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Abstract —We consider a system consisting of a vacuum gap separated by two elec-

trodes. A plasma is injected at the cathode and expands. From the sharp plasma

boundary, electrons are accelerated towards the anode, forming an electron beam. In

this paper, from a two-fluid isentropic Euler system for each species of particles coupled

with the Poisson equation, we perform a formal asymptotic analysis, yielding a quasineu-

tral model for the plasma region and a Child-Langmuir law for the beam region. These

two models are connected through a transmission layer problem. Finally, a numerical

validation of this asymptotic model against the original two-fluid model is given.

Keywords —Plasma-vacuum interface, quasineutral limit, Child-Langmuir asymp-

totics, transmission layer problem

1. INTRODUCTION

In this paper, we consider a system consisting of a vacuum gap separated by two electrodes. A

plasma is injected at the cathode and expands. From the sharp plasma boundary, electrons are

accelerated towards the anode, forming an electron beam. Such a device has been proposed and

analyzed in relation with the technology of electron beam accelerators [1].

The goal of the present work is to propose a suitable model for this system. Our starting point is

a two-fluid isentropic Euler system for each species (electrons and ions) coupled with the Poisson

equation. However, in the plasma region, due to the large particle density, the space scale associated

with the Poisson equation (the so-called Debye length [2]) is very small and makes numerical

simulations extremely delicate. Therefore, for numerical purposes, it is highly desirable to derive a

quasineutral model consisting of a single Euler equation for an averaged fluid. A first point of our

work is to show that, in the present case, the ’correct’ quasineutral model is not the standard one-

fluid Euler equations (see e.g. [3]) but an extension of it accounting for a non-zero plasma current.

It differs from the standard one by an additional flux term in the momentum conservation equation

accounting for the counter-pressure induced by electron acceleration. This model is shown to be

hyperbolic only if the plasma density is larger than a threshold value (depending on the value of

the current).
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However, quasineutrality breaks down at the plasma-vacuum interface. Beyond the interface, in

the beam region, only electrons are present and require the use of a coupled single electronic fluid

Euler system with Poisson’s equation. Scaling considerations however allow again to reduce the

system to a simpler one, namely the Child-Langmuir model (see [4], [5]).

The key modeling problem now consists in connecting the quasineutral model in the plasma region

with the Child-Langmuir model in the beam region. To some extent, the problem reduces to the

evaluation of the pressure exerted by the beam onto the plasma interface. This problem is solved

by analysing a transmission layer problem, deduced from the original two-fluid model by stretching

the position variable about the plasma-vacuum interface. We show that, for the interface problem

to have a well-behaved solution, the plasma density on the left of the interface must lie in a certain

interval [nH , nP ]. Unfortunately, the layer analysis does not provide a definite value and we need

to rely on numerical simulations to specify this value. We experimentally see that the value np

should be imposed to the plasma density on the left of the interface.

The present work is a shorter version of [6]. Quasineutral limits are investigated in [3] for the

Euler equations and in [7] for the drift-diffusion model. The result of [3] is concerned with smooth

solution with a lower bound on the species density. We also refer to [8] for an earlier version of

the present work. In [8], it was postulated that the plasma current was zero (thus reducing the

quasineutral model in the plasma to the standard one) and that the electron counter-pressure was

concentrated at the interface. However, numerical simulations showed a significant discrepancy

with the two-fluid Euler-Poisson model for the plasma density at the interface.

In the present model, we show that a non-zero plasma current gives a better approximation of the

original model. However, we are unable so far to provide a mathematically rigorous justification

of this fact.

2. THE ASYMPTOTIC MODEL

Our starting point is the same as in [8]: we consider the two-fluid Euler-Poisson model in scaled

form (see [8] for details about the scaling):

(ni)t + (niui)x = 0, (niui)t +
(

(niu
2

i ) + pi(ni)
)

x
= −niφx/η,(1)

(ne)t + (neue)x = 0, ε
(

(neue)t + (neu
2

e)x

)

+ (pe(ne))x = neφx/η,(2)

−λφxx = (ni − ne),(3)

with the following boundary conditions ni(x = 0) = ne(0) = n0, ui(0) = ue(0) = u0, φ(0) = 0 and

φ(1) = 1. Here, the indices i (resp. e) stand for ions (resp. electrons). n, u and p are respectively

the fluid density, mean velocity and pressure for each species, while φ is the electrostatic potential.

We postulate pressure laws of the form p(n) = Cnγ where C > 0 and γ > 1 can be different

for electrons and ions. The cathode is supposed located at x = 0 and the anode at x = 1. The

dimensionless parameters ε, η and λ respectively measure the electron to ion mass ratio, the ratio
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of the thermal energy of the plasma to the applied bias and the ratio of the applied potential to

the typical self-consistent potential. It should be noted that the product ηλ is the square of the

dimensionless Debye length. At time t = 0, it is assumed that the domain is devoid of particles.

The boundary conditions express the injection of a quasineutral plasma of scaled density n0 and

scaled velocity u0, both of order unity in the present scaling.

We are now interested in the limit η → 0 with λ = O(1), corresponding to values observed in high

current diodes [1]. The forthcoming analysis is independent of whether ε is assumed to be small

or not, and we shall consider it as an O(1) quantity for simplicity.

The formal limit η goes to 0 gives rise to ne, ni → n, ui → u, ue → u − j/n, φ → 0, where











(1 + ε)
(

(nu)t + (nu2)x

)

+ (pi(n) + pe(n))x + ε

(

−2uj +
j2

n

)

x

= εjt,

nt + (nu)x = 0 , jx = 0.

(4)

with boundary conditions n(x = 0) = n0, u(x = 0) = u0.

Remark 1 i) If j 6= 0, the system (4) is hyperbolic if and only if (1 + ε)n2 p′(n) > εj where

p(n) = pi(n) + pe(n), or equivalently, iff n > nH(j), thereby defining nH(j).

ii) It is assumed that in the limit, we lose the boundary conditions for the electrons due to some

boundary layer effects. Therefore, the value of j(t) is left undefined at this stage and will be

determined from the beam region.

iii) The term ε (−2uj(t) + j(t)2/n) expresses the electron counter-pressure (and maintains total

momentum balance).

The quasineutral model (4) is valid up to the plasma-vacuum interface, denoted by X(t). Beyond

X(t), i.e. in the beam, only electrons remain and the quasineutral model breaks down. Subject

to the anode potential, the electrons are accelerated to large velocities. Electron velocity is better

analyzed after rescaling according to ue = (εη)−
1

2 ūe in equation (2). In the limit η → 0, (n̄e, ūe)

converges to a solution of the well-known Child-Langmuir model (see [8], [4], [5] for details). This

model has a one-parameter family of solutions parametrized by the electron flux j̄e = n̄eūe in the

interval [0, j̄CL].

To pursue the modeling further, we need to specify the plasma current j for the quasineutral

model (4), the electron current j̄e for the Child-Langmuir beam model. We also need an interface

condition in order to determine the dynamic of the plasma-beam interface X(t). The formal

asymptotics performed so far does not provide such informations, essentially because different

scaling hypotheses were made in the plasma and in the beam.

Therefore, we shall assume that the electron current j̄e for the Child-Langmuir beam model co-

incides with the maximal current j̄CL, or after scaling the variables back to those of system (4),

is given by je = jCL = (4/9)
√

2λ(1 − X(t))−2(εη)−1/2. Secondly, by current conservation at the

interface, we assume that the plasma and beam currents coincide, i.e. j = −jCL.

3



Now, in order to determine the extra interface condition, we look for a travelling-wave solution

of system (1)-(3), connecting electron and ion quantities to the quasineutral model to the left of

X(t) and to the Child-Langmuir model to the right of X(t). Let U(x, t) = Ũ(ξ, t) be a travelling

wave profile (where U denotes the vector of unknowns of system (1)-(3)), with ξ = (x−X(t))/
√

η

and φ = ηφ̃. In the formal limit η → 0, the system (1)-(3) reduces to the following travelling wave

problem (defining σ = Ẋ(t)):

(5)















ñi = 0 for ξ > 0, −λφ̃ξξ = ñi − ñe, for ξ ∈ R,

(ñe(ũe − σ))ξ = 0, ε(ñe(ũe − σ)ũe)ξ + (pe)ξ = ñeφ̃ξ, for ξ ∈ R,

(ñi(ũi − σ))ξ = 0, (ñi(ũi − σ)ũi)ξ + (pi)ξ = −ñiφ̃ξ, for ξ < 0.

with the following boundary conditions expressing the reconnection with the asymptotic models

at infinity: when ξ → −∞, ñi, ñe → n−, ũi → u−, ũe → u− − j/n−, φ̃ → 0, where n− and u−

denote the limits of the quasineutral quantities to the left of the interface, and when ξ → +∞,

ñi → 0, ñe(ũe − σ) → jCL.

The traveling wave problem (5) can be reduced to a nonlinear Poisson equation as follows: First,

from the mass conservation equations and the boundary conditions, we deduce that σ = ũi = u−

and ñe(ũe − σ) = jCL, which yields j = −jCL as already noted. Then, let us define he,i(n) such

that h′

e,i(n) = p′e,i(n)/n with he,i(0) = 0 and ke(n) = εj2

2 n2 + he(n). The momentum conservation

relations and the boundary conditions yield

(6) hi(ñi) + φ̃ = hi(n−) and ke(ñe) − φ̃ = ke(n−).

Note that, since hi is increasing, ñi = h−1

i (hi(n−)− φ̃) is decreasing with respect to φ̃. In contrast

with hi, ke is non monotonous, decreasing on [0, nmin] and increasing on [nmin,∞) with nmin > nH

(see remark 1 for the definition of nH). A choice of a branch of k−1

e has to be made in accordance

with the position of n− with respect to nmin. With either choices, after inserting (6) into the

Poisson equation, we are led to a nonlinear Poisson system.

Next, We analyze the nonlinear Poisson problem by means of a phase-plane analysis. This analysis

shows that no profile with the correct behavior at +∞ can be obtained in the case n− > nmin. In

the case, n− < nmin, such a profile does exist provided that n− < nP , where nP is a limit value

greater than the limit for hyperbolicity nH . Therefore, any choice of n− ∈ [nH , nP ] leads to an

admissible travelling wave profile, as announced in the introduction.

We have numerically determined that n− = nP gives the best approximation. Therefore, the

quasineutral model (4) in the plasma region, the Child-Langmuir model in the beam region, con-

nected with the conditions −j = je = jCL and n− = nP constitute our asymptotic model. We

shall validate it in the forthcoming section by comparing it with the solutions of (1)-(3)

3. NUMERICAL SIMULATIONS
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The quasi-neutral system (4) is approximated using a finite volume method [10], [11], [9]. The

treatment of the interface follows [8]. We choose ∆x = 2.10−4, γ = 2, ε = 5.10−1, λ = 10−3 and

η = 10−4. Figure 1 and 2 compare the quasineutral model in the plasma region with electron

and ion quantities of the two-fluid model. The agreement seems fairly satisfactory. We note that,

contrary to a standard fluid expansion in vacuum, the plasma forms a sharp interface with the

vacuum.

Figure 3 compare the child-Langmuir electron model with the two-fluid model in the beam region.

Again, the agreement looks rather good.
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Figure 1: Ion density and mean velocity from the 2-fluid model compared with the quasi-neutral

model : values between the cathode and the interface X(t) at time t = 0.04, t = 0.07, t = 0.1 (in

dimensionless units)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Position

D
en

si
ty

electrons
Quasi-neutral fluid

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Position

V
el

o
ci

ty

electrons
Quasi-neutral fluid

Figure 2: Electron density and mean velocity from the 2-fluid model compared with the quasi-

neutral model : values between the cathode and the interface X(t) at time t = 0.04, t = 0.07, t = 0.1

(in dimensionless units)
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Figure 3: Electron density and mean velocity from the 2-fluid model compared with the Child-

Langmuir model : values between the interface X(t) and the anode at time t = 0.04, t = 0.07, t =

0.1 (in dimensionless units)
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