutral zones. Next, we derive a Child-Langmuir model describing
the beam. Then, it is necessary to determine the dynamics of the interface between
the different regions, and couple the models. We propose two descriptions based on
different assumptions. The first description consists in a quasi-neutral model with a
vanishing current for the plasma bubble coupled to the Child-Langmuir model for the
beam. The coupling is done using the Rankine-Hugoniot relations of the two-fluid
Euler-Poisson model. The numerical simulations of this model show that it correctly
describes the interface dynamics. On the other hand, the electron mass conserva-
tion is not satisfied at the plasma-beam interface. The consequence is a spurious
peak of plasma density near the interface. To correct this problem, we consider a
new description giving a quasi-neutral model with a non vanishing current for the
plasma bubble. This new description is coupled with the Child-Langmuir model for
the beam studying a transmission problem at the plasma-beam interface. We, math-
ematically and numerically, study this new model. This gives us the validity domain
of the quasi-neutral model with a non vanishing current. In one space dimension,
the numerical simulations of this model show a very good agreement with the results
given by two-fluid Euler-Poisson model. We propose different extensions of this work
related to the full Euler equations and two dimensional problems.

Unfortunately, the numerical simulations of the plasma expansion test case near
the plasma-beam interface, reaches a regime outside the validity domain of the quasi-
neutral model with a non vanishing current. For this reason, we consider a new
approach in Chapter 4. In this chapter, we develop an asymptotic preserving scheme
in the quasi-neutral limit for the two-fluid Euler-Poisson model. Using this scheme,
we do not have to follow any interface since only one model is used for the description
of quasi-neutral and non quasi-neutral regions. Moreover, this scheme has the same
cost as classical schemes without being subject to quasi-neutral constraints. We
prove the good behavior of this scheme while performing numerical simulations and
studying its stability for a linearized one-fluid Euler-Poisson model. Furthermore,
we study a boundary layer problem at the injection point. Indeed, we numerically
show that boundary conditions not well adapted to the quasi-neutral regime, lead to
numerical constraints as severe as the previously encountered ones. We derive and
study a boundary layer problem. This allows to determine well-adapted boundary
conditions. These well-adapted boundary conditions are numerically tested on the
previous plasma expansion test case. Results show that all numerical constraints
related to quasi-neutrality, are removed.

The last chapter of this report presents some work related to kinetic descriptions of
particles. First, we study a problem of particles confined close to a wall by an applied
potential. To reduce the cost of numerical simulations, we derive a two dimensional
model starting from a three dimensional kinetic description. This asymptotic anal-
ysis is done rigorously in the case of non charged particles and formally when the
coupling with the Poisson equation is considered. We illustrate this work with numer-
ical simulations of a primary discharge problem occurring in the study of electric arc
phenomena on satellite solar panels. Finally, I conclude this report with the mathe-
matical study of a simplified diphasic model. This model describes the transport of
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droplets in a gas. It is constituted of the Vlasov equation for the droplets description
coupled to the Burgers equation for the gas. We study the existence, the uniqueness
and the limit of the different viscous solutions.
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des Sciences. Série I. Mathématique 338 (2004) no. 4, 327–332. This note
summarizes the results published in [A2].
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[N5] P. Crispel, P. Degond, M.-H. Vignal, An asymptotically stable discretization for
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1.2.3 Articles published after the PhD work
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[A3] P. Degond, C. Parzani, M.-H. Vignal, A Boltzmann model for trapped particles
in a surface potential, Multiscale Modeling & Simulation, SIAM 5 (2006) no.
2, 364–392.

[A4] P. Crispel, P. Degond, M.-H. Vignal, An asymptotic preserving scheme for the
two-fluid Euler-Poisson model in the quasi-neutral limit, Journal of computa-
tional Physics 223 (2007) no. 1, 208–234.
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225 (2007) 1937–1960.

[A7] J.-G. Liu, P. Degond, M.-H. Vignal, Analysis of an asymptotic preserving
scheme for the Euler-Poisson system in the quasineutral limit, submitted.

[A8] Vignal M.-H., A boundary layer problem for an asymptotic preserving scheme
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1.2.4 Proceedings published after the PhD work

[CR1] P. Degond, R. Talaalout, M.-H. Vignal, Electron transport and secondary emis-
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not published in an article.
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Chapter 2

Summary of the PhD work:
Numerical analysis of finite volume
schemes

During my PhD, I worked on numerical analysis of finite volume schemes for elliptic
or hyperbolic equations on bounded domains. The originality of my work consists in
the study of boundary conditions and in the elliptic-hyperbolic coupling.

Finite volume schemes are intensively used in industry, among others in petroleum
industry. They are particularly well adapted for the discretization of conservation
equations. The principle of finite volumes is the following. A family of cells (or
control volumes) are considered. An unknown is associated to each cell and, we
obtain one equation for one unknown, by integrating the considered equation on each
control volume. This integration yields flux terms modeling the exchange between
cells. These flux terms are discretized using finite differences.

First, I have considered a linear hyperbolic equation coupled to a linear elliptic
equation on a multi-dimensional domain. This system is discretized using a “four
points” finite volume scheme for the elliptic equation, studied in [26], and the upwind
scheme for the hyperbolic equation. I show the convergence of the approximate
solution towards the exact solution of the system. For the elliptic equation, I establish
an error estimate in a discrete H1 norm of order ∆x, where ∆x is the size of the
mesh. Furthermore, using discrete Sobolev embedding inequalities, I establish error
estimates in Lr for all r such that 1 ≤ r ≤ +∞. For the hyperbolic equation, I prove
the convergence of the approximate solution towards the exact solution in L∞ for the
weak-⋆ topology. This work is published in [Th1].

Then, in collaboration with Sophie Verdière, I consider a diphasic flow problem in
porous media. This work is published in [Th2]. The model couples a linear elliptic
equation with a non linear hyperbolic equation. The parameters of this problem
are given by geophysicists as constant functions over each cell of a very fine mesh.
This mesh can be made of several millions of cells. The discretization of the elliptic
equation leads to a linear system too large to be resolved on the fine mesh. For
this reason, this equation is discretized on a coarse grid. However, in order to keep
the information given on the fine mesh, the hyperbolic equation is resolved on this
fine mesh. Then, a dual mesh method is obtained. Since the equations are coupled,
we have to reconstruct some the information from the coarse grid on the fine grid.
We study two reconstruction methods. On a simplified linear model, we prove the
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convergence of the scheme. Furthermore, for the non linear system, we perform
numerical simulations for more complex physical applications.

In [Th3], we consider a convection-diffusion equations with general boundary
conditions: Dirichlet, Neumann or Fourier. We discretize this equation with a finite
volume scheme on a Voronöı mesh (including triangles and rectangles). Assuming the
solutions at least in H2, we prove error estimates in a discrete H1

0 norm of the domain
and in a discrete L2 norm of the boundary. A Sobolev embedding inequality gives an
error estimate in L2 norm of the domain. This work has been done in collaboration
with Thierry Gallouët and Raphaèle Herbin.

Then, I consider the non linear case for the hyperbolic equation set on a bounded
domain. The equation is discretized with a general finite volume scheme. Using
L∞ and “weak BV” estimates, I show the convergence of the approximate solution
towards an entropy process solution of the problem in L∞ for the weak-⋆ topology.
This solution, introduced in [21] in the unbounded case, is built using the repartition
function of a Young measure. If the exact solution has bounded variations, I can
prove that this entropy process solution is the weak entropy solution of the problem.
For this, we use a technique introduced by S.N. Kruzkov in [30]. Furthermore, for a
particular family of fluxes, we prove error estimates in L1 norm of order ∆x1/4 where
∆x is the size of the mesh. This work is partially published in [Th4].
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Chapter 3

Coupling of models for a plasma
expansion problem

3.1 Introduction

In this chapter, I describe the mathematical and numerical modeling of the ex-
pansion of a plasma bubble between two electrodes. This work has been published
in [N2], [N3], [N4], [A1], [A2], [A5], [A6] and [CR2]. It is a collaboration with
Pierre Crispel, Pierre Degond, Kim-Claire Le Thanh and Céline Parzani. It has been
done in the context of two industrial projects and was supported by several contracts.

The first project deals with the study of high current diodes. It has been proposed
by Franck Assous, Jacques Segré and Kim-Claire le Thanh from the CEA (French
Atomic Energy Center) of Bruyères le châtel. It covers the period from 2001 un-
til 2004. The second project has been proposed by Jean-Pierre Catani and Denis
Payan from the CNES (French space center) and Jean-François Roussel from Onera
in Toulouse. It covers the period from 2003 until 2005, and deals with the electric
arc phenomena on satellite solar panels.

The physical scenari of these two phenomena are identical, only the scales of phys-
ical parameters change. In both cases, we consider two plane electrodes. A plasma is
injected from the cathode. Due to some thermal effects, the plasma bubble expands
in the gap between the electrodes. During its expansion, electrons are attracted by
the positive potential of the anode. They are emitted in the gap between the plasma-
beam interface and the anode, and form an electron beam in the “vacuum”. The
plasma is supposed to be fully ionized and constituted of electrons and of one ion
species. We use a fluid description given by the following two-fluid Euler-Poisson
model

∂tni + ∂x(niui) = 0, (3.1)

mi

(

∂t(niui) + ∂x(niu
2
i )
)

+ ∂xpi(ni) = −e ni ∂xφ, (3.2)

∂tne + ∂x(neue) = 0, (3.3)

me

(

∂t(neue) + ∂x(neu
2
e)
)

+ ∂xpe(ne) = e ne ∂xφ, (3.4)

−∂2
xxφ =

e

ǫ0
(ni − ne), (3.5)

where t is the time, x is the space variable and where the quantities for ions are
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indexed by i and those for electrons by e. For j = i or e, we denote by mj the mass
of the particles j, by nj their density, by uj their velocity and by pj their pressure
law assumed adiabatic and given by pj(n) = Cj n

γj where Cj > 0 and γj > 1.
Furthermore, e > 0 is the positive elementary charge, φ is the electric potential and
ǫo the vacuum permittivity.

This model describes all the device (plasma, interface, beam), but it is subject
to such severe numerical constraints that the model is unusable in practice. The
computational cost in one space dimension is already huge although the aim is to
simulate cases in two or three dimensions of space. These numerical constraints are
related to two physical parameters well known in plasma physics (see [7], [28]): the
Debye length and the plasma period, respectively denoted by λD and τp. They are
given by

λD =

(

ǫ0 kB T0

e2 n0

)1/2

and τp =

(

ǫ0me

e2 n0

)1/2

, (3.6)

where kB is the Boltzmann constant, n0 and T0 are the typical density and temper-
ature of the plasma.

The Debye length measures the scale of the distance at which electric effects take
place in the plasma. If we consider a particular charge q in the plasma, then a cloud
of opposite charges is formed around this charge. This cloud screens the electric
effect of the charge q beyond the distance λD. The charges outside the effective area
do not interact with the charge q. The plasma period is related to these charge
unbalances. When an unbalance occurs (of the order λD), electric forces tend to
restore the particles towards their equilibrium position. Then, the particles oscillate
around this position. The period of the electron oscillations is given by τp. It is
possible to define the ion period by switching me by mi. But, this period is larger
than τp since ions are heavier than electrons. In the problem that we consider here,
the densities in the plasma bubble are very large. Thus, the Debye length and the
plasma period are very small comparing to the macroscopic scales, i.e. the size of the
device (distance cathode-anode) and the final time of the simulatation.

In practice, when we use a classical scheme, the time discretization must resolve
the plasma period otherwise an instability appears. This result is proved in [23] for a
one-fluid Euler-Poisson system linearized around a stationary solution. Furthermore,
we will see in section 4.4, that a boundary layer of size λD at the cathode, leads in
general to another numerical constraint. The space discretization must resolve the
Debye length to ensure the stability of the scheme. These constraints are too much
penalizing to perform two dimensional numerical simulations.

Two ways are possible to overcome these limitations. They consist in freeing from
the small scales λD and τp either at the level of the modeling or at the discretization
level. Here, we describe the first approach, the second approach is developed in
Chapter 4.

In the first approach, we choose to use a quasi-neutral model in the plasma bubble.
This model is obtained from the two-fluid Euler-Poisson model when the Debye length
tends to zero. It is not constrained to resolve the scale τp. But, it is only valid in
quasi-neutral zones, i.e. the plasma bubble. So, it is necessary to derive another
model to describe the electron beam. Then, we have to determine the regions where
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each model is valid and, as a result, follow the plasma-beam interface. Finally, we
have to reconnect the models at the interface.

3.2 The physical context and the Euler-Poisson model

I begin with the description of the physical context of the projects already men-
tioned in the introduction. In a conventional plane diode, a high potential is applied
at the anode leading to an electron emission in the gap between the electrodes. For
all electron emission process, this extracted current is limited by a threshold value,
called the Child-Langmuir current or limited current by space charge effects. This
threshold current is inversely proportional to the square of the distance between the
electrodes, see [31], [14], [18], [19].

To overcome this limitation, physicists have developed new devices: the high
current diodes. In high current diodes, the cathode is made of a material with a
regular micro spike lattice. Several materials are used like cathodes in dielectric
metal, in carbon fiber or velvet cathodes, see [44]. According to physicists, the
current increase has two origins. The enhanced electric field near the spikes (called
in physics literature “enhanced field particle emission”) and the explosive erosion of
the cathode produce a very dense plasma, see [29], [33]. Here, we are interested in
the modeling of the expansion of the dense plasma.

While the plasma expands, electrons are emitted from the plasma-beam interface.
The plasma being quasi-neutral, all the difference of potential is concentrated between
the plasma-beam interface and the anode. The plasma-beam interface plays the role
of a virtual cathode. As the distance between the virtual cathode and the anode
decreases, the extracted current increases.

Now, I describe the physical context of the electric arc phenomena on satellites.
To be supplied in energy, satellites have solar panels constituted of strings of solar
cells. In order to respond to high power demands, constructors increase the number
of cells contained in each string. But, when this number exceeds the threshold value
of fifty Volts, electric arcs may appear and could damage the concerned string.

The physical scenario can be split into three steps. In the first step, an electrostatic
discharge, called primary discharge, ignites near a metallic part of a cell. This primary
discharge creates a very high density plasma which expends in the gap between two
cells. The cells are at different potentials. When the plasma has filled up all the gap,
the electric arc may occur. Here, we are interested in the transition from the primary
discharge towards the electric arc, i.e. the plasma expansion.

We start from the two-fluid Euler-Poisson model (3.1)-(3.5) for x ∈ [0, L] and
t > 0 where L is the distance between the electrodes. We close the system with
initial and boundary conditions. At the beginning of the process, the domain is
supposed devoid of plasma. Then, we set ni|t=0 = ne|t=0 = 0. The cathode and the
anode are respectively located at x = 0 and x = 1, thus

φ|x=0 = 0, and φ|x=0 = φL > 0. (3.7)

Finally, for the fluid quantities, at the point x = L, we assume a super-sonic regime
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and no boundary condition is necessary. At the point x = 0, we consider that a
quasi-neutral plasma with the same velocity for ions and electrons, is present outside
the domain for x < 0. The boundary conditions are given by

(ni, ui)(0, t) = (ni0, ui0)(t), (ne, ue)(0, t) = (ne0, ue0)(t), (3.8)

for all t > 0 and where (ni0, ui0) and (ne0, ue0) are given by the resolution of elec-
tron and ion Riemann problems where the left states are identical and given by
(n0, u0), the state outside the domain. The right states are given by (ni,e, ui,e)(0

+, t) =
limx→0+(ni,e, ui,e)(x, t).

3.3 One dimensional asymptotic model

Here, I describe the results published in [N2], [N3] and [A1]. I recall that the
two-fluid Euler-Poisson model (3.1)-(3.5), (3.7)-(3.8), is valid in all the domain: the
plasma bubble, the interface and the beam. But it must resolve the small scale of
the plasma period.

The aim of this study is to derive a model not constrained to resolve this small
scale. For this, we begin with the rescaling of physical quantities in (3.1)-(3.5). The
rescaling is different in each zone since they have different physical properties.

We begin with the rescaling of the plasma region. We choose the following char-
acteristic quantities: the size of the domain L for the space variable, the density and
velocity n0 and u0, the time t0 = L/u0, the ion pressure p0 = n0mi u

2
0 and the anode

potential φL. The rescaled variables are defined by x̃ = x/L, t̃ = t/t0, ñi,e = ni,e/n0,
ũi,e = ui,e/u0, p̃i,e(ñi,e) = pi,e(ni,e)/p0 and φ̃ = φ/φL. We denote by X̃(t̃) the plasma-
beam interface in rescaled variables for all t̃ > 0. Omitting the “tildes”, we obtain,
for all x ∈ [0, X(t)] and all t > 0

∂tni + ∂x(niui) = 0, ∂t(niui) + ∂x(niu
2
i ) + ∂xpi(ni) = −ni ∂xφ

η
, (3.9)

∂tne + ∂x(neue) = 0, ε
(

∂t(neue) + ∂x(neu
2
e)
)

+ ∂xpe(ne) =
ne ∂xφ

η
, (3.10)

−λ ∂2
xxφ = (ni − ne), (3.11)

where ε, η and λ are three dimensionless parameters defined by

ε =
me

mi

, η =
mi u

2
0

e φL

, λ =
ǫ0 φL

e n0 L2
=

e φL

e2/(ǫ0 (n0 L2)−1)
.

They respectively measure the ratio between electron and ion masses, the ratio be-
tween thermal energy and potential energy and the ratio between potential energies
due to the applied potential and the Coulombian interactions (see [7]).

We are interested in situations such that λ is of order 1 and η is very small. These
values agree with those observed in high current diodes (see [50]). In practice, ε is
small but can not be neglected. Indeed, although the electrons’ inertia is small, they
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undergo large accelerations. Therefore, ε will be considered as an order 1 quantity. It
is important to note that the rescaled Debye length, i.e. the ratio between the Debye
length and the macroscopic scale L, is given by

√
λ η. Furthermore, the rescaled

plasma period, i.e. the ratio between the plasma period and the macroscopic time
t0, is given by

√
ε λ η. Thus, η small gives a small Debye length and a small plasma

period.
In the beam region there are only electrons. The characteristic quantities chosen

for the rescaling are the same as previously, for the space variable, the time, the den-
sity, the potential and the pressure. But electrons are accelerated to large velocities
by the electric field. We expect energies of order of the potential energy eφL. Thus,
we choose for characteristic electron velocity

√

eφL/me. We set ūe =
√
ε η ue where

ue is the rescaled velocity in the plasma region. We obtain the Euler-Poisson model
in the beam region [X(t), 1]:

√
εη ∂tne + ∂x(neūe) = 0 , −λ∂2

xxφ = −ne , (3.12)

ε
(√

εη ∂t(neūe) + ∂x(neū
2
e)
)

+ εη ∂xpe(ne) = ε ne∂xφ , (3.13)

where the boundary conditions at the point x = X(t) are such that ne, ūe, φ match
the values of the corresponding quantities for the two-fluid Euler-Poisson model in the
plasma region. Note that since ue = O(1) in the plasma region, we have ūe|x=X(t) =
(εη)1/2ue|x=X(t) = O((εη)1/2) → 0 as η → 0. Similarly, since φ → 0 in the plasma
region, we have φ|x=X(t) → 0 as η → 0. Finally, we recall that φ|x=1 = 1.

Now, we can establish an asymptotic model in each region. We begin with the
beam region.

3.3.1 Asymptotic model in the beam region

The asymptotic models in the beam are identical in references [N2], [N3] and [A1].
Let us denote by nη

e , ū
η
e , φ

η a solution of system (3.12)-(3.13) with the above specified
boundary conditions. The limit η → 0 is analyzed in the following proposition based
on the results established in [14] and [18].

Proposition 3.1 As η → 0, nη
e , ū

η
e , φ

η converge to ne, ūe, φ, a solution of the
Child-Langmuir problem on [X(t), 1]:

∂x(neūe) = 0 , ∂x(neū
2
e) = ne ∂xφ , −λ∂2

xxφ = −ne ,

with the boundary conditions ūe|x=X(t) = 0, φ|x=X(t) = 0, φ|x=1 = 1. We set j̄e = neūe.
Then, j̄e does not depend of x on [X(t), 1]. We introduce the Child-Langmuir current:

j̄CL(t) =
4
√

2λ

9 (1 −X(t))2 . (3.14)

Then, for all values j̄e ∈ [0, j̄CL(t)], there exists a unique solution ne, ūe, φ, with φ
positive on ]X(t), 1], given by ne = j̄e/

√
2φ, ūe =

√
2φ. The potential φ is implicitly
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determined by
∫ φ(x,t)

0

dψ
√

(∂xφ|x=X(t))2 + 2
√

2λ−1j̄e
√
ψ

= x−X(t) . (3.15)

Remark that the knowledge of ∂xφ|x=X(t) and the boundary conditions at x = 1 on
the potential, implicitly give j̄e. Indeed, writing (3.15) at x = 1, yields an equation
linking ∂xφ|x=X(t) and j̄e. There is no solution if j̄e 6∈ [0, j̄CL(t)] and j̄e ∈ [0, j̄CL(t)]
corresponds to an electric field at the interface ∂xφ|x=X(t) ∈ [0, 1/(1 − X)]. In par-
ticular, for ∂xφ|x=X(t) = 0, we are in a maximal current regime and j̄e = j̄CL(t) and
φ = ((x−X)/(1 −X))4/3.

Going back to the scaling used in the plasma region, the electron flux je and the
Child-Langmuir current jCL are given by je, jCL = (εη)−1/2j̄e, j̄CL.

3.3.2 Asymptotic model in the plasma and reconnection at the interface

The asymptotic models for the plasma region as well as the reconnection models
at the plasma-beam interface are different in references [N2] and [N3], [A1].

In [N2], we assume that the limit of the current, when η → 0, is zero in the
plasma, i.e. electron and ion velocities are identical. If nη

e,i, u
η
e,i and φη are solutions

of (3.9)-(3.11), the formal limit η → 0 gives nη
e,i → n, uη

e,i → u and φη → 0. The quasi-
neutral density n and the total momentum (1 + ε)nu satisfy the classical isentropic
Euler model on [0, X(t)]

{

∂tn+ ∂x(nu) = 0 , φ(x) = 0,

(1 + ε) (∂t(nu) + ∂x(nu
2)) + ∂x (pi(n) + pe(n)) = 0.

(3.16)

We close and couple the Child-Langmuir model for the beam (given in Proposi-
tion 3.1) and the classical isentropic Euler model for the plasma with the following
result.

Proposition 3.2 We assume that the quasi-neutral limit is valid until the interface
X(t), that the electron density is continuous across the interface while the electron
velocity is discontinuous. Furthermore, we suppose that the electron emission in the
beam is done in a maximal current regime and that a reaction pressure force exerted
by the beam onto the plasma is localized at the interface. The left state at the interface
is given by ne− = ni− = n−, ui− = ue− = u−, φ− = 0 and (φx)− = 0, and the right
state by ne+ = n−, ni+ = 0, ne+ue+ = jCL and (φx)+ = 0 where for all function f , we
denote by f± = limx→X(t)± f , and where n− and u− are the density and the velocity on
the left-hand side of X(t) given by the quasi-neutral model (3.16). Moreover, jCL is
given by jCL = (εη)−1/2j̄CL where j̄CL is given by (3.14). Thus, the interface position
velocity and the reaction pressure force exerted by the beam onto the plasma are given
by

dX

dt
= u−, (pi + pe) (n−) = εjCL

(

jCL

n−
− u−

)

+ pe (n−) .
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The proof of this result relies on the passage to the limit η → 0 in the Rankine-
Hugoniot relations written for the conservation equations of ion mass and total mo-
mentum.

We perform numerical simulations with values close to those given in high cur-
rent diodes. We compare the two-fluid Euler Poisson model (3.9)-(3.11) valid in all
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Figure 3.1: Rescaled density and velocity of the ion fluid given by the two-fluid
and quasi-neutral models: observed quantities between the cathode x = 0 and the
interface at the rescaled times t = 0.07, t = 0.15 and t = 0.24.

the domain, to the asymptotic model constituted of the classical isentropic Euler
model (3.16) for the plasma region and the Child-Langmuir model in the beam, con-
nected by the relations given in Proposition 3.2. The discretization is a finite volume
scheme with an HLLE solver (see [51]) or a degree 2 polynomial solver (see [17])
which are order 1 Roe type solvers. We use a uniform mesh in space (∆x =constant)
except in the neighborood of the plasma-beam interface where the mesh matches the
interface. This allows to take into account the reaction pressure force since along
the interface the flux is given by the total pressure. The interface velocity is given
by the ion velocity in the last cell which contains plasma. The numerical scheme
is detailed for a similar model in [A1]. We set η = 10−4, λ = 10−3, ε = 0.5,
Ci = Ce = 1, γi = γe = 2 and ∆x = 2 × 10−4. Let us remark that these values give
a rescaled Debye length and plasma period respectively given by

√
λ η ≈ 3.2 × 10−4

and
√
ε λ η ≈ 2.2 × 10−4.

Figure 3.2 shows that the Child-Langmuir model is valid in the beam. Indeed,
after the plasma-beam interface the results of the two-fluid Euler-Poisson model are
identical to those of the Child-Langmuir model. But, Figure 3.1 shows that the
isentropic Euler model in the plasma yields several problems. First, we can see a
peak on the density curve near the interface. This peak is not present in the two-fluid
Euler-Poisson model curve. It is the consequence of the vanishing current assumption
in the plasma and implies an important physical inconsistency. Indeed, the electron
mass conservation is not satisfied across the interface and the electron mass before
the interface is overestimated. Furthermore, we have to penalize the reaction pressure
term at the interface. If we do not, the plasma-beam interface given by the asymptotic
model is moving slower than the interface given by the two-fluid model.

All the drawbacks of the previous model lead us naturally to consider in [N3]
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Figure 3.2: Rescaled density and velocity of the electron fluid given by the two-fluid
and Child-Langmuir models: observed quantities between the interface x = X(t) and
the anode x = 1 at the rescaled times t = 0.07, t = 0.15 and t = 0.24.

and [A1], another modeling of the plasma and interface regions. First, we suppose a
non vanishing current in the plasma and so different velocities for ions and electrons.
However, we note that the limit being still quasi-neutral ni = ne, the density conser-
vation laws give a constant current, j = ni ui −ne ue. In [N3] and [A1], we establish
the following formal result.

Proposition 3.3 If nη
e , n

η
i , u

η
e , u

η
i , φ

η are solutions of (3.9)-(3.11), the formal limit
η → 0 in [0, X(t)], gives

nη
e , n

η
i → n, uη

i → u, uη
e → u− j/n, φη → 0,

where n, u, j and φ are solutions of the quasi-neutral model with a non vanishing
current:

∂tn+ ∂x(nu) = 0 , ∂xj = 0 , φ = 0 , (3.17)

(1+ε)
(

∂t(nu)+∂x(nu
2)
)

+ ∂x (pi(n)+pe(n)) + ε ∂x

(

−2uj+
j2

n

)

= ε ∂tj . (3.18)

The current j is unknown at this stage and will be specified further during the
connexion of the models. Its value depends on the electron emission in the beam
region and so on the Child-Langmuir model. Furthermore, note that the formal
analysis does not ensure that the boundary conditions are kept. Here, we assume
that this holds true for the quasi-neutral density and the ion velocity. But, we will
see in Chapter 4 that the presence of a boundary layer transforms the boundary
conditions. If j 6= 0, the conditions for uη

e are lost since ue|x=0 = 1 − j 6= 1.
In (3.18), the additional flux terms, compared to the classical isentropic Euler

model, ε ∂x(−2uj + j2/n), express the lost momentum due to the electron emission,
like the recoil of a shotgun when a bullet is fired.

If j 6= 0, system (3.17), (3.18) is not unconditionally hyperbolic. When γi = γe =
γ, this system is strictly hyperbolic if and only if the plasma density n, satisfies the
condition n > nH(j) where

nH(j) =

(

εj2

(ci + ce)γ(1 + ε)

)1/(γ+1)

. (3.19)
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In the hyperbolicity domain, n ∈ [nH(j),∞), the characteristic velocities are given
by

µ± = u− ε j

(1 + ε)n
±
(

γ (ci + ce)n
γ−1

1 + ε
− ε j2

(1 + ε)2 n2

)1/2

.

Finally, note that the plasma region is characterized by the presence of ions, thus,
the plasma-beam interface X(t), moves with the ion velocity u.

It remains to connect the models and specify the current at the interface since it
is unknown both in the plasma and beam regions. First, let us look at how many
boundary conditions we have to impose on the quasi-neutral model (3.17), (3.18)
at x = X(t). In a frame moving with the plasma-beam interface, the boundary
becomes fixed and the hyperbolic problem has eigenvalues µ− − u and µ+ − u. We
shall be considering cases where j < 0. Indeed, electron emission at the plasma-
beam interface requires that electrons are accelerated to velocities larger than the ion
ones, thereby leading to a negative current. Then, obviously, µ+ + u > 0 and the
corresponding characteristic field is outgoing relative to the domain [0, X(t)]. Now,
an easy computation shows that µ− − u > 0 if and only if n < nP (j) where

nP (j) =

(

εj2

(ci + ce)γ

)1/(γ+1)

> nH(j) . (3.20)

Therefore, if n > nP (j), we must impose one additional boundary condition at the
interface, whereas if nH(j) < n < nP (j), no additional boundary condition is neces-
sary.

To summarize, it remains to determine the current in both regions and give bound-
ary conditions at the interface for the plasma model if the density is larger than nP (j).
We do it analyzing a transmission problem. We go back to the two-fluid Euler-Poisson
model (3.9)-(3.11) which is the only model valid on both sides of the interface. We
change the position variable into the stretched variable ξ = (x − X(t))/η1/2. This
yields a traveling-wave problem and we look for solutions which reconnect to the
solutions of the quasi-neutral model on the left-hand side, i.e. for ξ → −∞, and
the solutions of the Child-Langmuir problem on the right-hand side, i.e. for ξ → ∞.
Additionally, since the interface is located at ξ = 0, we let ni = 0 for ξ > 0. Fur-
thermore, we demand that ni be continuous at ξ = 0. Indeed, the ion fluid in the
two-fluids Euler-Poisson model is an ordinary fluid. For an ordinary fluid, we know
that no shock can border the vacuum [51], otherwise the Rankine-Hugoniot condition
for the momentum equation can not be satisfied across the interface. We prove the
following result

Proposition 3.4 If γ ≥ 2, there exists a (smooth or unsmooth) solution to the
traveling-wave problem connecting the plasma to the beam and such that ne is bounded,
ni = 0 for ξ ≥ 0, and ni is continuous across ξ = 0, if and only if the following
relations hold:

j = −je , u− =
dX

dt
, n− ∈ [nH(j), nP (j)] , (3.21)

where u− = limx→X(t)− u(x, t), n− = limx→X(t)− n(x, t), u and n being respectively the
ion velocity and quasi-neutral density in the plasma. Furthermore, nH(j) and nP (j)
are given by (3.19) and (3.20).
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The condition γ ≥ 2 is a technical one. It can probably be removed at the expense
of more analytical work.

Eqs. (3.21) provide some of the closure relations which connect the plasma and
the beam models, but not all of them. First, they confirm that the interface dynamics
is governed by ions. Then, they give the current continuity since they express that
the plasma current of the quasi-neutral model must be equal to the electron flux in
the beam region (up to a sign, due to the definitions of these quantities). However, it
does not provide the exact value of this current. From the Child-Langmuir problem
(see proposition 3.1), we know that 0 ≤ je ≤ jCL.

The last relation (3.21) gives an inequality constraint for the boundary condi-
tion at x = X(t) of the quasi-neutral model. In view of the previous discussion,
if n− ≤ nP (j), no additional condition at X(t) is necessary since then, the fluid is
supersonic. It is remarkable that the critical values nH and nP , previously defined,
appear naturally in the transmission problem. This confirms their dominant role in
the interface zone. Therefore, condition (3.21) expresses that the plasma must be
supersonic at the interface. This condition is nothing but the Bohm sheath criterion
when the beam region is viewed as a sheath (see [7], [24], [40], [46], [47], [49], [2]
and [25]). It gives a boundary condition for the quasi-neutral model. Indeed, if the
density at the interface in the plasma is such that a boundary condition is necessary,
we impose the largest value such that the supersonic regime is reached, i.e. nP (j).

To close the model, we have to assign a value to je = −j ∈ [0, jCL], since this
value can not be found from the formal asymptotic analysis. Based on our numerical
experiments, we shall assume a maximal current regime and je = −j = jCL =
(εη)−1/2j̄CL where j̄CL is given by (3.14).

We performe numerical simulations with the values of the parameters previously
used, i.e. η = 10−4, λ = 10−3, ε = 0.5, Ci = Ce = 1, γi = γe = 2. I recall that these
parameters give a rescaled Debye length and plasma period respectively given by√
λ η ≈ 3.2× 10−4 and

√
ε λ η ≈ 2.2× 10−4. We compare the two-fluid Euler-Poisson

model (3.9)-(3.11) valid in all the domain, to the asymptotic model constituted of the
quasi-neutral model with a non zero current (3.17), (3.18) for the plasma zone and of
the Child-Langmuir model for the beam region, connected by the previous relations.
We use a finite volume discretization with a HLLE solver (see [51]) or a degree 2
polynomial solver (see [17]) which are order 1 Roe type solvers. The mesh is uniform
(∆x =constant) except at the interface where it matches the interface position. For
the two-fluid model, we use a space step ∆x ≤ 2.10−4 and for the asymptotic model
the space step is given by ∆x = 10−3. Figure 3.3 shows the ion density and velocity
in the plasma region [0, X(t)] at different times. We can see that the quasi-neutral
model with a non zero current leads to the right interface velocity and the right
density and velocity profiles.

Figure 3.4 on the left-hand side, shows the electric potential given by the two-
fluid model and the Child-Langmuir law. We can see again that the beam part is
well described by the Child-Langmuir model.

Finally, on the right picture of Figure 3.4 we compare the current computed from
the two-fluid model to the Child-Langmuir current computed with the asymptotic
model. We can see that the Child-Langmuir current gives a very good approximation
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Figure 3.3: Ion density and velocity given by the two-fluid Euler-Poisson model (solid
line) and the quasi-neutral model with a non zero current (dotted line). The values
are observed between the cathode x = 0 and the plasma-beam interface x = X(t) at
the rescaled times t = 0.04, t = 0.07 and t = 0.1.

of the two-fluid current. The two-fluid model exhibits a current peak close to the
interface. The existence of this peak can be explained thanks to the solution of
the transmission problem. Indeed, the solution of the transmission problem satisfies
ne(ue−σ) = je, ni(ui−σ) = 0, where je and σ = dX/dt are constant by respect to x.
Thus j = niui−neue = −je +(ni−ne)σ. Therefore, j is, up to constant, proportional
to ni − ne. An analysis of the monotony of ni − ne as a function of x easily shows
that it has the same behavior as the one exhibited by the curves shown on Figure 3.4
(right).
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Figure 3.4: Electric potential (left-hand side) and current (right-hand side) given by
the two-fluid Euler-Poisson model (solid line) and the Child-Langmuir model (dotted
line). The values are observed at the rescaled times t = 0.04, t = 0.07 and t = 0.1.

Then, the asymptotic model gives a good approximation of the original two-fluid
model with a lower numerical cost. However, our numerical method breaks down
outside the hyperbolicity domain of the system (3.17)-(3.18) i.e. when the density
becomes smaller than nH defined by (3.19). And, this value is numerically reached
at the rescaled time t = 0.116. In the last cell before the interface, at the plasma
front, the hyperbolicity condition is not satisfied by the quasi-neutral model and the
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numerical program stops. This problem does not depend on the mesh size and on
the stability condition.

To find an answer to this problem, we introduce in [N4] and [A2] different for-
mulations of the quasi-neutral model with a non vanishing current. I describe this
work in the following section.

3.4 Different formulations of the quasi-neutral model with a
non zero current

Here, I describe the results published in [N4] and [A2] in which we study different
formulations of the quasi-neutral model with a non zero current. We hope that it can
help us to overcome the loss of hyperbolicity in the numerical simulations presented
in the previous section.

We start from the two-fluid Euler-Poisson model (3.9)-(3.11). First, remark that
rescaling the potential, i.e. by switching φ by ηφ, yields the Debye length, and so the
quasi-neutral limit, explicitly written in the system. Indeed, we obtain

∂tni + ∇.(niui) = 0, ∂t(niui) + ∇.(niui ⊗ ui) + ∇pi(ni) = −ni∇φ, (3.22)

∂tne + ∇.(neue) = 0, ∂t(neue) + ∇.(neue ⊗ ue) + ∇pe(ne)/ε = ne∇φ/ε, (3.23)

λη∆φ = ni − ne, (3.24)

where pi,e(n) = Ci,e n
γi,e . We recall that λ2

D/L
2 = λη where λD is the Debye length

given by (3.6) and L is the macroscopic length scale.
We write the system in general dimension, because we want to study if the different

formulations are well-posed in dimensions larger than 1. The formal quasi-neutral
limit λη → 0 of this system gives equations (3.22)-(3.23) and the quasi-neutrality
constraint ni = ne. From this system, we deduce three formulations of the quasi-
neutral model with a non zero current.

The first formulation, called the constrained two-fluid formulation, is obtained
by noting that the quasi-neutrality constraint ni = ne is equivalent (if the quasi-
neutrality constraint is initially satisfied) to the divergence free current constraint.
Thus, this formulation is given by (3.22), (3.23) and

∇.(niui − neue) = 0. (3.25)

Equation (3.25) is an equation characterizing the potential φ. We will see in Chapter 4
that we can establish an elliptic equation for the potential.

The second formulation, called the 1.5-fluid formulation, is obtained from the con-
strained two-fluid formulation. It consists in taking into account the quasi-neutrality
by keeping only one equation for the plasma density, denoted by n = ni = ne. Then,
we write the conservation of the total momentum. The unknowns of this equation are
the ion velocity and the current j given by j = niui − neue. An equation for the cur-
rent is obtained by taking the difference between the momentum conservation laws.
The non classical flux terms (as compared to the classical insentropic Euler system)
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are moved to the right-hand side of the system and written as a potential force. The
non physical potential ψ is defined by ψ = − (p′i(n)/(γi − 1) − p′e(n)/(ε(γe − 1))) −
(1 + 1/ε)φ. The 1.5-fluid formulation is given by

∂tn+ ∇.(nui) = 0, (3.26)

(1 + ε) [∂t(nui) + ∇.(nui ⊗ ui)] + ∇(pi + pe) = εn∇ψ, (3.27)

∂tj + ∇. (ui ⊗ j + j ⊗ ui − j ⊗ j/n) = n∇ψ, (3.28)

∇.j = 0. (3.29)

The “potential” ψ is a scalar quantity and is determined by the divergence free current
constraint (3.29). As previously, an elliptic equation can be derived determining
ψ. Note that the left-hand side operator of system (3.26)-(3.28) is hyperbolic but
not strictly hyperbolic. If the space dimension d = 1, we easily show that two
eigenvalues can be identical. Finally, remark that equation (3.28) on j does not
express a physical conservation. When shocks occur, the Rankine-Hugoniot relation
for this equation is not necessarily physically true. This contrasts with the constrained
two-fluid formulation where the ion and electron momentum conservation equations
express physical conservations.

The 1-fluid formulation, used in the previous section with d = 1 where d is the
space variable, is obtained from the 1.5-fluid formulation eliminating the potential ψ.
We obtain

∂tn+ ∇.(nui) = 0, (3.30)

(1 + ε) [∂t(nui) + ∇.(nui ⊗ ui)] + ∇(pi + pe)

−ε∇. (ui ⊗ j + j ⊗ ui − j ⊗ j/n) = ε∂tj, (3.31)

∇.j = 0. (3.32)

Remark that the 1-fluid formulation is ill-posed if the dimension d is larger than 1.
Indeed, there are 2 + d equations for 1 + 2d unknowns. Furthermore, I recall that
it is only conditionally hyperbolic. The hyperbolicity domain is characterized by
n > nH(j) where nH is defined by (3.19).

The aim of this study is to compare these different formulations to find the better
one for our problem. We recall that the plasma expansion test case needs the cou-
pling with a non quasi-neutral model modeling the beam region. To eliminate the
problems coming from coupling, we introduce a new test case. It consists in a small
periodic perturbation of a constant quasi-neutral plasma carrying a non zero current.
This situation is described in [7] as a configuration generating an instability in high
current plasmas, called two-stream instability. This instability is due to the electron
drift velocity compared to ion velocity. For this test case, we can compute the exact
solution of the linearized problem about the steady state. For small perturbations,
the solution of the non-linear problem is believed to be close to the solution of the
linearized problem. This gives two possible studies. The first one consists in calculat-
ing the stability conditions of the different linearized models using a modal analysis.
The second one is the numerical comparison of the different non linear formulations
to the corresponding analytical solution of the linearized problem.
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Then, we linearize the two-fluid Euler Poisson model and the quasi-neutral model
around the constant state U0 = (n0

i = 1, n0
e = 1, u0

i = 0, u0
e = uD, E

0 = (−∂xφ)0 = 0).
Note that the different formulations of the quasi-neutral model yield the same re-
sults. I briefly recall the principle of the modal analysis. The initial perturbation is
periodic and we suppose that it can be expanded in Fourier series. Thus, we look
for solutions written as U = U(t) eik x where k ∈ IR is determined by the initial con-
dition and where we denote U = (ni, ne, ui, ue, E). We obtain a differential system
with constant coefficients and a matrix depending on k. The solutions are given by
U(x, t) = U(0) eA t eik x. The system is unstable if the norm of the solution exponen-
tially increases with the time, i.e. when an eigenvalue of A(k) has a positive real
part. Classically, in order that stable modes correspond to real quantities, instead
of working with the eigenvalue µ, we work with the pulsation ω = iµ, for which the
unstable modes correspond to negative imaginary parts.

We prove the following results

Proposition 3.5 The dispersion relation (i.e. the characteristic polynomial function
of the matrix A) of the two-fluid Euler-Poisson system linearized around U0, is given
by

λη =
1

ω2 − γiT 0
i k

2
+

1

ε (ω − kuD)2 − γeT 0
e k

2
, (3.33)

where T 0
i,e = pi,e(n

0
i,e)/n

0
i,e. Furthermore, if T 0

i = 0, we have

- If u2
D > (1 + ε−1)γeT

0
e , then, ∃k∗ such that the solution is unstable for k < k∗

and stable for k ≥ k∗.

- If ε−1γeT
0
e < u2

D < (1+ε−1)γeT
0
e , then, ∃k1, k2 such that the solution is unstable

for k ∈]k1, k2[ and stable otherwise.

- If u2
D < ε−1γeT

0
e then the solution is unconditionally stable.

Proposition 3.6 The dispersion relation of the quasi-neutral model linearized around
U0, is given by

0 =
1

ω2 − γiT 0
i k

2
+

1

ε (ω − kuD)2 − γeT 0
e k

2
. (3.34)

Furthermore, we have

- If u2
D > (1 + ε−1)(γiT

0
i + γeT

0
e ), the solution is unstable for all k.

- If u2
D ≤ (1 + ε−1)(γiT

0
i + γeT

0
e ), the solution is unconditionally stable.

First, let us remark that the formal limit λη → 0 of the two-fluid model disper-
sion relation gives the quasi-neutral dispersion relation. Furthermore, the resolution
of (3.33) (in term of ω) reduces to the computation of roots of a 4-degree polyno-
mial function, whereas the polynomial function of the quasi-neutral dispersion rela-
tion (3.34) is of degree 2. Then, the quasi-neutral model filters two non quasi-neutral
modes and keeps only two quasi-neutral modes. Furthermore, if γi = γe = γ, the
condition u2

D ≤ (1 + ε−1)(γiT
0
i + γeT

0
e ) can be rewritten

ni0 = ne0 = n0 ≥
(

ε (n0 uD)2

(1 + ε) (Ci + Ce) γ

)1/(γ+1)

.
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We find again the hyperbolicity condition of the 1-fluid formulation (see (3.19)). This
analysis being valid for all formulations, we already see that it will be not possible to
solve the loss of hyperbolicity using a different formulation of the quasi-neutral model.
Indeed, the hyperbolicity condition of the 1-fluid formulation exactly corresponds to
the linear stability condition, and so to the validity domain of the quasi-neutral model
with a non vanishing current. In the plasma expansion test case, this instability occurs
close to the interface when the interface is sufficiently far in the domain. Note that
the closer the interface to the anode, the larger the current. Indeed, the difference of
potential is almost totally applied in the gap between the interface and the anode.
Thus, the smaller this distance is, the larger the electric field and the larger the
electron emission and the current. In this case, the non quasi-neutral modes may be
excited, that the quasi-neutral model fails to describe.

We performed numerical simulations on the linear models which confirm these
results. First, in order to select the best formulation of the quasi-neutral model when
it is valid, we compare them in a stable case. We select parameters issued from
plasma arc physics (see [9], [37]). We set γi = γe = 5/3, Ci = Ce = 1, ε = 10−4,√
λη = 10−3 and uD = 1. The initial perturbation is chosen such that k = 2π and

U(t = 0) = (ni, ne, ui, ue, E)(t = 0) = (0, 0, 10−2, 10−2, 0). These parameters give the
following values for the rescaled plasma frequency ωp and sound speed vs

ωp =
1√
ελη

= 105, vs =

(

γiT
0
i + γeT

0
e

1 + ε

)1/2

= 11.47.

The values ±ωp and ±kvs correspond to the roots ω of the Euler-Poisson dispersion
relation calculated by a QR method. These roots are real numbers which corresponds
to a stable regime. We notice that the high frequency modes correspond to the plasma
frequency and the low frequency modes to the sound waves in the plasma.

The roots of the linearized quasi-neutral system are directly obtained by solving
the dispersion equation (3.34) which leads to ω ≃ ±kvs = 11.47 and corresponds to
a stable case. Furthermore, high frequency modes of the Euler-Poisson model which
are associated with plasma waves, disappeared in the quasi-neutral limit while low
frequency acoustic waves remained. We can see that the quasi-neutral limit leads to
a drastic reduction of the stiffness of the problem.

The space discretization is made via a finite volume scheme. The constrained
2-fluid model is delicate to discretize. Indeed, the quasi-neutrality constraint is not
explicitly written in the system and numerically it can not be exactly satisfied. In
general it is approximately verified up to the order of the scheme. We use two
different Roe type solvers: the HLLE solver (see [51]) and the degree 2 polynomial
solver (see [17]). In [A2], we prove that the HLLE solver guarantees the exact quasi-
neutrality if it is initially imposed. This is not the case for the polynomial solver.
Then, in order to enforce the numerical quasi-neutrality, we have investigated two
discretizations. The first one consists in projecting the ion and electron densities
on an averaged density. We call this operation the projection step. The second
one consists in using the polynomial scheme with an approximate numerical quasi-
neutrality. We compare the discretizations of the constrained 2-fluid model to the
2-fluid Euler-Poisson model.
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Figure 3.5: Relative error on the ion density at the rescaled time t = 0.12, on the
left-hand side as a function of the space step ∆x and on the right step as a function
of the mass ratio ε for a given space step ∆x = 10−3.

Contrary to all expectations, the best results are obtained with the polynomial
solver without the projection step, i.e. the only solver which does not ensure the
exact quasi-neutrality. The results are presented in [A2].

Then, we use this solver to compare the different formulation of the quasi-neutral
model to the two-fluid Euler-Poisson model. The results are given on Figure 3.5. We
calculate the relative error between the approximate solution, of a given formulation,
and the exact analytical solution of the linearized system. On Figure 3.5 on the
left-hand side, we observe that the error decreases when the mesh size ∆x decreases
but eventually saturates to a finite value. Indeed, the error is computed by compar-
ison with the analytical solution of the linearized model, while the schemes actually
converge towards the one of the nonlinear model. This saturation reflects the differ-
ence between the solution of linearized and nonlinear models. Nonetheless, we can
use these results before saturation to study the numerical efficiency of the different
schemes. We observe that the order of convergence is O(∆x) for all schemes. They
are order 1 schemes.

Furthermore, we can see that the 1.5-fluid, 1-fluid and Euler-Poisson schemes are
more accurate than the constrained two-fluid scheme. This loss of accuracy of the
constrained two-fluid formulation appears to be related to the fact that ε multiplies
the time derivative in the momentum equation, i.e. to an ill-conditioning of this
equation. In the other formulations, ε never multiplies the time derivatives alone
(only the factor (1 + ε) does) and this conditioning problem does not occur. This
conclusion is supported by the numerical determination of the orders of accuracy, see
the right hand side of Figure 3.5, which is ε-dependent for the constrained 2-fluid
model but ε-independent for the 1.5- and one-fluid models.

The second test case models the expansion of a plasma bubble between two elec-
trodes. The numerical results are given in [A2]. They confirm the conclusion of
the modal analysis: when the 1-fluid formulation loses its hyperbolicity, the con-
strained 2-fluid and the 1.5-fluid models develop numerical instabilities. Moreover,
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these results also confirm that the 1.5-fluid formulation gives the best results.

After this study, it appears necessary to develop a model allowing the description
of non quasi-neutral modes in situations such that they can not be eliminated every
where (sheaths near the boundary or the interface). To do this, we began to derive
a fictitious mixture model. These models are used in fluid mechanics (see [1, 43,
42], [45]). Doing this, we have found an other possible answer. It consists in a
scheme preserving the quasi-neutral asymptotic and asymptotically stable for the
two-fluid Euler-Poisson model. The study of this scheme is described in Chapter 4.

But before this, I finish this chapter presenting extensions of this work to the full
Euler system and the two-dimensional case.

3.5 Extension to the full Euler system

We realized two extensions to the full Euler system. The first extension deals
with the quasi-neutral model with a zero current (3.16) presented in section 3.3.2.
This extension is done without additional difficulties compared to the isentropic case.
This work is published in the proceeding [CR2].

The second extension deals with the quasi-neutral model with a non vanishing
current. This case needs more work. Here, I detail this study which is published
in [A5].

In the works detailed in the previous sections, we have considered a plasma in-
jected from the cathode and, the emission occurring from the interface towards the
anode, generating an electron beam. Here, we also consider the case of a plasma
injected from the anode leading to an ion beam. We analyse the case of an ion beam
and perform numerical simulations in both cases (electron and ion beams)

We start from the two-fluid full Euler-Poisson. I only consider the rescaled vari-
ables, the reader can refer to [A5] for the rescaling step. Furthermore, we rescale the
potential as done in the previous section. In this way, the Debye length is explicitly
written in the rescaled model. Here, we denote the Debye length by λ which was not
the case in the previous section where it was given by

√
λ η. This is also the notation

used in the following chapter. Thus, here we have

λ =
λD

L
, (3.35)

where λD is the Debye length given by (3.6) and L is the macroscopic length scale.
The quantities for ions are indexed by i and those for electrons by e. The densities,
velocities, pressures and total energies for ions and electrons are respectively denoted
by ni,e, ui,e, pi,e and wi,e. The rescaled state laws are given by

wi =
pi

γi − 1
+
ni |ui|2

2
, we =

pe

γe − 1
+
ε ne |ue|2

2
.
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The rescaled two-fluid full Euler-Poisson system writes

∂tni + ∇ · (ni ni) = 0, ∂t(ni ui) + ∇(ni ui ⊗ ui) + ∇pi = −ni ∇φ, (3.36)

∂twi + ∇ · ((wi + pi)ui) = −ni ui · ∇φ, (3.37)

∂tne + ∇ · (ne ne) = 0, ε
(

∂t(ne ue) + ∇ne ue ⊗ ue

)

+∇pe = ne ∇φ, (3.38)

∂twe + ∇ · ((we + pe)ue) = ne ue · ∇φ, (3.39)

−λ2 ∆φ = ni − ne. (3.40)

The parameter λ is the rescaled Debye length given by (3.35) and as previously, ε
is the mass ratio given by ε = me/mi, where mi and me are the ion and electron
masses. Like in the isentropic case the formal quasi-neutral limit, λ → 0, leads to
three formulations. The constrained 2-fluid formulation which is strictly hyperbolic,
the 1.5-fluid formulation which is only hyperbolic and the 1-fluid formulation which
is conditionally hyperbolic. This last formulation contains all the information of the
quasi-neutral model in its hyperbolic operator. Indeed, in the isentropic case we have
seen that the hyperbolicity domain exactly coincides with the validity domain of the
quasi-neutral model. Thus, in [A5], we study this formulation. The first essential
difference with the isentropic case is that the 1-fluid formulation is not conservative
(this is also the case for the 1.5-fluid formulation). The non conservative terms
are present in the energy equations. They are related to the energy fluxes due to the
particle emission in the beam. Recall that we consider an ion emission but the results
are identical in the case of an electron emission. Thus, the model can not be used for
non continuous solutions. But, in our plasma expansion test case the densities are
smooth in the plasma bubble.

Like in the isentropic case, this formulation is conditionally hyperbolic. The
hyperbolic zone is characterized by

γepe + γipi ≥
εj2

(1 + ε)n
. (3.41)

In this region, there are four eigenvalues ue, ui = ue + j/n and u± = up ± c. The
velocity up is the averaged velocity in the plasma given by up = (ε ue + ui)/(1 + ε)
and c is the sound speed in the plasma taking into account the pressure terms due
to the ion emission in the beam

c =

(

1

(1 + ε)n

(

γepe + γipi −
εj2

(1 + ε)n

))1/2

.

The plasma is now characterized by the presence of electrons. Then, the bubble
moves with the electron velocity. Since, some ions are emitted from the interface
towards the cathode, the current at the plasma-beam interface, j = ni ui − ne ue, is
positive. And, the eigenvalues ui and u+ are both larger than the interface velocity
ue. Furthermore, we show that if γepe +γipi ∈ [εj2/((1+ε)n), j2/n] we have u− ≥ ue.
In this case, the interface is supersonic and no boundary condition is necessary for
the quasi-neutral model at the plasma-beam interface. But, if γepe + γipi > j2/n,
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we have u− < ue and one boundary condition have to be imposed. This boundary
condition will be precised with the connexion to the beam model.

To describe the beam, we proceed like in the isentropic case. In this region there
are only ions. And, we consider the one-fluid Euler-Poisson model constituted of the
ion equations of (3.36)-(3.40) with ne = 0 in the Poisson equation. We rescale the ion
velocity, and we pass to the limit λ→ 0. We obtain the Child-Langmuir model with
an energy equation. In one space dimension, this model has an analytical solution.
The resolution of the energy equation shows that the ion pressure law is isentropic
in the beam region, pi(n) = Ci n

γi . The constant Ci will be determined with the
connection to the plasma model, we have Ci = pi(X(t), t)/nγi

i (X(t), t). We obtain
the same problem as in the isentropic case and the solution is given by Proposition 3.1
in the one-dimensional case.

The connection of the models is done introducing a transmission problem. It is
obtained from the Euler-Poisson model (3.36)-(3.40), zooming on the plasma-beam
interface in the normal direction. The limit λ → 0 gives the connection problem. It
can be expressed in terms of the variable normal to the interface. And, the multi-
dimensional case consists of one-dimensional problems in the normal direction on
each point of the plasma-beam interface. Consequently, we only describe the one-
dimensional analysis. The resulting transmission problem differs from the one studied
in the isentropic case, in the presence of energy equations. These equations show that
the pressure laws are isentropic in the boundary layer near the interface. Then, the
transmission problem is formally equivalent to the isentropic transmission problem.
We denote by j, n−, ue−, pi−, pe− the solution of the quasi-neutral model at x = X(t)
for t > 0 and by ji and Ci the current and the pressure constant in the beam at X(t).
Using the analysis described in [A1], we have the following connection relations:

dX/dt = ue(X(t), t), j(t) = ji(t), Ci =
pi−
nγi

−
,

j2

n−
≥ γepe− + γipi−.

The last relation is the Bohm sheath criterion which imposes that the plasma must
be supersonic at the plasma-beam interface. I recall that we use this criterion to
determine a boundary condition when the interface leaves the supersonic regime. In
this case, we impose j(t)2/n(X(t), t) = γe pe(X(t), t) + γi pi(X(t), t).

The transmission problem does not give the current (like in the isentropic case).
We assume a maximal current regime for the Child-Langmuir model corresponding
to a vanishing electric field at the interface.

We present numerical results in one dimension. The space discretization is uniform
(∆x =constant) except in the neighborhood of the interface where the mesh matches
the interface position. In one space dimension the Child-Langmuir model has an
analytical solution and the current is known in all the domain. The non conservative
1-fluid formulation of the quasi-neutral model is discretized with an upwind scheme
splitting the Jacobian matrix in its positive and negative parts. We solve an exact
fluid-vacuum Riemann problem at the interface for the quasi-neutral model. This
gives an accurate approximation of the plasma-beam interface position. The analysis
of this Riemann problem is not classical since there are additional pressure terms due
to the ion emission in the beam. the reader can refer to [A5] for the details.
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We perform two test cases, one for the ion beam and one for the electron beam.
Here, I only show the results for the first test case. The values of the rescaled
parameters are given by ε = 2.7 × 10−4 and λ = 4.2 × 10−4. The mesh used for
the two-fluid Euler-Poisson model has 7000 cells while the one used for the quasi-
neutral model has only 2000 cells. It is important to note that it is not possible to
use a coarser mesh for the two-fluid model because numerical instabilities occur at
the plasma-beam interface. Furthermore, the computational time for the asymptotic
model is 70 seconds while the one of the Euler-Poisson model is more than 12 hours.
Therefore, there is a very important time saving using the asymptotic model.
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Figure 3.6: The results are given at the rescaled times 0.01, 0.05, 0.15 and 0.3. On
the left-hand side: quasi-neutral density in the plasma region given by the Euler-
Poisson model (solid line) and the quasi-neutral model (dotted line). On the right-
hand side: current in the domain given by Euler-Poisson model (solid line) and the
Child-Langmuir model (dotted line).

Figure 3.6 gives on the left-hand side the plasma density and on the right-hand
side the current. The results are given by the two-fluid Euler-Poisson model and the
asymptotic model. We note a very good agreement of the curves at the beginning
of the plasma expansion, but a discrepancy between the results at the end of the
simulation. This discrepancy manifests itself on the plasma-beam interface position,
computed by the quasi-neutral model, a little bit ahead of the one of the Euler-
Poisson model and on the particle density being too large around the anode for the
quasi-neutral model. These problems certainly result from the presence of a boundary
layer at the injection point. They were already observed in the isentropic case but
it seems that they are magnified when the energy conservation laws are considered.
The study of this boundary layer is detailed in the following chapter.

In the second test case, the results have overall an identical behavior compared to
the results of the previous test case. But, the comparison of the results stops earlier
in the expansion process. This is due to the fact that we can not give results at larger
times for the asymptotic model. Just after the rescaled time t = 0.6, the hyperbolicity
of the quasi-neutral model is lost and the simulation of the asymptotic model stops. In
the case of an electron beam, the hyperbolicity region of the quasi-neutral model and
the Bohm sheath criterion impose the following condition γepe + γipi ∈ [εj2/((1 +
ε)n), εj2/n]. The smallness of ε produces a very small range between the critical
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values εj2/((1 + ε)n) and εj2/n. This yields an unstable numerical resolution of
this problem and explains why, contrary to the previous test case, we quickly lose
the hyperbolicity of the quasi-neutral model. In the previous section, it has been
showed that this breakdown of the model can be attributed to a physical two-stream
instability. This instability occurs when the plasma current reaches large values as the
interface moves closer to the anode. In this case, non quasi-neutral modes are excited
and the quasi-neutral model fails to describe them. For these particular situations,
the problem can be cured by using the Euler-Poisson model which describes both
quasi-neutral and non quasi-neutral modes but it is necessary to discretize it with
an asymptotic preserving scheme in the quasi-neutral limit. Such a scheme has been
developed in the isentropic case, see Chapter 4. Investigation of this scheme for the
full Euler case is in progress.

3.6 Towards a two dimensional modeling

In this section, I present the results published in [A6]. They deals with the two
dimensional extension of the quasi-neutral model with a zero current.

In two dimensions, the interface is no more a point but a curve. This leads to new
difficulties in the modeling as well as in the numerical scheme. Here, we want to focus
our attention on the difficulties related to the numerical simulation of the plasma-
beam interface and not on the modeling intensively studied in the previous sections.
The zero current model presented in section 3.3 gives a less accurate approximation of
the two-fluid Euler-Poisson model compared to the quasi-neutral with a non vanishing
current. But, it is simpler to discretize, essentially because it does not need to
compute the current in the plasma. For this reason, we choose to extend this model.

Then, the asymptotic model is constituted of the isentropic Euler equations in
the plasma bubble. They give the quasi-neutral density n and the total momentum
(mi +me)u, where mi and me are the ion and electron masses. To describe the beam,
we use a simplified Child-Langmuir model. It is based on the one dimensional Child-
Langmuir solution and consists in assuming that any electron emitted in the beam
satisfies a one dimensional Child-Langmuir law along its trajectory. We approximate
these trajectories by arcs of circle. These models are connected at the plasma-beam
interface by pressure forces modeling the reaction of the beam onto the plasma when
electrons are emitted. Furthermore, the dynamics of the interface is given by the ion
velocity u.

Then, we focus our attention on the numerical method to follow the interface.
We assimilate this problem to an interface problem between two fluids: the plasma
and the vacuum of plasma. We use a V.O.F. method (Volume Of Fluid). This is
an Eulerian method, i.e. the mesh is given at the beginning and kept during all the
simulation. The principle of the V.O.F. methods is the following, see [27], [55]. We
follow the interface through the volume fraction of fluid present in each cell of the
mesh. At each time step and in each cell, the unknowns are the volume fraction of
plasma in the cell and the fluid quantities (here the density and the velocity) averaged
on the cell.
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Furthermore, we use a splitting method in the x and y directions where x is the
abscissa and y is the ordinate. Thus, at each time step, the considered V.O.F. method
consists in two steps alternately applied in the directions x and y. The first step is
the transport of the averaged quantities using a Lagrangian scheme, i.e. following
the characteristic curves of the considered system. Then, during the second step, we
project the transported quantities on the Eulerian grid and we update the volume
fraction on each cells. But, in mixed cells, i.e. those containing both plasma and
vacuum, for this update, we have to determine the plasma flowing from a cell into
its neighbors. For this, we use the S.L.I.C. algorithm (for Simple Line Interface
Calculation, [35]) which defines transfer priorities for plasma between the cells.

In our problem, the major difficulty relies in taking account the reaction-pressure
term at a discrete level. This is done by splitting the interface pressure force in the
directions x and y. Then, we have to reconstruct the unit normal to the interface in
each concerned cells. For this, we use Youngs’ method, [56] which directly gives an
oblique representation of the interface.

We present the results for two test cases. The first test case consists in a two
dimensional fluid compression. The fluid is initially located in a ball and a uniform
pressure applied on its boundary compresses it on the radius center. Since we know
an analytic solution, it is given in [4] and [A6], we can study the accuracy of our
discretization and the treatment of the pressure terms at the interface. Figure 3.7
shows, on its left-hand side, the relative error in L2 norm, on the density between
the exact solution and the approximate solution given by the V.O.F. scheme. The
numerical solution converges towards the exact solution when the mesh is refined.
Figure 3.7 shows, on middle, the relative error between the exact and approximate
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Figure 3.7: On the left-hand side and on the middle: relative errors in L2 norm on
the fluid density (left) and in absolute value on the fluid-vacuum interface position
(middle) as functions of time for different meshes: in solid line for ∆x = ∆y =
2/200 and in dotted line for ∆x = ∆y = 2/50. On the right-hand side: exact and
approximate radii of the fluid bubble as a function of time for ∆x = ∆y = 2/100.
The approximate values are the minimum (dashed-dotted line), the maximum (dotted
line) and the averaged radius (dashed line).

radii of the plasma bubble and on the right, a comparison between the exact radius
and different values of the approximate radius: the minimum, the maximum and
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the averaged value. We can see that even if the error between the exact radius and
the averaged value is decreasing, the approximation of the radius is less and less
accurate since the variance increases. But, even with a rough mesh (50 × 50 cells)
the error on the interface position is of order 1.% and so it is very small. This is
an important property for our problem. Indeed, we recall that getting precisely the
interface position is a key point in the high current diodes problem because it governs
the value of the current in the electron beam.
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Figure 3.8: On the left-hand side: approximate density given by the V.O.F. scheme
at time t = 0.3 for ∆x = ∆y = 2/100. On the right-hand side: exact density given
by the analytical solution and projected on the mesh at time t = 0.3.

Figure 3.8 shows on the left-hand side, the approximate density and on the right-
hand side the exact density at time t = 0.3. The final compression time is 0.5. Then,
more than the half of the simulation is done. We can see that the error is large on
the boundary cells but small on interior cells. This error increases with time but does
not introduce instabilities since in the interior cells the error is small during all the
simulation. Figure 3.9 presents the fluid bubble for different times on the top given
by the approximate solution with the space steps ∆x = ∆y = 2/50, in the middle
given by the approximate solution with the space steps ∆x = ∆y = 2/200 and on
the bottom given by the exact solution projected on an intermediate mesh with steps
∆x = ∆y = 2/100. We can see that the approximate bubble becomes a square while
the exact bubble remains circular. This is due to the splitting of the Euler system
and to the S.L.I.C. algorithm used in the projection step. Indeed the transport in
the directions x and y are uncoupled and this privileges the Cartesian deformations.
Furthermore the S.L.I.C. algorithm gives a square reconstruction of the interface
and increases this phenomena. Figure 3.9 shows that the convergence towards a
circular bubble is very slow since multiplying the number of cells by 4 × 4, the
difference between the results is not significant. This point will have to be improved
in future work. This can be done discretizing directly the Euler system and using
Youngs’ method (see [56]) instead of the S.L.I.C algorithm in the projection step.
This error on the location of boundary cells explains the error encountered on the
density for boundary cells, see Figure 3.8 . It is important to note that in spite of
the bad approximation of the density and velocity for boundary cells, we have a very
good prediction of the mean interface position (see Figure 3.7 middle and right).
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Figure 3.9: Fluid bubble for different times t = 0.07, t = 0.3, t = 0.4 and t = 0.47.
We can see the different type of cells: in gray, the full cells, in white, the mixed
cells and in black, the empty cells. Top and middle, the results are computed with
the V.O.F. scheme with ∆x = ∆y = 2/50 (top) and ∆x = ∆y = 2/200 (middle).
Bottom: the results are given by the exact solution projected on an intermediate
mesh with ∆x = ∆y = 2/100.

Furthermore, we stress that Figure 3.9 proves that we have the right behavior of the
bubble and the right compression time since at exactly t = 0.5 the numerical
bubble has disappeared completely from the domain as does the exact bubble.

The second test case models the expansion of a plasma bubble between two elec-
trodes. It is related to high current diodes. The domain is assumed to be a square
and the plane electrodes are located at x = 0 and x = 1. The plasma is injected from
a part of the cathode at x = 0. The domain is discretized with a uniform square mesh
constituted of 100 × 100 cells. Figure 3.10 shows the density in the plasma region
at the rescaled times t = 0.20 and t = 0.40. The plasma bubble expands between
the cathode and the anode. It is slowed down by the reaction pressure force which
expresses the reaction of the plasma to the emission of electrons in the beam. We can
observe that due to this reaction-pressure force, the plasma region stays connected
during the simulation, there is no instability at the interface. Furthermore, the front
of the plasma is very stiff near the interface, and we see again the non physical peak
of density before the interface as seen in the one dimensional case. We recall that
this peak is due to the model itself since the reaction pressure force is concentrated at
the interface instead of being applied in all the plasma. This point can be improved
using the quasi-neutral model with a non vanishing current.



3.7 Conclusions and future prospects 39

0 0.1 0.2 0.3 0.4 0.5 0.6 0
0.2

0.4
0.6

0.8
1

0

0.25

0.5

x ×10−2m

y ×10−2m

1020

D
en

si
ty

(m
−

3
)

t = 0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0
0.2

0.4
0.6

0.8
1

0

0.25

0.5

x ×10−2m
y ×10−2m

1020

D
en

si
ty

(m
−

3
)

t = 0.4

Figure 3.10: Plasma density at the rescaled times t = 0.2 and t = 0.4. The solution is
calculated with the V.O.F. scheme on a uniform squared mesh containing 100 × 100
cells.

3.7 Conclusions and future prospects

In this chapter, I have presented the mathematical and numerical modeling of the
expansion of a plasma bubble between two electrodes. This model has been studied to
determine its validity domain and its possible extensions in multi-dimensional cases.
Several future prospects are possible.

First, the complexity of methods used for the numerical simulations of moving
interfaces in two or three dimensions as well as the necessity to relax the quasi-
neutral model in a neighborhood of the interface, have convinced us to use a different
method. We began to use fictitious mixture techniques (see as instance [6] or [42]).
Theses techniques consist in establishing a global mixture model from the original
two models each of them being valid in different zones. It is based on a smooth
characteristic function α such that α = 1 in a region and α = 0 in the other one.
Then, the interface is enlarged and corresponds to values of α in ]0, 1[. In our case,
the first region is the plasma bubble and the second region is the beam. Thus, we
can split the solution of the Euler-Poisson model in a plasma component and a beam
component. The quasi-neutral limit can be taken on the plasma component giving
the mixture model. This method, which consists in passing to the limit in only a part
of the domain, has been applied in [16] for kinetic-fluid coupling. The main difficulty
is in the reconstruction of the solution in the mixture zone, i.e. the region where
α ∈]0, 1[. However, let us emphasize that the asymptotic preserving scheme in the
quasi-neutral limit for the Euler-Poisson system, described in the following chapter,
performs the same work at a discrete level.

An other future prospect deals with the boundary conditions at the injection point.
Indeed, in numerical simulations, we have observed that the boundary conditions of
the two-fluid Euler-Poisson model are not well-adapted to the quasi-neutral regime.
They generate a boundary layer in the asymptotic model at the injection point. This
boundary layer is more penalizing when the full Euler system is considered. This
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boundary layer problem is studied in the following chapter in one dimension of space.
This analysis allows to determine boundary conditions well-adapted to the quasi-
neutral regime. It would be interesting to use these boundary conditions for the
asymptotic model presented here and extend them in multi-dimensions.
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Chapter 4

An asymptotic preserving scheme
and a boundary layer problem

4.1 Introduction

In this chapter, I detail the results published in [N5], [A4], [A7] and [A8]. They
have been done in collaboration with Pierre Crispel, Pierre Degond, Jian-Guo Liu and
Dominique Savelief. They deal with the establishment of an asymptotically consistent
and stable scheme in the quasi-neutral limit for a plasma fluid model.

For the sake of simplicity, we assume that the plasma consists of electrons and one
ion species but the methodology can be extended to models containing more than
two species. The model consists of the isentropic Euler equations for each species
coupled with the Poisson equation

The schemes, classically used to discretize this system are subject to severe numer-
ical constraints. They are related to two physical parameters well known in plasma
physics (see [7, 28]): the Debye length and the plasma period. Although these pa-
rameters have been already presented in the previous chapter, I recall their definition.
The Debye length, denoted by λD and the plasma period, denoted by τp are given by

λD =

(

ǫ0 kB T0

e2 n0

)1/2

and τp =

(

ǫ0me

n0 e2

)1/2

, (4.1)

where ǫ0 is the vacuum permittivity, kB is the Boltzmann constant, T0 and n0 are the
characteristic temperature and density of the plasma, e > 0 is the elementary charge
and me is the electron mass. The Debye length measures the scale at which electric
interactions occur in the plasma. Indeed, these interactions are such that a particular
charge in the plasma is screened by the other charges beyond the distance λD. The
second parameter is a time scale. It is related to the electric unbalances in the plasma.
The electric interactions between the particles imply local charge unbalances, at the
scale of the Debye length. The electric forces tend to restore the particles towards
their equilibrium position. The particles oscillate around this position. The electrons
being smaller than ions, their oscillation period is smaller than ions’ and so this period
plays a more important role in plasmas. Then, this is the electron plasma period that
we call plasma period.

In [23], S. Fabre shows that the classical explicit discretizations of the linearized
Euler-Poisson system must resolve the scale of the plasma period. Hence, the time
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step must be smaller than the plasma period otherwise a numerical instability is
generated. The satisfaction of this constraint requires huge computational resources
in the quasi-neutral regions where the plasma period is small. This makes the use of
classical explicit methods almost impracticable for realistic applications.

They are two possible ways to overcome this limitation. The first way consists
in using a quasi-neutral model in the region where the Debye length is small. This
approach is particularly well adapted to problems such that all the domain is quasi-
neutral. But, when there are both quasi-neutral and non quasi-neutral regions in
the domain it is necessary to use a different model for the non quasi-neutral region.
Then, we have to determine the interface position and reconnect the models. This
method has been detailed in the previous chapter and we have seen the difficulties
related to this approach.

The second way consists in finding a discretization of the Euler-Poisson system
which preserves the quasi-neutral asymptotic and which does not need to resolve the
small scale of the plasma period. Such a scheme has been developed in [A4], we call
it AP scheme, for “Asymptotic Preserving”. This result is presented in section 4.2.

The stability analysis of this scheme for the Euler-Poisson system linearized
around a constant solution is done in [A7] and described in section 4.3. This analysis
confirms the asymptotic stability of the AP scheme.

In [A4], two test cases in one dimension are presented. The first test case is a
periodic perturbation of a constant quasi-neutral solution. The second test case is
the expansion of a quasi-neutral plasma bubble between two electrodes presented in
details in the previous chapter. The simulations are performed using the modified
Lax-Friedrichs solver. This solver is well known to be very diffusive but also to be
very robust. So it was well adapted to the validation step. The extension of the AP
scheme to more general Roe type solvers gives identical results in the first test case.
Let us note that in this test case the boundary conditions for the fluid quantities are
periodic. But, in the second test case, the AP scheme as well as the classical scheme
develop numerical instabilities when the space step is larger than the Debye length
for general solvers. This constraint is as penalizing as the one related to the plasma
period. Indeed, in quasi-neutral regions, the Debye length is very small. In section 4.4,
which presents the results submitted for publication in [A8], I numerically show that
these instabilities are related to the presence of a boundary layer at the injection
point. The study of this boundary layer allows to determine boundary conditions
well-adapted to the quasi-neutral regime. Then, I present numerical results which
show that these boundary conditions stabilize the classical and AP schemes without
resolving the Debye length.

4.2 An asymptotic consistent and stable scheme in the
quasi-neutral limit for the Euler-Poisson system

In this section, I present the results published in [N5] and [A4].
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4.2.1 The Euler-Poisson model and its quasi-neutral limit

We consider a plasma constituted of one ion species and of electrons. We use
a fluid model, and the particles are described by their density, ni,e(x, t) and their
momentum, qe,i(x, t) where x ∈ IRd, d = 1, 2 or 3, is the space variable and t > 0 is
the time. We consider the scaled variables, the rescaling step is detailed in [A4] and
in the previous chapter. The rescaled Euler-Poisson model is given by

∂tni + ∇.qi = 0, ∂tne + ∇.qe = 0, (4.2)

∂tqi + ∇fi = −ni∇φ, ∂tqe + ∇fe = ne∇φ/ε, (4.3)

−λ2∆φ = ni − ne, (4.4)

where fi and fe are the rescaled momentum fluxes defined by fi = qi⊗qi/ni+pi(ni) Id
and fe = qe ⊗ qe/ne + 1

ε
pe(ne) Id, where pe,i(n) = Ci,e n

γi,e , Ci,e > 0, γi,e > 1 are the
pressure laws.

The parameters ε and λ are respectively the mass ratio ε = me/mi and the
rescaled Debye length λ = λD/L where λD is the Debye length given by (4.1) and L
is the macroscopic length scale.

The mathematical theory of the Euler-Poisson system is studied in [11] and [39]
in the isothermal case and in [32] in the isentropic case. In the previous chapter,
we studied the formal quasi-neutral limit, λ→ 0, of this system considering plasmas
carrying a non zero current. The rigorous quasi-neutral limit for simplified cases are
studied in [10], [38], [54] and [48]. All these articles consider a vanishing current in
the plasma. I briefly recall the results for the two-fluid Euler-Poisson model with a
non vanishing current.

The formal limit λ→ 0 in the two-fluid Euler-Poisson system consists in replacing
the Poisson equation (4.4), by the quasi-neutrality constraint ni = ne. The Poisson
equation is lost, while the electrostatic potential becomes the Lagrange multiplier of
this constraint. An elliptic equation can be determined for the potential. We subtract
the mass equations (4.2), and using the quasi-neutrality constraint, we obtain the
divergence-free constraint for the scaled electric current j = niui − neue. Then, we
take the divergence of the difference of the momentum equations (4.3). And finally,
we use the divergence-free constraint for the current, we obtain:

−∇ ·
((

ni +
ne

ε

)

∇φ
)

= ∇2 : (fi − fe) , (4.5)

where the symbols ∇2 and : respectively denote the tensor of second order derivatives
and the contracted product of two tensors.

Then, the quasi-neutral model is formally equivalent to the system of equa-
tions (4.2), (4.3) and (4.5). It is important to note that one of the numerical singular-
ities of the problem comes from the fact that the Poisson equation degenerates into
and algebraic equation. And, we must transform the system to obtain an equation
for the electric potential. Thus to build an asymptotically consistent scheme, we
must capture the quasi-neutral limit without transformations. This is one of the key
points of the AP scheme presented here. For this, we reformulate the Poisson equa-
tion using the same transformations as those used to obtain (4.5). We go back to the
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Euler-Poisson system, and we take the divergence of the difference of the momentum
equations (4.3), to obtain

∇ · ∂tj + ∇2 : (fi − fe) = −∇ ·
((

ni +
ne

ε

)

∇φ
)

. (4.6)

In order to eliminate the current in this equation, we subtract the time derivative of
the difference of the mass equations (4.2). Then, we use the Poisson equation (4.4)
to express the total charge ni − ne, as a function of the potential. We obtain the
reformulated Poisson equation

ελ2 ∂2
tt(−∆φ) −∇ · ((εni + ne)∇φ) = ε∇2 : (fi − fe) . (4.7)

First, note that this equation is formally equivalent to the Poisson equation if the
fluid quantities satisfy the Euler equations and if the Poisson equation and its time
derivative are satisfied initially. The second important remark is that this formulation
explicitly raises the time singularity of the problem: the oscillations related to the
plasma period. Indeed, in rescaled variables, the plasma period is given by τ =

√
ε λ,

where τp = t0 τ with t0 the macroscopic time scale and τp the plasma period. Finally,
let us remark that this limit is dispersive. Indeed, considering (4.7) as an equation on
the total charge ρ = −∆φ and linearizing this equation around a constant solution
of the problem, we obtain a Klein-Gordon equation on the total charge ρ. Then,
we prove that in the limit λ → 0, there are solutions with order 1 magnitude which
oscillate with a period of order τ =

√
ε λ. This point is developed in section 4.3.

4.2.2 The classical and AP schemes for the Euler-Poisson model

We only investigate semi-discretizations in time of the two-fluid Euler-Poisson
system. Indeed, the breakdown of the standard time-stepping strategies in the quasi-
neutral regime is primarily a time stability problem. We refer to [A4] for the descrip-
tion of the space discretization using the modified Lax-Friedrichs solver and to [A8]
for more general Roe type solvers.

We first recall the classical discretization of the Euler-Poisson system. We denote
by ∆t the time step and gm an approximation of the function x 7→ g(x, tm) where tm =
m∆t, m ≥ 0. The classical discretization of the two-fluid Euler-Poisson system (3.22)-
(3.24) is given by

nm+1
i,e − nm

i,e

∆t
+ ∇ · qm

i,e = 0 ,
qm+1
i − qm

i

∆t
+ ∇fm

i = −nm+1
i ∇φm+1,

qm+1
e − qm

e

∆t
+ ∇fm

e =
nm+1

e

ε
∇φm+1, −λ2∆φm+1 = nm+1

i − nm+1
e .

The fluxes are explicitly discretized while the electric force terms are implicit. In [23],
it is shown, on the linearized Euler-Poisson system, that if these force terms are
explicitly discretized, the scheme is unconditionally unstable. Furthermore, as in the
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continuous case, we can determine the associated discretization of the reformulated
Poisson equation (4.6). It is given by

−ελ2 (∆φm+1 − 2∆φm + ∆φm−1)

∆t2
−∇ · ((ε nm

i + nm
e )∇φm) = ε∇2 : (fm−1

i − fm−1
e ) .

This discretization is explicit. But, the reformulated Poisson equation (4.6) is an
harmonic oscillator equation on the total charge ni − ne = −∆φ. And, it is well
known that an explicit discretization of this equation is conditionally stable. In [23],
it is proved for the linearized Euler-Poisson system, that this scheme is stable if and
only if it resolves the plasma period. Then, we have to impose

∆t ≤ τ,

where τ is the rescaled plasma period i.e. the ratio between the plasma period τp,
given by (4.1), and the macroscopic time scale. Finally, let us remark that the cost
of the classical scheme is given by the cost of the resolution of the elliptic equation.
Indeed, the resolution is uncoupled, the mass conservation equations allow the update
of the densities. Then, using the discrete Poisson equation we determine the potential
and we finish with the explicit resolution of the momentum equations.

Now, we describe the new approach of the AP scheme. This scheme consists in an
implicit treatment of the mass fluxes, an explicit treatment of the momentum fluxes
and a semi-implicit treatment of the electric force terms (explicit for the densities
and implicit for the potential). We get

nm+1
i − nm

i

∆t
+ ∇ · qm+1

i = 0,
nm+1

e − nm
e

∆t
+ ∇ · qm+1

e = 0, (4.8)

qm+1
i − qm

i

∆t
+ ∇fm

i = −nm
i ∇φm+1,

qm+1
e − qm

e

∆t
+ ∇fm

e =
nm

e

ε
∇φm+1, (4.9)

−λ2∆φm+1 = nm+1
i − nm+1

e . (4.10)

Now, the associated discretization of the reformulated Poisson equation (4.6), is given
by

−ελ2 (∆φm+1 − 2∆φm + ∆φm−1)

∆t2
−∇ ·

(

(ε nm
i + nm

e )∇φm+1
)

= ε∇2 : (fm
i − fm

e ) .

(4.11)
We can see that now the discretization is implicit. Furthermore, using this equation,
we obtain an uncoupled formulation of the AP scheme which has the same cost as
the classical scheme. Indeed, using (4.11) we update the potential. The cost is given
by the cost of the elliptic operator as in the classical scheme. Then, we calculate
the momenta using (4.9). And, we finish with the update of the densities with (4.8).
Thus, the cost is the same as the classical scheme.

4.2.3 Numerical results

I present numerical results for two test cases in one dimension of space and a two
dimensional test case.
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The first test case consists in a periodic perturbation of a constant quasi-neutral
solution with a non vanishing current. The constant solution is given by (n0

i = n0
e =

1, q0
i = 0, q0

e = 1, E0 = 0) where E = −∂xφ is the electric field.
We consider the following initial perturbation

ni(x, 0) = ne(x, 0) = 1, qi(x, 0) = δ cos 2πx, qe(x, 0) = 1 + δ cos 2πx.

where δ = 10−2 is the magnitude of the perturbation. This test case has been studied
in [N4] and [A2] where the analytical solutions of the linearized two-fluid Euler-
Poisson system are given. For small perturbations, these solutions are believed to be
close to the solution of the non linear system. Then, we compare the approximate
solutions given by the classical and AP schemes to the analytical solution. For this
test case, we use the modified Lax-Friedrichs solver.

We select parameters issued from plasma arc physics (see (see [9], [5]) such that
Ci = Ce = 1, γi = γe = 5/3, ε = 10−4, λ = 10−4 which give a rescaled plasma period
given by τ = 10−6.
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Figure 4.1: Electron density at the rescaled time t = 0.1 for the periodic perturbation
test case. The classical scheme (dashed line) and the AP scheme (dotted line) are
compared to the analytical solution (solid line). On the left-hand side the plasma
period and the Debye length are resolved: ∆t < τ and ∆x = λ and all curves are
identical. On the right-hand side the plasma period is resolved but the Debye length
is not: ∆t < τ and ∆x = 10−2 > λ. The curves given by the classical and AP
schemes are identical.

Figure 4.1 shows the electron density at the rescaled time t = 0.1. The classical
and AP schemes are compared to the exact solution of the linearized system. On the
left-hand side, the time and space discretizations respectively resolve the Debye length
and the plasma period. We can see that all curves are identical, both schemes are
stable. The curves for the other quantities (given in [A4]) show the same behavior.
On the right-hand side, the plasma period is still resolved but the Debye length is
not. Both schemes are still stable. The results are more diffusive but we have divided
the number of cells by one hundred. The results on the ion density and velocity,
and on the potential have the same behavior. But, on the electron velocity curve
there is a difference with the analytical solution essentially in the computation of the
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phase. In [A4], we numerically show that this difference can be imputed to the bad
consistency of the scheme for the electron velocity equation due to the mass ratio
stiffness as ε = 10−4 ≪ 1. We are in a low Mach number regime well known to
generate numerical problems.

Figure 4.2 shows the electron density at the rescaled time t = 0.1 in the non
resolved case in space and time. On the left-hand side, the curve given by the classical
scheme shows that it is unstable when the discretization does not resolve the Debye
length and the plasma period. While, on the right-hand side the AP scheme is still
stable even if the discretization does not resolve the Debye length and the plasma
period.
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Figure 4.2: Electron density at the rescaled time t = 0.1 for the periodic perturbation
test case. The classical scheme (dashed line on the left-hand side) and the AP scheme
(dotted line on the right-hand side) are compared to the analytical solution of the
linearized system (solid line on the right-hand side). The plasma period and the
Debye length are not resolved: ∆t > τ and ∆x = 10−2 > λ.

The second test case is the expansion of a quasi-neutral plasma between two
electrodes. This test case is detailed in the previous chapter. I recall that we inject
at x = 0, the cathode, a quasi-neutral plasma in the domain initially supposed devoid
of plasma. Here, we choose ni(x = 0) = ne(x = 0) = 1 and qi(x = 0) = qe(x = 0) = 1.
The anode is located at x = 1 and the rescaled difference of potential is given by 100.
The parameters are the same as previously Ci = Ce = 1, γi = γe = 5/3, ε = 10−4

and λ = 10−4. I recall that they yield a rescaled plasma period τ = 10−6.
The results presented here are not in [A4], indeed in [A4] we use the modified

Lax-Friedrichs solver but here the space discretization uses the degree 0 polynomial
solver. It is a Roe type solver proposed in [17]. This solver has several advantages.
First it is very robust for this test case. We will see in section 4.4, that it gives
a stable resolution of the boundary layer problem. Furthermore, it is less diffusive
than the modified Lax-Friedrichs solver. Figure 4.3 shows on the left-hand side the
electron density and the right-hand side the electric potential. I present results for the
classical and AP scheme in the resolved case (solid line and cross markers) i.e. when
the space and time space are respectively lower than the Debye length and the plasma
period. These curves are identical for the density and for the potential. Finally, the
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curves in dashed and dotted lines show the same schemes when the space and time
discretizations do not resolve the Debye length and the plasma period. These curves
clearly show the instability of the classical scheme whereas the AP scheme remains
stable.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

 

 

Class resolved

AP resolved

Class not resolved

AP not resolved

E
le

ct
ro

n
d
en

si
ty

x
0 0.2 0.4 0.6 0.8 1

0

50

100

150

 

 

Class resolved

AP resolved

Class not resolved

AP not resolved

P
ot

en
ti

al
x

Figure 4.3: Electron density (left-hand side) and electric potential (right-hand side)
at the rescaled time t = 0.06 for the plasma expansion test case. The results are
given in the resolved case in time and space (∆t < τ and ∆x = λ) for the classical
scheme (solid line) and the AP scheme (crosses) and in the non resolved case in time
and space (∆t > τ and ∆x = 10−1 > λ) for the classical scheme (dotted line) and
the AP schema (dashed line).

Finally, the last test case deals with the expansion of a plasma bubble between
two electrodes in two dimensions. The electrodes are plane and located at x = 0 and
x = 1. The plasma is injected from a part of the cathode x = 0 with a Gaussian
profile in the ordinate direction y. The values of the parameters are the same as the
previous test case, Ci = Ce = 1, γi = γe = 5/3, ε = 10−4 and λ = 10−4 which give
a rescaled plasma period τ = 10−6. The mesh is squared with 100 × 100 cells. The
results presented on Figure 4.4 are obtained with the AP scheme using the degree 0
polynomial solver. They confirm the stability of the AP scheme in the non resolved
case.

The numerical results show the good asymptotic behavior of the AP scheme.
In the following section, we prove the asymptotic stability of the AP scheme for a
one-fluid Euler-Poisson system linearized around a constant solution.

4.3 Numerical analysis of the asymptotic preserving scheme
in the quasi-neutral regime

In this section, I present the results submitted for publication in [A7]. In this
article, we prove the asymptotic stability in the quasi-neutral limit of the AP scheme
presented in the previous section (or in [A4]). In [A7] the Debye length is denoted
by ε but to be consistent with the notations used here, I will continue to denote it
by λ.
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Figure 4.4: Ion density (on the top) and electron density (on the bottom) in logarithm
scale, at the rescaled times t = 0.01 (left), t = 0.1 (middle) and t = 0.2 (right) for
the two-dimensional plasma expansion test case. The results are obtained with the
AP scheme in the non resolved case in time and space.

4.3.1 Linearization and discretization of the one-fluid Euler-Poisson
model

Here, we consider a simplified model. It consists to assume static ions and to look
at the electron dynamics. Here, we consider electrons with scaled charge equal to −1
and the right-hand side of the Poisson equation involves a uniform ion background
density equal to 1 in the scaled variables. The one dimensional model in rescaled
variables is given by

∂tn+ ∂xq = 0 , ∂tq + ∂x

(

q2

n
+ p(n)

)

= n∂xφ , (4.12)

λ2∂2
xxφ = n− 1 . (4.13)

where x ∈ IR is the space variable, t > 0 is the time, n = n(x, t) and q = q(x, t) are
respectively the electron density and momentum, p(n) = C nγ , C > 0 and γ > 1, is
the pressure and φ = φ(x, t) is the potential.

The parameter λ is the scaled Debye length, i.e. the ratio between the Debye
length λD, given by (4.1), and the macroscopic length scale.

The quasi-neutral limit of this system yields the incompressible Euler equations.
Indeed, letting λ formally tend to 0 in (4.12)-(4.13), we obtain (4.12) and the quasi-
neutrality constraint n = 1. This can be equivalently rewritten

n = 1, ∂xq = 0 , ∂tq + ∂xq
2 − ∂xφ = 0 .
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Thus, by switching φ into −π, we recognize the incompressible Euler equations and
φ is the Lagrange multiplier of the constraint ∂xq = 0.

In the stability analysis studied in the following sections, we work with the Euler-
Poisson system linearized around a constant solution. This constant solution is given
by n = 1, q = q0, E = (−∂xφ) = 0. The constant q0 is a real number, at the
beginning of the analysis it will be considered equal to 0, which corresponds to a
quasi-neutral limit with a vanishing current in the plasma. In a second step, q0 will
be considered not zero. We will see that a non vanishing current in the plasma yield
different conclusions in the stability analysis of the scheme. The Euler-Poisson system
linearized around the constant state (1, q0, 0) is given by

∂tn+ ∂xq = 0 , ∂tq + 2 q0 ∂xq + (c2s − q2
0) ∂xn = ∂xφ , λ2∂2

xxφ = n. (4.14)

The sound speed cs is equal to 1 since cs =
√

p′(1)/1, but to highlight how our
conclusions may depend on its value, the notation cs is kept.

First, let us remark that u and φ can be eliminated. When |q0| < |cs|, the resulting
equation is a Klein-Gordon equation with a mass equal to 1/λ2. It is given by

∂2
ttn+ 2q0∂

2
txn− (c2s − q2

0)∂
2
xxn+

1

λ2
n = 0 . (4.15)

Multiplying this equation by ∂tn and assuming periodic boundary conditions, we
obtain an energy estimate:

∂t

∫ b

a

(

(∂tn)2 + (c2s − q2
0)(∂xn)2 +

1

λ2
n2
)

dx = 0 .

This energy estimate shows that when λ→ 0, more and more energy is stored in the
last term which can be interpreted as a potential.

Furthermore, we find again the dispersive nature of the quasi-neutral limit already
mentioned in the previous section. Indeed, taking the Fourier transform in space of
equation (4.15) and denoting by n̂(ξ, t) the Fourier transform of n, we get

∂2
ttn̂+ 2 i q0ξ ∂tn̂+

(

c2s − q2
0 +

1

λ2

)

n̂ = 0.

The solutions of this equation are of the form

n̂(ξ, t) = A(ξ) exp(i θλ(ξ) t) +B(ξ) exp(−i θλ(ξ) t),

where A and B only depend on the initial condition, but not on λ. The oscillation
frequency is defined by

θλ(ξ) = −2 q0ξ +

(

c2s ξ
2 +

1

λ2

)1/2

.

The magnitude of the solutions are of order 1 and they oscillate at the frequency
θλ(ξ) = O(1/λ) where λ is, in this case, the plasma period since the electron mass
equals 1 in the rescaled variables.
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To study the stability of the classical and asymptotic preserving discretizations
presented in the previous section, we use the Fourier analysis. The considered Fourier
transform only acts on the space variable of systems discretized in time. This anal-
ysis is a model for the analysis of a fully discrete scheme (in space and time) using
a centered space differencing. Then, to study the stability of an upwind space dis-
cretization we add diffusion terms. We introduce the following linearized viscous
Euler-Poisson system

∂tn+∂xq = β∂2
xxn, ∂tq+2q0∂xq+(c2s−q2

0)∂xn = β∂2
xxq+∂xφ, λ2∂2

xxφ = n, (4.16)

where β > 0.
To be convinced by these remarks, let us look at the simplest transport equation,

i.e.
∂tu+ c ∂xu = 0, (4.17)

where c > 0 as instance. The centered and upwind discretizations of this equation
are given by

um+1
j − um

j

∆t
+ c

um
j+1 − um

j−1

2 ∆x
= 0,

um+1
j − um

j

∆t
+ c

um
j − um

j−1

∆x
= 0.

But, the upwind scheme can be rewritten

um+1
j − um

j

∆t
+ c

um
j+1 − um

j−1

2 ∆x
− c∆x

2

um
j+1 − 2um

j + um
j−1

∆x2
= 0,

which is a centered discretization of the equation

∂tu+ c ∂xu−
c∆x

2
∂2

xxu = 0. (4.18)

It is well known that the centered scheme is unconditionally unstable whereas the
upwind scheme is stable under the C.F.L. condition (Courant-Friedrichs-Levy) given
by ∆t ≤ ∆x/c. Let us find again these results with the Fourier analysis in space of
equations (4.17) and (4.18) discretized in time. We obtain

ûm+1 = ûm (1 − c∆t i ξ), ûm+1 = ûm

(

1 − c∆t i ξ − c∆x

2
∆t ξ2

)

,

= û0 (1 − c∆t i ξ)m, = û0

(

1 − c∆t i ξ − c∆x

2
∆t ξ2

)m

.

Then, we have
|1 − c∆t i ξ|2 = 1 + c2 ∆t2ξ2 > 1,

and we find again the unconditional instability of the centered scheme. On the other
hand,

∣

∣

∣

∣

1 − c∆t i ξ − c∆x

2
∆t ξ2

∣

∣

∣

∣

2

=

(

1 − c∆x

2
∆t ξ2

)2

+ c2 ∆t2ξ2,

= 1 − c∆x∆t ξ2 + c2 ∆t2 ξ2

(

∆x2

4
ξ2 + 1

)

.
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We obtain the sufficient stability condition

∆t ≤ ∆x

c

(

∆x2

4
ξ2 + 1

) .

Choosing ξ = O(1/∆x) which mimics the fact that a fully discrete scheme can not
resolve large wave-numbers, we find a C.F.L. condition of same order as expected.
Finally, let us note that in the linear case, the upwind scheme and the modified
Lax-Friedrichs scheme, used in [A4], are identical.

4.3.2 Stability of the linearized model

We begin with the presentation of the classical and asymptotic preserving schemes
of the linearized Euler-Poisson system (4.16). Both discretizations use an implicit
treatment of the electric source terms. They differ from the explicit or implicit
treatment of the flux in the mass conservation law. The classical scheme consists in
discretizing this term explicitly while the AP scheme discretizes it implicitly. In the
following we call the classical scheme, EI scheme and the AP scheme II scheme in
relation with the Explicit or Implicit mass flux term and with the Implicit treatment
of the electric force term. We denote by ∆t the time step and by gm an approximation
of x 7→ g(x, tm) where tm = m∆t for m ≥ 0. The EI scheme (classical) is given by

nm+1 − nm

∆t
+ ∂xq

m = β∂2
xxn

m, λ2∂2
xxφ

m+1 = nm+1, (4.19)

qm+1 − qm

∆t
+ 2 q0 ∂xq

m + (c2s − q2
0) ∂xn

m = β∂2
xxq

m + ∂xφ
m+1. (4.20)

The II scheme (AP) is given by

nm+1 − nm

∆t
+ ∂xq

m+1 = β∂2
xxn

m, λ2∂2
xxφ

m+1 = nm+1, (4.21)

qm+1 − qm

∆t
+ 2 q0 ∂xq

m + (c2s − q2
0) ∂xn

m = β∂2
xxq

m + ∂xφ
m+1. (4.22)

Furthermore, we introduce the following IE discretization, in order to verify if the
implicit treatment of the electric force term is necessary for the AP scheme as it is
for the classical scheme. It is given by

nm+1 − nm

∆t
+ ∂xq

m+1 = β∂2
xxn

m, λ2∂2
xxφ

m+1 = nm+1, (4.23)

qm+1 − qm

∆t
+ 2 q0 ∂xq

m + (c2s − q2
0) ∂xn

m = β∂2
xxq

m + ∂xφ
m. (4.24)

In [23], S. Fabre studies the stability of the full discretization of the linearized Euler-
Poisson system (4.14) with q0 = 0. This discretization consists in the classical Euler
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scheme in time and the upwind scheme in space. Here, this corresponds to the EI
scheme (classical) given by (4.19)-(4.20) with q0 = 0 and β 6= 0. In [A7], we prove
the following results.

Lemma 4.1 We consider the linearized viscous Euler-Poisson system (4.16) with
q0 = 0. Then

1. If β = 0, the discretization II (AP) given by (4.21)-(4.22) is stable under the
condition

∆t ≤ δ⋆
ii = 2

(

∆x

πcs

)2(
1

λ2
+
(πcs

∆x

)2
)1/2

.

The discretization IE given by (4.23)-(4.24) is stable under the condition

∆t ≤ δ∗ie =
2

(

1

λ2
+
(πcs

∆x

)2
)1/2

.

2. If β 6= 0, the discretization II (AP) given by (4.21)-(4.22) is stable under the
condition

∆t ≤ δv
ii =

2β

c2s
min

(

1

C⋆2 ,
√

1 + C⋆ − 1

)

, (4.25)

where C⋆ = β π/(cs ∆x).

The discretization EI (classical) given by (4.19)-(4.20) is stable under the con-
dition

∆t ≤ min(δv
ei, δ

⋆) = min

(

2β

c2s

1

1 + C∗2 ,
2

√

1 + C∗2
λ

)

,

for all λ ∈ [0, β

c2s

√
1+C∗2

] and if 2λ < ∆t ≤ δ⋆, the scheme is unstable.

Point 1. of this lemma clearly shows the asymptotic stability of the II scheme (AP)
in the quasi-neutral limit. Indeed, δ⋆

ii → +∞ when λ→ 0. The IE scheme is subject
to a severe constraint in quasi-neutral zones since δ∗ie → 0 when λ → 0. Then, the
implicit treatment of the electric force term is necessary to obtain the asymptotic
stability. Finally, let us note that when 1/λ is small, i.e. in non quasi-neutral zones,
we find again the classical C.F.L. condition i.e. ∆t of order ∆x/cs.

Point 2. confirms the asymptotic stability of the AP scheme. Indeed, δv
ii does not

depend on λ, furthermore the stability condition is a C.F.L. condition, which only
depends on the purely hydrodynamic part of the scheme. Indeed, I recall that for
the upwind scheme, the viscosity term β is given by cs ∆x/2. Thus, C⋆ does not
depend on ∆x and condition (4.25) is equivalent to ∆t ≤ C∆x/cs. Finally, the last
result shows that the stability domain of the EI scheme (classical) is an interval of
size exactly O(λ). We find again the result already established by S. Fabre.

In the case of a non vanishing current, we prove the following result.

Lemma 4.2 We consider the linearized viscous Euler-Poisson system (4.16) with
q0 6= 0. Then
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1. If β = 0, for all constant 0 < K < 1, there exists ∆t⋆ > 0 such that the
discretization II (AP) given by (4.21)-(4.22) is stable under the conditions

∆t ≤ ∆t⋆ and λ < K∆t,

where δ⋆ → 0 when K → 1.

2. If β 6= 0 is such that there exists B > B⋆, where B⋆ does not depend on q0 and
cs, such that β = B∆t then there exists ∆t⋆ non depending on q0 and cs such
that the discretization II (AP) given by (4.21)-(4.22) is stable for all λ > 0,
under the condition

∆t ≤ ∆t⋆.

Point 1. gives a stability property but for λ sufficiently small. Thus, the centered
AP scheme is unstable in the non quasi-neutral regime. But, point 2. shows that the
AP scheme is uniformly stable for all values of λ. The diffusion constant is taken
proportional to δ, whereas classically it is taken proportional to ∆x. The result would
also remain true in this case but this choice simplifies the, already quite technical,
proof. Also, the result in itself is interesting as it shows that the AP scheme is stable
even with a vanishingly small diffusion term proportional to δ.

4.4 A boundary layer problem related to the quasi-neutrality

In this section, I present the results submitted for publication in [A8]. They deal
with the study of a boundary layer in the test case of the plasma expansion between
two electrodes presented in section 4.2.

4.4.1 The two-fluid Euler-Poisson model

We consider the rescaled two-fluid Euler-Poisson model, that I recall here precising
the boundary conditions. We denote by ni(x, t) and ne(x, t) the ion and electron
densities, by qi(x, t) and qe(x, t) their momentum and by φ(x, t) the electric potential,
where x ∈ IR is the space variable and t > 0 is the time. These quantities satisfy the
following system

∂tn
λ
i + ∂xq

λ
i = 0, ∂tq

λ
i + ∂xfi(n

λ
i , q

λ
i ) = −nλ

i ∂xφ
λ, (4.26)

∂tn
λ
e + ∂xq

λ
e = 0, ε ∂tq

λ
e + ε ∂xfe(n

λ
e , q

λ
e ) = nλ

e ∂xφ
λ, (4.27)

−λ2 ∂2
xxφ

λ = nλ
i − nλ

e , (4.28)

for x ∈ ]0, 1[ and t > 0, and where the momentum fluxes are given by fi(n, q) =
q2/n+ pi(n) and fe(n, q) = q2/n+ pe(n)/ε. The isentropic pressure laws are defined
by pi,e(n) = Ci,en

γi,e , with Ci,e > 0 and γi,e > 1.
Remind that the rescaled parameters ε and λ are respectively the ratio between

electron and ion masses ε = me/mi and the rescaled Debye length λ = λD/L where
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λD is the Debye length, given by (4.1) and L is the macroscopic length scale. These
parameters give the rescaled plasma period τ =

√
ε λ.

The domain is initially devoid of plasma and the hyperbolic systems are assumed
supersonic at the point x = 1. Thus, we need no boundary condition at x = 1 for the
fluid quantities. The cathode and the anode are respectively located at x = 0 and
x = 1 and a quasi-neutral plasma is present outside the domain for x < 0. Then, we
set

φλ(0, t) = 0, φλ(1, t) = φA(t) > 0, (4.29)

(nλ
i , q

λ
i )(0, t) = (nλ

i0, q
λ
i0)(t), (nλ

e , q
λ
e )(0, t) = (nλ

e0, q
λ
e0)(t), (4.30)

for all t > 0 and where (nλ
i0, q

λ
i0) and (nλ

e0, q
λ
e0) are the respective solutions at the point

x = 0 of the following Riemann problems
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(4.31)
where (nλ

i,e, q
λ
i,e)(0

+, t) = limx→0+(nλ
i,e, q

λ
i,e)(x, t) and where (n0, q0) is the state outside

the domain, it is assumed subsonic, i.e. such that q0/n0 +
√

p′i(n0) > 0, q0/n0 +
√

p′e(n0)/ε > 0, q0/n0 −
√

p′i(n0) < 0 and q0/n0 −
√

p′e(n0)/ε < 0.

4.4.2 Numerical problems related to the boundary layer

In [A4], summarized in section 4.2, two test cases in one dimension of space are
considered. The first test case is a periodic perturbation of a uniform stationary
plasma with a non vanishing current. For this test case, the boundary conditions
on the fluid quantities are periodic and not given by (4.30). Then, we compare the
classical and asymptotic preserving (AP) discretizations. Numerically, we observe
that the AP scheme remains stable for time steps greater than plasma period while
the classical scheme develops instabilities. In these simulations, we use the modified
Lax-Friedrichs solver (see [22]). This solver is well known to be very diffusive but
is also very robust. So, it is well adapted to the validation step of the AP scheme.
Now, we have extended these results to more general Roe type solvers like the degree
0 or 2 polynomial solvers (see [17]), HLLE, HLLC and to the order 2 Lax-Wendroff
solver (see [51]). We obtain the same results. The second test case used in [A4],
is the expansion of a quasi-neutral plasma between two electrodes. This test case
is particularly well adapted to the asymptotic preserving scheme, since a transition
between a quasi-neutral region (the plasma) to a non quasi-neutral one (the beam)
occurs. As in the previous test case, the numerical simulations presented in [A4], are
performed using the modified Lax-Friedrichs solver. They show that the asymptotic
preserving scheme remains stable while the classical scheme is unstable when the
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time steps are greater than the electron plasma period. Here, we present the results
obtained with more general order 1 solvers: the degree 0 and 2 polynomial solvers.

The parameters are issued from plasma arc physics (see [9]). We set γi = γe = 5/3,
Ci = Ce = 1, ε = 10−4, λ = 10−4, φA = 100. Furthermore, the quasi-neutral plasma
present outside the domain is chosen such that (n0, q0) = (1, 1). The results are given
on Figures 4.5 and on the left-hand side of Figure 4.6.
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Figure 4.5: Electron density as a function of x, at the rescaled time t = 0.05. The
results are obtained with the classical scheme and the Riemann solver (dotted line,
left and right) in the resolved case: ∆x = 10−4 = λ and ∆t ≤ τ = 10−6, with the
degree 0 polynomial solver for the classical scheme (dashed line) in the resolved case
on the left-hand side and partially resolved on the right-hand side: ∆x = 10−2 > λ
and ∆t ≤ τ , with the degree 0 polynomial solver for the AP scheme (circle markers)
in the resolved case on the left-hand side and in the non resolved case on the right-
hand side: ∆x = 10−2 > λ and ∆t > τ . Finally for the degree 2 polynomial solver
with the classical scheme (solid line on the left-hand side) and the AP scheme (cross
markers on the left-hand side) in the resolved case.

The reference solution is the one given by classical scheme with the exact Riemann
solver in the resolved case, i.e. when the space step ∆x and the time step ∆t satisfy
∆x ≤ λ and ∆t ≤ τ . We compare this reference solution to the classical and AP
schemes with degree 0 and 2 polynomial solvers. Note that the degree 0 polynomial
solver has diagonal numerical viscosity matrices which is also the case for the modified
Lax-Friedrichs solver used in [A4]. On the contrary, the degree 2 polynomial solver
has non diagonal numerical viscosity matrices like the general Roe type solvers HLLE,
HLLC,· · · .

The left-hand side of Figure 4.5 shows the results in the resolved case for all
discretizations. We can see that the classical and AP schemes give the same curves
for a given solver. Furthermore, the different solvers give the same results in the core
of the plasma but not in a neighborhood of x = 0. These differences show the presence
of a boundary layer which is not identically resolved by all solvers. The right-hand
side of Figure 4.5 on the left-hand side of Figure 4.6 show the same results when
the Debye length is not resolved, i.e. when ∆x = 10−2 > λ = 10−4. The classical
scheme resolves the plasma period (∆t ≤ τ) and the AP scheme does not (∆t > τ).
We compare these results to the reference curve (classical scheme, Riemann solver,
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Figure 4.6: Electron density as a function of x, at the rescaled time t = 0.05. The
results are computed with the classical scheme (solid line) and the AP scheme (cross
marker) and with the degree 2 polynomial solver in the non resolved case ∆x =
10−2 > λ = 10−4. The classical scheme resolves the plasma period: ∆t ≤ τ and
the AP scheme does not: ∆t > τ . On the left-hand side the boundary conditions
are given by (4.30). On the right-hand side, we use the values given at the end of
the boundary layer by the reference curve, i.e. the curve obtained with the classical
scheme, the Riemann solver and the boundary conditions (4.30) in the resolved case.
This curve is plotted on the right-hand side in dotted line.

resolved case in space and time). It clearly shows that the degree 0 polynomial solver
(P0) is stable while the degree 2 polynomial solver (P2) is unstable. This instability
is due to the boundary layer, which is not properly resolved. Indeed, when we choose
for boundary conditions the values given by the reference curve at the end of the
boundary layer, the P2 solver gives stable results for both schemes (classical and
AP) as we can see on the right-hand side of Figure 4.6.

4.4.3 Solution of the boundary layer problem

To determine boundary conditions well adapted for the quasi-neutral regime, we
introduce a boundary layer problem. It is obtained by writing the following asymp-
totic expansion

(nλ
i,e, q

λ
i,e, φ

λ)(x, t) = (n̄i,e, q̄i,e, φ̄)(x, t) + (ñi,e, q̃i,e, φ)(x/λ, t) + λ (n̂λ
i,e, q̂

λ
i,e, φ̂)(x, t),

where limλ→0 λ (n̂λ
i,e, q̂

λ
i,e, φ̂

λ) = (0, 0, 0) and (n̄i,e, q̄i,e, φ̄) is solution of the quasi-neutral
system obtained by letting λ tend to 0 in system (4.26)-(4.28).

Inserting this expansion in the two-fluid Euler-Poisson system, we get the following
result.
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Lemma 4.3 (Formal) The boundary layer (ñi,e, q̃i,e, φ) is solution of system

ni,e(y, t) = ñi,e(y, t) + n̄i,e(0, t), qi,e(y, t) = q̃i,e(y, t) + q̄i,e(0, t), (4.32)

∂yqi = 0, ∂y(q
2
i /ni + pi(ni)) = −ni ∂yφ, (4.33)

∂yqe = 0, ∂y(ε q
2
e/ne + pe(ne)) = ne ∂yφ, (4.34)

−∂2
yyφ = ni − ne, (4.35)

for all y > 0 and all t > 0. The boundary conditions are given by

φ(0, t) = −φ̄0, φ(+∞, t) = 0, (4.36)

(ni, qi)(0, t) = (ni0, qi0)(t), (ni(+∞), qi(+∞)) = (n̄0, q̄i0), (4.37)

(ne, qe)(0, t) = (ne0, qe0)(t), (ne(+∞), qe(+∞)) = (n̄0, q̄e0), (4.38)

with (φ̄0, n̄0, q̄i0, q̄e0) = (φ̄, n̄, q̄i, q̄e)|(0,t) and where (ni0, qi0) and (ne0, qe0) are the re-
spective solutions at the point x = 0 of the following Riemann problems
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e
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, if x > 0,

(4.39)
where (n+

i,e, q
+
i,e) = limy→0(ni,e(y, t), qi,e(y, t)) for all t > 0.

The aim of this section is to find n̄0, q̄i0, q̄e0 and φ̄0, such that the boundary layer
problem has a solution. It is important to note that the boundary conditions (4.39)
are implicitly determined by the boundary layer since (n+

i,e, q
+
i,e) are given by the

solution of the boundary layer problem. This makes the problem strongly non linear.
To resolve this problem, we introduce the ion and electron total enthalpies of the

systems. They are given as functions of the density since in the boundary layer the
momenta are constant.

ki(n) =
(q̄i0)

2

2n2
+

Ci γi

γi − 1
nγi−1, ke(n) =

ε(q̄e0)
2

2n2
+

Ce γe

γe − 1
nγe−1. (4.40)

These functions ki and ke are non monotonous. They are decreasing respectively on
(0, niS) and (0, neS), and increasing respectively on (niS,+∞) and (neS,+∞), where
niS and neS are the ion and electron sonic points defined by

niS =

(

(q̄i0)
2

Ci γi

)1/(γi+1)

, neS =

(

ε(q̄e0)
2

Ce γe

)1/(γe+1)

. (4.41)

Let us remark that a state (n, q̄i0) is supersonic if n < niS and subsonic if n > niS,
which explains the name sonic point for niS. The same results hold for electrons. We
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assume niS > neS. This is the case if ε is small, if q̄i0 and q̄e0 are of same order and
if Ce, Ci, γi and γe are order 1 parameters.

In a same way, we define the total enthalpy of the plasma by k(n) = ki(n)+ke(n)
for all n > 0. This function has the same behavior as ki and ke, we denote by nS the
plasma sonic point. The assumption niS > neS implies niS > nS > neS.

We prove the following result considering all the possible cases in the resolution
of the Riemann problems (4.39).

Theorem 4.1 We consider the boundary layer problem (4.32)-(4.39), where (n0, q0)
is a subsonic state for ions and electrons. Furthermore, we assume qi0, qe0 > 0 (i.e.
the plasma incomes the domain). Then

1. If n̄0 > niS > neS we have

1.1. If (ni0, qi0) is given by ni0 = nic ≤ n0, with nic defined by

nlc =

(

(

q0
n0

+
2
√
kl γl

γl − 1
n

(γl−1)/2
0

)

(

1
√
kl γl + 2

√
kl γl

γl−1

))2/(γl−1)

, (4.42)

for l = i or e and with ki = Ci and ke = Ce/ε, furthermore if qi0 =√
Ci γi n

(γi+1)/2
i0 and if (ne0, qe0) satisfies

n0 ≥ ne0 > nec, qe0 = ne0

(

q0
n0

+
2
√

γeCe/ε

γe − 1

(

n
γe−1

2

0 − n
γe−1

2

e0

)

)

, (4.43)

or if (ne0, qe0) satisfies

ne0 > n0, qe0 = ne0

(

q0
n0

− (ne0 − n0)

√

pe(ne0) − pe(n0)

ε (ne0 − n0)ne0 n0

)

, (4.44)

problem (4.32)-(4.39) has a solution. Then three cases are possible.

• The solution exists if ni0 and ne0 satisfy

ki(ni0) + ke(ne0) ≥ ki(nS) + ke(nS), (4.45)

where nS is the plasma sonic point. This solution is continuous with in-
creasing potential φ and electron density ne and a decreasing ion density ni.
It satisfies

φ̄0 = ki(ni0) − ki(n̄0), q̄i0 = qi0, q̄e0 = qe0, (4.46)

ki(ni0) + ke(ne0) = ki(n̄0) + ke(n̄0). (4.47)

• The solution exists if ni0 and ne0 satisfy (4.45). It is continuous with
decreasing potential, φ, and electron density, ne, and an increasing ion
density, ni. Furthermore, it satisfies (4.46), (4.47).
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• The solution is unsmooth with a jump of ni from a left state n⋆,−
i to a

right state n⋆,+
i . The ion density, ni, is non monotonous, the potential, φ,

and the electron density, ne, are decreasing. This solution exists if the
following condition is satisfied

ke(ne0) > ke(nS) + ki(nS) − ki(n
⋆,+
i ) + ki(n

⋆,−
i ) − ki(niS), (4.48)

1.2. If (ni0, qi0) satisfies

n0 ≥ ni0 > nic, qi0 = ni0

(

q0
n0

+
2
√
Ci γi

γi − 1

(

n
(γi−1)/2
0 − n

(γi−1)/2
i0

)

)

,

or if (ni0, qi0) satisfies

ni0 > n0, qi0 = ni0

(

q0
n0

− (ni0 − n0)

√

pi(ni0) − pi(n0)

(ni0 − n0)ni0 n0

)

.

1.2.1. If (ne0, qe0) is given by ne0 = nec ≤ n0, with nec defined by (4.42), and

qe0 =
√

γeCe/ε n
(γe+1)/2
e0 , problem (4.32)-(4.39) has a solution. Two

cases are possible.

• The solution exists if ni0 and ne0 satisfy (4.45). It is continuous
with increasing potential, φ, and electron density, ne, and a decreasing
ion density, ni. It satisfies (4.46), (4.47).

• The solution is unsmooth with a jump of ne from a left state n⋆,1,−
e

to a right state n⋆,1,+
e . The electron density, ne, is non monotonous

and the potential, φ, and the ion density, ni, are respectively increasing
and decreasing. This solution exists if

ki(ni0) > ki(nS) + ke(nS) − ke(n
⋆,1,+
e ) + ke(n

⋆,1,−
e ) − ke(neS).

1.2.2. If (ne0, qe0) satisfies (4.43) or (4.44), problem (4.32)-(4.39) has a so-
lution. Two cases are possible.

• The solution exists if ne0 ≤ n̄0 and if ni0 and ne0 satisfy (4.45).
It is continuous with increasing potential, φ, and electron density, ne,
and a decreasing ion density, ni. It satisfies (4.46), (4.47).

• The solution is unsmooth with a jump of ni from a left state n⋆,−
i

to a right state n⋆,+
i . The ion density, ni, is non monotonous, the

potential, φ, and the electron density, ne, are decreasing. This solution
exists if (4.48) is satisfied.

2. If niS > nS > n̄0 > neS, if (ni0, qi0) is given by ni0 = nic ≤ n0 and qi0 =√
Ci γi n

(γi+1)/2
i0 , and if (ne0, qe0) satisfies (4.43) or (4.44) then, the boundary

layer problem (4.32)-(4.39) has a solution. This solution exists if (4.45) is
satisfied. It is continuous, with decreasing potential, φ, and ion and electron
densities, ni and ne. Furthermore, it satisfies (4.46), (4.47).
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4.4.4 Numerical results using the boundary conditions well-adapted to
the quasi-neutrality

We use the resolution of the boundary layer problem to determine boundary
conditions well-adapted to the quasi-neutral regime. Let us note that Theorem 4.1
shows that several boundary conditions (depending on the information contained in
the domain) give a solution of the boundary layer problem. We must select the
right one. For this, we use the numerical results performed in the resolved case. We
look for a solution of the boundary layer problem giving decreasing electron and ion
densities. But, only one solution corresponds to this condition, the one of point 2. in
Theorem 4.1. For this solution, the ion state at x = 0 in the boundary layer problem,
denoted by (ni0, qi0), is fully determined by the information coming from the left-hand
side, i.e. outside the domain. This is not the case for the electron state. But, this is
not surprising. Indeed, ε being small, the state at the end of the boundary layer is
subsonic for electrons (one positive eigenvalue and one negative eigenvalue). Thus, it
can not be fully determined by the information coming from outside the domain. To
determine the boundary conditions, we must use the information coming from the
right-hand side, i.e. from the core of the plasma.
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Figure 4.7: Electron density as a function of x at the rescaled time t = 0.05 in the
non resolved in space case: ∆x = 10−2 > λ = 10−4. The classical scheme resolves the
plasma period: ∆t ≤ τ , and the AP scheme does not: ∆t > τ . We use the solvers P0
and P2 with the boundary conditions well-adapted to the quasi-neutral regime and
given by ne = ni = n̄0, qe = q̄e0, qi = q̄i0 and φ = φ̄0. The curves are compared to
the reference curve obtained with the classical scheme, the Riemann solver and the
non well-adapted boundary conditions: ne = ni = n0, qe = qi = q0 and φ = 0, in the
resolved case ∆x = λ and ∆t ≤ τ .

However, neglecting ε, we can determine the quasi-neutral density n̄0, the ion
momentum q̄i0 and the potential φ̄0, at the end of the boundary layer. For this,
we use (4.46), (4.47) and we remark that the limit of the total electron enthalpy ke

when ε→ 0 is the enthalpy he(n) = Ce γe/(γe−1)nγe−1 which does not depend on q̄e0.
For the electron momentum, we set q̄e0 = limx→0 q̄e(x, t) where q̄e is the quasi-neutral
solution, since in the boundary layer qe is constant.

We use these boundary conditions to perform numerical simulations of the test
case previously presented. The results are given on Figure 4.7.
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We use the same reference curve as previously, i.e. the one given by the classical
scheme, the Riemann solver in the resolved case (∆x = λ and ∆t ≤ τ) and the non
well-adapted boundary conditions. We compare this reference curve to the classical
and AP schemes with the P0 and P2 solvers in the non resolved space case, (∆x =
10−2 > λ = 10−4) and using the well-adapted boundary conditions. The classical
scheme resolves the plasma period, ∆t ≤ τ , and the AP scheme does not, ∆t > τ .
We can see that all schemes give results similar to the reference curve. Only the
plateau at the end of the boundary layer is not well described. But we stress that
the P2 solver is now stable, I recall it was not with the non well-adapted boundary
conditions. These boundary conditions allow to use general Roe type solvers without
resolving the Debye length.

4.5 Conclusions and future prospects

In this chapter, I have presented an asymptotic preserving scheme in the quasi-
neutral limit for the two-fluid Euler-Poisson system. Numerical simulations and a
stability analysis have proven the good behavior of the scheme compared to the
classical scheme. This new scheme drastically reduces the cost of the numerical
simulations. Furthermore, the analysis of a boundary layer problem at the injection
point, allows to determine boundary conditions well-adapted to the quasi-neutral
regime. Thus, extension of the AP scheme to general Roe type solvers is possible
without resolving the Debye length.

Many future prospects can be considered at the end of this work. First, prospects
dealing with the AP scheme for the Euler-Poisson system. On coarse meshes the
scheme is still stable but is less accurate. Using higher order solvers is necessary to
increase the accuracy. For this, we can use discontinuous Galerkin methods, that I
have started to do in collaboration with Pierre Degond and Shi Wang Shu.

We can study extensions to other systems. The study of the system with the
full Euler equations is quite straightforward. A work is in progress on this subject
including the study of the boundary layer problem. Furthermore, I work on the
extension of the AP scheme for the Euler-Maxwell system in collaboration with Pierre
Degond, Fabrice Deluzet and Dominique Savelief.

In collaboration with Annalisa Ambroso, Pierre Degond, Fabrice Deluzet, Nadia
Lemarchant, Pascal Omnès and Jacques Segré, I work on a scheme preserving the
low Mach number limit for the Euler system.

Finally, the boundary layer problem still keeps its secrets. First, the approxima-
tion ε small could be certainly eliminated by exactly resolving, at least numerically,
the boundary layer problem. It could help us to reproduce the plateau at the end
of the boundary layer. Furthermore, I would like understand the miracle of the
solvers with diagonal numerical viscosity matrices (modified Lax-Friedrichs and de-
gree 0 polynomial solvers) which are stable even when the mesh does not resolve the
boundary layer.
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Chapter 5

Kinetic models for the transport of
particles

In this chapter, we are interested in kinetic models describing the transport of parti-
cles. These results are published in [N1], [A3], [CR1] and [CR3]. They have been
realized in collaboration with Pierre Degond, Komla Domelevo, Céline Parzani and
Rachid Talaalout.

The first section deals with the transport of charged or non charged particles,
confined close to a surface by an external potential.

In the second section, we study a simplified diphasic model for the modeling of
the transport of droplets in a gas.

5.1 Particles trapped in a surface potential

In this section, we describe the results published in [CR1], [CR3] and those
published in [A3].

5.1.1 Introduction

We are interested in the modeling of particles submitted to an external potential
in a half space. The applied potential confines the particles close to the surface
of the half space. We start from the Vlasov equation describing the transport of
the particles. It is classical in mathematical modeling, to derive an asymptotic model
containing a smaller number of variables than the kinetic description. This is possible
when the physical context allows for it. As instance, when the particles are subject
to a large number of collisions. The resulting model depends of the nature of the
considered collisions. In the problem studied here, the particles being confined close
to the surface, they frequently collide with the surface. This allows us to derive
different model according to the considered collisions.

This work is related to a physical application proposed by Jean-Pierre Catani
and Denis Payan from CNES. The problem deals with electric arc phenomena on
satellite solar panels already described in section 3.2. I briefly recall the physical
context. The satellite solar panels are constituted of strings of photo-voltaic cells.
When the delivered tension exceeds the threshold value of fifty volts, some electric
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arc phenomena occur yielding sometimes the short-circuit of all the concerned string.
The scenario, proposed by physicists, is split into three steps, see [5], [8] and [9].
First, a primary discharge ignites and creates a high density plasma. This plasma
expends between two cells. When the plasma has filled the gap between the cells, an
electric arc may establish. Here, we want to model the primary discharge.

Following [8], we assume that the primary discharge is due to a differential charg-
ing of the dielectric surface and of the conducting media (semiconductor or metal-
lic inter-connectors). Indeed the plasma environment of the satellite contributes to
positively charge the dielectric surface compared to the conductor with potential dif-
ference ranging up to 1000 volts. This large electric field triggers an enhanced field
electron emission at the triple point. This local increase of the electric field has two
origins: the contact between metallic parts, dielectric and vacuum and the presence
of micro-dielectric impurities at the triple point. Due to the electric field parallel to
the dielectric boundary, the emitted electrons reach the top of the cell. On their way,
they are attracted by the positive potential of the surface and collide with it. These
collisions generate secondary electrons from the dielectric surface as well as desorbed
neutral particles. Furthermore, during their way to the top of the dielectric, the
electrons collide with the neutral particles and create some ions. Due to the increase
of the electron density by secondary emission, an avalanche breakdown occurs and
generates a high density plasma.

I begin with the brief description of the results published in [CR1], [CR3]. This
preliminary work clarifies what are the dominant physical mechanisms in the plasma
formation for the physical application previously described.

In section 5.1.3, I present the results published in [A3]. In this work, we consider
a more general situation than the previous one. We consider particles trapped along
a surface by a confining potential. From a kinetic description, we derive a two dimen-
sional model along the surface. This analysis is rigorous in the case of non charged
particles and formal when the coupling with the Poisson equation is considered.

5.1.2 Energy-transport asymptotic model

In [CR1], [CR3], we want to establish a model to describe of the high density
plasma along the solar cell surface. We suppose that the collisions between the
electrons and the surface are diffusive. We denote by x = (x, z) ∈ IR2 × IR− the
space variable split into the parallel components x and the transverse component
z. We assume that the applied potential is given by φ(x, z) = φ0(x) + ψ(z) with
ψ(z) = −ET z where ET > 0 is given. The potential ψ is called the confining
potential. In [13], P. Degond, considering the same problem, derives a diffusion model
(called SHE model for Spherical Harmonic Expansion, see [53]) from a kinetic model.
This model consists in a diffusion equation on the particle distribution function F .
This distribution is an averaged value in the transverse direction (z) and in the
velocity for a given energy (ε). Then, here we assume that the particles are in a local
equilibrium and their distribution F (x, ε, t) is a Maxwellian function

F (x, ε, t) = exp

(

µ(x, t) − ε

Te(x, t)

)

,
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where µ ∈ IR and Te > 0 are the chemical potential and the temperature of the
electrons. Integrating the SHE model by respect to the energy, we obtain an energy-
transport model on the surface particle density (ne) and on the energy (We):

∂tne + ∇x · Jn = Qn,

∂tWe + ∇x · Jw − Jn · ∇xφ0 = Qw.

These quantities are connected to the chemical potential and the temperature by the
relations ne = (2π e/me)

3/2 T
5/2
e /ET exp(µ/Te) and We = 5ne Te/2, where e > 0 is

the elementary charge and me is the electron mass. Furthermore, the particle and
energy currents are given by

Jn = −D11 (∇x(µ/Te) −∇xφ0/Te) −D12 ∇x(−1/Te),

Jw = −D21 (∇x(µ/Te) −∇xφ0/Te) −D22 ∇x(−1/Te),

where Di,j are the coefficients of the diffusion matrix D given as a function of ne, Te

and ET , see [CR1].
This model is enriched with physics through source terms Qn and Qw. They model

the inelastic collisions with the surface (i.e. those non conserving the energy) like the
neutral desorption, the secondary electron emission or the electron attachment on
the surface. When an electron collides with the surface, if it has enough energy, it
extracts a neutral molecule or electrons. In the last case, the surface is positively
charged allowing the capture of electrons with low energy.

To update the potential, we resolve a two dimensional Poisson equation

−∆xφ0 =
e

d

(

ns

ǫd
− ne

ǫ0

)

,

where d is an approximation of the electron cloud width in the transverse direction, ǫd
and ǫ0 are the dielectric (constituting the surface) and the vacuum permittivities.
Finally, ns is the density of the positive charges resulting from the secondary electron
emission process. We will see in the following section that this two dimensional
Poisson equation is not valid. Indeed, the formal derivation of the two dimensional
model shows that a three dimensional Poisson equation must be considered with a
density concentrated (with a Dirac function) on the surface. But at this stage, this
result was not known.

The initial and boundary conditions are such that the domain is devoid of particles
at the beginning of the process and electrons are emitted from the bottom of the cell
with an enhanced field electron emission (like for the high current diodes with a micro
spike lattice described in section 3.2 of Chapter 3).

We performed numerical simulations in one space dimension. Figure 5.1 shows the
electron density and the density of neutral molecules desorbed by electron impact. We
clearly see the expected avalanche phenomenon which creates a high density plasma.
Let us note that the plasma creation is more important at the top of the cell where
the electrons have gained sufficiently energy to extract neutral molecules or electrons
from the surface.
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Figure 5.1: On the left-hand side: volume electron density along the surface of the
cell at different times. It is obtained from the surfacic density ne given by the energy
transport model, divided by the approximate width d of the electron cloud. On the
right-hand side: neutral density desorbed from the surface by electron impact.

5.1.3 Derivation of a Boltzmann model for particles trapped in a surface
potential

In [A3], we are interested in the modeling of particles confined close to a surface
by an external potential. We consider the domain Ω = IR2 × (−∞, 0) and we assume
a wall present on the boundary of Ω: ∂Ω = IR2 × {0}. We denote by x = (x, z) ∈
IR2×IR−, v = (v, vz) ∈ IR2×IR the space and velocity vectors. Due to their geometric
relation with the surface, x and v are called the parallel space and velocity vectors.
Similarly, z and vz are called the transverse components.

Let f be the particle distribution function. It satisfies the Vlasov equation

∂tf + v · ∇xf +
E

m
· ∇vf = 0, (5.1)

for all (x, v, t) ∈ Ω × IR3 × IR+, where m is the particle mass and E is the resultant
force applied on the particles. Here we assume that it derives from a potential.

Two cases are considered for E. First, the case of non charged particles with E =
−∇xφ and φ is a given potential. Finally, the case of charged particles and E =
−q∇x(φ+ φs) where q is the particle charge, φ is the applied external potential and
so it is given. And, φs is the self-consistent potential given by the resolution of the
Poisson equation

−ǫ0∆xφs = q

∫

IR3

f(v) dv, (5.2)

for (x, t) ∈ Ω × IR+ and where ǫ0 is the vacuum permittivity.
To derive an asymptotic model, first we rescale the problem. I consider the case of

charged particles but the other case can be easily deduced. The aim of this work is to
derive an asymptotic model in situations such that the external potential confines the
particles close to the surface ∂Ω. We denote by L‖ and L⊥ the characteristic lengths
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respectively in the parallel and transverse directions. We suppose that α = L⊥/L‖
is a small (dimensionless) parameter. We denote by φc (chosen such that sign(φc) =
sign(q)), vc =

√

q φc/m, and fc the characteristic scale of the potential, velocity and
distribution function. Then, we introduce the following change of variables x = L‖ x̂,
z = L⊥ẑ = αL‖ ẑ, v = vc v̂ and t = L‖/vc t̂. In space, it amounts to zoom on the

transverse direction. We assume that there exists φ̂, independent of α and such that
φ(x, t) = φc φ̂(x̂, t̂), for all (x, t) ∈ Ω × IR+. Furthermore, we define fα and φα

s by

f(x, v, t) = fc f
α(x̂, v̂, t̂) for (x, v, t) ∈ Ω × IR3 × IR+,

φs(x, t) = φc φ
α
s (x̂, αẑ, t̂) for (x, t) ∈ Ω × IR+.

It is important to note that we do not localize the self-consistent potential in the
transverse variable. This is due to the fact that the Laplacian operator is non local.
Indeed, it is well known that a local variation of the density close to the surface
modifies the self-consistent potential in all the domain.

This rescaling leads to introduce a dimensionless parameter defined by (fc vc) ×
(q L2

‖/ǫ0 φc). We choose it equal to 1/α. This hypothesis corresponds to the assump-
tion that the number of particles is large since they are confined close to the surface.
Indeed, we have fc vc = (ǫ0 φc/q L

2
‖)/α.

Inserting this change of variables in (5.1), (5.2), we obtain for all (x, z)×(v, vz)×t ∈
Ω × IR3 × IR+:

∂tf
α(z) + v ·∇xf

α(z) −
(

∇xφ(z) + ∇xφ
α
s (α z)

)

·∇vf
α(z) (5.3)

−∂zφ
α
s (α z) ∂vz

fα(z) +
1

α

(

vz ∂zf
α(z) − ∂zψ(z) ∂vz

fα(z)
)

= 0,

−∆xφ
α
s (x, α z, t) − ∂2

zzφ
α
s (x, α z, t) =

1

α

∫

IR3

fα(x, z, v, t) dv, (5.4)

where ψ is the transverse component of the external potential defined by

ψ(x, z, t) = φ(x, z, t) − φ0(x, t) and φ0(x, t) = φ(x, 0, t). (5.5)

In the case of non charged particles, the rescaled Vlasov equation is given, in Ω ×
IR3 × IR+, by

∂tf
α + v ·∇xf

α −∇x(φ0 + ψ) · ∇vf
α +

1

α

(

vz ∂zf
α − ∂zψ ∂vz

fα
)

= 0. (5.6)

We add to these equations an initial condition fα(t = 0) = f0, and boundary con-
ditions. For this, we introduce the outgoing and incoming traces of f on the sur-
face ∂Ω. They are respectively denoted by γ−(f)(x, (v, vz), t) for all vz < 0 and by
γ+(f)(x, (v, vz), t) for all vz > 0. Then, we consider the boundary condition given by

γ−(fα)(vz) = β Sγ+(fα)(vz) + (1 − β)Kγ+(fα)(vz) for all vz < 0, (5.7)

where S is the specular reflection operator and K is a general collision operator on
∂Ω. Furthermore, β is the probability for an incoming particle on the surface ∂Ω to
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be specularly re-emitted. This parameter will be chosen equal to 1 or 1 − α which
corresponds to a case such that only specular collisions are considered or such that the
specular collisions is the dominant collision process on the surface. These operators
are given by

Sγ+(f)(vz) = γ+(f)(−vz), and Kγ+(f)(vz) =

∫

{v′=(v′,v′
z)∈IR2×IR+}
K(v′, v) γ+(f)(v′z) v

′
z dv

′,

whereK(v′, v) |vz| dv is the number of re-emitted particles in [v, v+dv] for an incoming
particle on the surface ∂Ω, with a velocity given by v′.

In the case of charged particles, we assume the following boundary conditions for
the Poisson equation

∂zφ
α
s (z = 0) = 0 on ∂Ω × IR+, lim

|x|→+∞
φα

s (x, ·) = 0 in IR+. (5.8)

In [A3], we consider the case of an attractive potential for the particles. Then,
we assume

Assumption 5.1 For all (x, t) ∈ IR2 × IR+, the function z ∈ IR− 7→ ψ(x, z, t) ∈ IR
is decreasing, continuous and satisfies limz→−∞ ψ(x, z, t) = +∞.

We prove the following result.

Theorem 5.1 Let α > 0, f0 ∈ L∞(Ω × IR3) with a compact support in Ω̄ × IR3 and
φ ∈ C2(Ω̄). We assume β = 0 and we denote by φ0 and ψ the parallel and transverse
components of φ defined by (5.5). We suppose that ψ satisfies Assumption 5.1. Let
fα be the weak solution to (5.6) and (5.7). Then, there exists f ∈ L∞(Ω×IR3× [0, T ])
for all T > 0 such that

lim
α→0

fα = f in L∞(Ω × IR3 × [0, T ]) for the weak- ⋆ topology.

Furthermore, there exists F ∈ L∞(IR2 × IR2 × IR+ × [0, T ]) for all T > 0 such that

f(x, z, v, vz, t) = F (x, v, εz, t),

for almost all (x, z, v, vz, t) ∈ IR2 × IR− × IR3 × IR+, where εz = |vz|2/2 + ψ(x, z, t).
The function F satisfies

[

∂t + v · ∇x −
(

∇xφ0 + 〈∇xψ〉
)

·∇v

]

(Nz F )

+∂εz

[(

〈∂tψ〉 + v · 〈∇xψ〉
)

(Nz F )
]

= 0,
(5.9)

in D′(IR2 × IR2 × (0,+∞) × (0,+∞)), where for all function g from IR− into IRn

(n ≥ 1), 〈g〉 is the mean value of g in the transverse direction and is given by

〈g〉 =
2

Nz(x, εz, t)

∫ 0

Z(x,εz ,t)

g(z)

vz(x, z, εz, t)
dz,
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where vz(x, z, εz, t) =
√

2(εz − ψ(x, z, t)), and εz 7→ Z(x, εz, t) is the inverse function
of the one to one function z 7→ ψ(x, z, t) from IR− into IR+. The density of state,
Nz, is given by

Nz(x, εz, t) = 2

∫ 0

Z(x,εz ,t)

1

vz(x, z, εz, t)
dz.

Several remarks will clarify the asymptotic model.

First, let us note that εz(vz, z) = |vz|2/2+ψ(z) is the total energy in the transverse
direction. When a particle leaves the surface with a given total transverse energy, it
gains potential energy and thus loses a part of its kinetic energy. Its velocity vanishes
when all the kinetic energy is transformed into potential energy. Then, it can only
go back to the surface. We mathematically find again this result. Indeed, for a given
positive energy and a given initial transverse velocity, we have εz = ψ(z)+ |vz|2/2 ≥ 0
and 0 ≤ ψ(z) = εz − |vz|2/2 ≤ εz. But, ψ is a decreasing function, its inverse is also
decreasing and 0 ≥ z ≥ Z(εz).

The asymptotic model for F is obtained by integrating the limit equation in the
transverse direction and by taking the averaged value in the transverse velocities for
a given transverse energy. This formally means that we multiply the limit equation
on f by δ(εz(z, vz) − ε̄z) where ε̄z is a fixed energy and we integrate by respect to z
and vz. The previous remark clarifies why the resulting quantities are finite even if
we integrate for z ∈] −∞, 0].

A simple calculus shows that Nz(x, ε0, t) =
∫

IR×IR− δ(εz − ε0) dz dvz. Thus, Nz

is the bouncing time between two successive collisions of a given particle with the
surface. Furthermore, Nz(x, εz, t)F (x, v, εz, t) dx dv dεz is the number of particles
with a parallel position in [x, x+dx], a parallel velocity in [v, v+dv], a total transverse
energy in [εz, εz + dεz] and a transverse position in [Z(x, εz, t), 0].

In the case of the coupling with the Poisson equation (5.4), we prove the following
result.

Theorem 5.2 (Formal) Let α > 0, f0 and φ be given, we suppose β = 1−α and that
φ0 and ψ, the parallel and transverse components of the external potential φ, defined
by (5.5), satisfy assumption (5.1). Let fα, φα

s be a solution of (5.3), (5.4), (5.7).
then, the formal limit α → 0 gives fα → f and φα

s → φs with

f(x, v, t) = F (x, v, εz, t),

where εz = |vz|2/2 + ψ(x, z, t) and where F satisfies,

∂t(NzF ) + v · ∇x(NzF ) −
(

∇xφ̃s + ∇xφ0+ < ∇xψ >
)

·∇v(NzF ) (5.10)

∂εz

((

< ∂tψ > +v· < ∇xψ >
)

Nz F
)

= K(F ) − F,

The quantities Nz and 〈·〉 are defined in Theorem 5.1. The function φ̃s is the trace
on the surface ∂Ω, of the self-consistent potential φs. We have φ̃s = φs(z = 0) with
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φs given by



















−∆x,zφs = 0, in IR2 × (−∞, 0),

lim
|(x,z)|→+∞

φs(x, z, t) = 0,

∂zφs(z = 0) = ρ =

∫

IR2×IR+

Nz F dεz dv, on IR2.

(5.11)

finally, the operator K is a collision operator modeling the non specular collisions on
the surface. It is given as a function of K in [A3].

First, let us remark that the non specular part of the collisions is modeled in the
source term like a volume collision operator. Furthermore, the limit Poisson equation
is an equation on the entire half space with a density concentrated on the surface.
In [A3], we prove that the solution is the restriction to the half space Ω = IR2 × IR−

of the solution to the Poisson equation on all the space IR3 with a density, on the
right-hand side term, concentrated on z = 0 given by ρ(x, t) δ(z). We find again
the non locality of the electric forces. Finally, a similar result have been rigorously
established in [3] in the quantum case and on the entire space.

In [A3], we use this model to perform numerical simulations of the primary dis-
charge presented in the introduction.
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Figure 5.2: Surfacic electron density (left) and surfacic positive charges (right) in
logarithm scale at times t = 5 × 10−11s (solid line), t = 15 × 10−11s (dashed-dotted
line) and t = 20 × 10−11s (dotted line).

We simplify the model assuming a one dimensional process and assuming that the
external transverse potential only depends on the transverse space variable z. These
simplifications give a model for which the transverse energy εz is only a parameter of
the transport equation (5.10). Like in section 5.1.2, we take into account the electron
secondary emission and the enhanced field electron emission in the collision term
and in the boundary conditions. We discretize system (5.10), (5.11) with a P.I.C.
method (Particles in Cells, see [12], [15], [34]) based on a particular discretization
of the Boltzmann equation and on a Fourier approximation of the Poisson equation.
The electron secondary emission yields the creation of a large number of numerical
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particles. We use a collapsing process to reduce this number and avoid numerical
problems. On Figure 5.2, we see on the left-hand side the electron density and on the
right-hand side the positive charges on the solar cell surface resulting of the electron
secondary emission process. These curves show the expected avalanche phenomenon
with the creation of an electron cloud more and more dense. The simultaneous in-
crease of the positive charges on the surface shows that these electrons come from the
electron secondary emission and not from the injection. This confirms the dominant
role of this process.

5.2 Transport of droplets in a gas

I finish this chapter with the description of a work which is different from the
other results. It has been done in collaboration with Komla Domelevo when I arrived
in Toulouse. This work is published in [N1].

We are interested in a simplified model for a droplet flow in a gas. The gas is
described by its constant density, normalized to 1 and its velocity u satisfying the
viscous Burgers equation. The unknown for the droplets is a distribution function
solution of a Fokker-Planck equation. These equations are coupled through force
terms modeling the Stokes drag in turbulent gas flow. The model is given by

(Pε,η)







∂tu
ε,η + uε,η∂xu

ε,η − ε∂2
xxu

ε,η =

∫

v∈IR

f ε,η(v − uε,η)dv,

∂tf
ε,η + v∂xf

ε,η + ∂v(f
ε,η(uε,η − v)) − η∂2

vvf
ε,η = 0,

where ε ≥ 0 and η ≥ 0 are given. We have studied the different limit and problems
summarized in the following figure:

(Pε,η)
ε→0−−−−−−−−−−−−−−−−−−−−→ (P0,η)

η→0













y

η→0













y

(Pε,0)
ε→0−−−−−−−−−−−−−−−−−−−−→ (P0,0)

We recall the following result proven in [20]

Theorem 5.3 (Case ε > 0, η = 0)) Let T > 0, we consider u0 in L∞(IRx) and f0

in M0(IRx × IRv) a bounded measure with a compact support.
For all ε > 0, problem (Pε,0) has a unique weak entropy solution (uε,0, f ε,0) in

C([0, T ];L∞(IRx)) ∩ L1([0, T ];W 1,∞(IRx)) × C([0, T ];M0(IRx × IRv)).

We establish the following results

Theorem 5.4 (Case ε > 0, η > 0)) Let T > 0, we consider u0 in L∞(IRx) and f0

in M0(IRx × IRv) a bounded measure with a compact support.
For all ε > 0 and all η > 0, problem (Pε,η) has a unique weak solution (uε,η, f ε,η)

in C([0, T ];L∞(IRx)) ∩ L1([0, T ];W 1,∞(IRx)) × C([0, T ];M(IRx × IRv)).
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Theorem 5.5 (Case ε = 0, η > 0) Let T > 0, we consider u0 in L∞(IRx) and f0 in
L1

0(IRx × IRv) ∩ L∞
0 (IRx × IRv) with a compact support.

Then, for all η > 0, problem (P0,η) has a unique weak entropy solution (u0,η, f 0,η)
in C([0, T ];L∞(IRx))∩L1([0, T ];W 1,∞(IRx))×C([0, T ];L1(IRx× IRv)∩L∞(IRx× IRv)).

Finally, we look at the existence of solutions for problem (P0,0). In this case, we
only consider cases for which f0 is in L1

0(IRx × IRv) ∩ L∞
0 (IRx × IRv) with a compact

support.

Theorem 5.6 (Existence for (P0,0)) Let (ε, η) > (0, 0), we consider u0 in L∞(IRx)
and f0 in L1

0(IRx×IRv)∩L∞
0 (IRx×IRv) with a compact support. We denote by (u, f)ε,η,

the solution of problem (Pε,η). Then, (u, f)ε,η weakly tends towards (ũ, f̃), up to a
subsequence, in C([0, T ];L1

loc(IRx)∩L∞(IRx))×L∞([0, T ];L1(IRx×IRv)∩L∞(IRx×IRv)),
and (ũ, f̃) is a weak solution of (P0,0).

5.3 Conclusions and future prospects

In this chapter, I have presented the mathematical and numerical modeling of
the transport of particles confined close to a surface by an external potential. Fur-
thermore, a Boltzmann model has been rigorously derived in the case of non charged
particles and formally in the case of charged particles. A future prospect regarding
this work is the rigorous derivation of the model in the non linear case, i.e. the case
of the coupling with the Poisson equation. Furthermore, it would be interesting to
perform more realistic simulations of the primary discharge. In particular, we could
take into account the transverse energy in the model.

In the last section, I have presented results dealing with the transport of droplets
in a gas. This last part has been done when I arrived in Toulouse. I did not pursue this
work, thus I do not have future prospect regarding this work. However, the uniqueness
of the non viscous limit system is an interesting problem, but the hyperbolic system
property of the problem is a well known difficult study.
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