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Abstract We are interested in the drift-diffusion system near quasi-neutrality. This
system, constituted of coupled elliptic and parabolic equations, arises in semicon-
ductor modeling. For this system, classical explicit schemes are decoupled but, they
are subject to severe numerical constraints in the quasi-neutral regime. By constrast,
the implicit discretizations are unconditionally stable. But, they are non linearly cou-
pled. Then, an iterative method must be used yielding a large numerical cost. Here,
we propose a new decoupled asymptotic preserving scheme. We perform one and
two dimensional numerical experiments which show its good behavior.

1 Presentation of the problem

Let Ω ⊂ Rd (d ≥ 1) be an open bounded domain describing the geometry of a
semiconductor device. The unknowns of the linear drift-diffusion system are the
density of electrons and holes, N and P, and the electrostatic potential Ψ . It writes:

∂tN +div(−∇N +N∇Ψ) = 0 on Ω × [0,T ], (1a)

∂tP+div(−∇P−P∇Ψ) = 0 on Ω × [0,T ], (1b)

−λ
2
∆Ψ = P−N +C on Ω × [0,T ], (1c)

where C is the given doping profile non depending on t. The parameter λ comes
from the scaling of the physical model. It is called the rescaled Debye length and is

Chainais-Hillairet Claire
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given by the ratio of the Debye length to the size of the domain. The Debye length
measures the typical scale of electric interactions in the semiconductor.

The system (1) is supplemented with initial conditions N0, P0 and with mixed
boundary conditions: Dirichlet boundary conditions on Γ D (ND, PD and Ψ D) and
homogeneous Neumann boundary conditions on Γ N (with ∂Ω = Γ D∪Γ N).

We are interested in the so-called quasi-neutral regime. This regime occurs when
the parameter λ tends to zero. There has been an intense literature on the rigorous
quasi-neutral limit of the drift-diffusion model; we can refer for instance to [9] for
a zero doping profile C and to [10] for a regular doping profile.

Many different numerical methods have been already developed for the approx-
imation of (1); see for instance [1] and [12, 13] in the non linear case. The con-
vergence of some finite volume schemes has been proved in [2, 3]. But, up to our
knowledge, all the schemes are studied in the case λ = 1. In this paper, we focus
on the behavior of schemes in the quasi-neutral limit, that means when λ tends to
zero. In this regime, the local electric charge vanishes everywhere. However, simul-
taneously, very high frequency oscillations, of order 1/λ 2, are triggered. When a
standard explicit scheme is used, the scale of these very high frequency oscillations
must be resolved by the time step. Hence, the time step must be smaller than λ 2

otherwise a numerical instability appears. The satisfaction of this constraint requires
huge computational resources which makes the explicit methods unusable.

Here, the purpose is to define numerical schemes free of such constraints. For a
given time step, we look for schemes which may be used as well as for values of λ of
order 1 and for values of λ as small as possible. Furthermore, these schemes must
preserve the behavior of the continuous problem in the quasi-neutral limit (λ →
0). Such schemes are called asymptotic preserving schemes, this name has been
introduced in [11] for relaxation limits of kinetic systems. Asymptotic preserving
schemes in the quasi-neutral limit have been developed in [5] for the Euler-Poisson
problem and in [6, 7] for the Vlasov-Poisson system. For the drift-diffusion model,
implicit strategies have been proposed in [15].

This paper is organized as follows. In Section 2, we present the formal quasi-
neutral limit of the drift-diffusion system. Then, in Section 3, we recall two classical
schemes and discuss their stability. Section 4 is devoted to the presentation of a
new scheme for the drift-diffusion model. Finally, in Section 5, we conclude with
numerical simulations.

2 The formal quasi-neutral limit

Formally, passing to the limit λ → 0 in system (1) gives the quasi-neutral drift-
diffusion system. It is constituted of the mass equations (1a), (1b) and of the quasi-
neutrality constraint P−N +C = 0. The Poisson equation is lost, and the electro-
static potential becomes the Lagrange multiplier of this constraint. In order to obtain
an explicit equation for the potential we subtract the mass equations (1a), (1b) and
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we remark that thanks to the quasi-neutrality constraint P−N =−C. This yields an
elliptic equation for the potential: −div((P+N)∇Ψ) =−∆C.

Let us perform the same transformations on the original drift-diffusion system.
We begin by subtracting the mass equations. Then, remarking that, thanks to Poisson
equation, ∂t(P−N) = ∂t(P−N +C) = ∂t(−λ 2∆Ψ),we obtain

−λ
2

∂t∆Ψ −div((P+N)∇Ψ) = ∆(P−N). (2)

Following [5], we call this equation the reformulated Poisson equation. If P and
N are constant, this equation is an order one differential equation on the quantity
−∆Ψ . And, we can note that solutions oscillate in time at the period λ 2.

Thus, an explicit discretization of the electric force terms in (1) will give an ex-
plicit discretization of equation (2) and so a stability non uniform in λ . By contrast,
an implicit discretization of these terms will give an implicit discretization of (2) and
so a stability uniform in λ . This remark will be used in Section 4 for the construction
of our decoupled asymptotic preserving scheme.

3 “Classical” schemes

In this section, we present the classical schemes used for the discretization of the
drift-diffusion system. The mesh is given by T , a family of control volumes, E , a
family of edges and P = (xK)K∈T a family of points. We assume that the mesh
is admissible in the sense of [8]. The set of edges will be split into E = Eint ∪Eext
and for the exterior edges, we distinguish the edges included in Γ D from the edges
included in Γ N : Eext = E D

ext ∪E N
ext . For a given control volume K ∈T , we define EK

the set of its edges, which is also split into EK = EK,int ∪E D
K,ext ∪E N

K,ext .
For all edge σ ∈ E , we define dσ = d(xK ,xL) if σ =K|L∈ Eint and dσ = d(xK ,σ)

if σ ∈ EK,int . Then, the transmissibility coefficient is defined by τσ = m(σ)/dσ , for
all σ ∈ E .

Let ∆ t be the time step. A finite volume scheme for (1) writes:

m(K)
Nn+1

K −Nn
K

∆t
+ ∑

σ∈EK

F n+1
K,σ = 0,∀K ∈T ,∀n≥ 0,

m(K)
Pn+1

K −Pn
K

∆t
+ ∑

σ∈EK

G n+1
K,σ = 0,∀K ∈T ,∀n≥ 0,

−λ
2

∑
σ∈EK

τσ DΨ
n

K,σ = m(K)(Pn
K−Nn

K +CK),∀K ∈T ,∀n≥ 0.

It remains to define the numerical fluxes DΨ n
K,σ , F n+1

K,σ and G n+1
K,σ . As usually, we

set DΨ n
K,σ =Ψ n

L −Ψ n
K if σ = K|L, DΨ n

K,σ =Ψ D
σ −Ψ n

K if σ ∈ E D
K,ext and DΨ n

K,σ = 0
elsewhere. The numerical approximations of the convection-diffusion fluxes in (1a)
and (1b), F n+1

K,σ and G n+1
K,σ , are written with the following compact form:
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F n+1
K,σ = τσ

(
B(−DΨ

m
K,σ )N

n+1
K −B(DΨ

m
K,σ )N

n+1
L

)
, ∀σ ∈ Eint ,σ = K|L (3a)

G n+1
K,σ = τσ

(
B(DΨ

m
K,σ )P

n+1
K −B(−DΨ

m
K,σ )P

n+1
L

)
, ∀σ ∈ Eint ,σ = K|L. (3b)

If σ ∈ E D
K,ext , we replace Nn+1

L by ND
σ in (3a) and Pn+1

L by PD
σ in (3b). If σ ∈ E N

K,ext ,
we set F n+1

K,σ = G n+1
K,σ = 0.

The case m = n corresponds to a semi-implicit and decoupled scheme: at each
time step (Nn+1

K )K∈T , (Pn+1
K )K∈T , and (Ψ n+1

K )K∈T , are obtained by solving three
linear systems. With m = n+1, we write a fully implicit scheme. For the function B,
we may choose either B(x) = 1−min(x,0) or B(x) = x/(exp(x)−1) with B(0) = 1.
The first choice corresponds to a classical two-points discretization of the diffu-
sion with an upwinding for the convection. With the Bernoulli function, we get the
Scharfetter-Gummel scheme. One main advantage of this last choice, well-known
in semiconductor device simulation, is that the scheme is order 2 in space (see [14]).
Moreover, as shown in [4], the Scharfetter-Gummel scheme satisfies some crucial
properties like energy and energy dissipation decrease.

The decoupled scheme (m = n) has been studied in [2] for B(x) = 1−min(x,0)
and the convergence has been established (for the nonlinear drift-diffusion system).
The proof can be extended to the Scharfetter-Gummel scheme (in the linear case).
However, in [2], the convergence proof has been done for λ 2 = 1 and in fact all
the a priori estimates (leading to stability, compactness and convergence) depend on
λ 2. More precisely, when there is no doping profile or when the doping profile is
constant in space, there exists uniform in time L∞ estimates on the densities N and
P (see [10]). In this case, the L∞ estimates holds at the discrete level, but only under
a condition of the form: ∆ t ≤ Dλ 2 with D ∈ R. It means that such a scheme might
not be used for small values of λ .

Let us now consider the fully implicit scheme (m = n+1). In this case, existence
of a solution to the scheme can be proved via a fixed point theorem. Moreover, when
the doping profile is constant in space, we can prove that the scheme is uncondition-
ally stable. However, the implementation of the scheme needs the resolution of a
nonlinear system of equations at each iteration. This might be done using a New-
ton’s method. It has a numerical cost and the solution is computed up to a precision
criterion.

In the next section, we propose a new scheme with the same numerical cost as
the decoupled scheme, but remaining stable and consistent when λ tends to 0.

4 Construction of an asymptotic preserving scheme

Following the remark given in Section 2, let us first consider the following semi-
discretization of (1) in which the electric force terms are discretized implicitly.

Nn+1−Nn

∆ t
+div(−∇Nn +Nn

∇Ψ
n+1) = 0 on Ω × [0,T ], (4a)
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Pn+1−Pn

∆ t
+div(−∇Pn−Pn

∇Ψ
n+1) = 0 on Ω × [0,T ], (4b)

−λ
2
∆Ψ

n+1 = Pn+1−Nn+1 +C on Ω × [0,T ]. (4c)

We eliminate Pn+1 and Nn+1 in (4c) using their expression respectively given in (4b)
and (4a). It yields:

−λ
2
∆Ψ

n+1−∆ t div((Pn +Nn)∇Ψ
n+1) = Pn−Nn +C+∆ t∆(Pn−Nn). (5)

The semi-discretization given by (4a), (4b) and (5) is uniformally stable in λ but not
unconditionaly stable. Then, in order to construct an unconditionally stable semi-
discretization we just have to change the discretizations (4a), (4b) into the implicit
semi-discretizations of the mass equations.

This corresponds to the following fully discrete scheme:

m(K)
Nn+1

K −Nn
K

∆t
+ ∑

σ∈EK

F n+1
K,σ = 0,∀K ∈T ,∀n≥ 0, (6a)

m(K)
Pn+1

K −Pn
K

∆t
+ ∑

σ∈EK

G n+1
K,σ = 0,∀K ∈T ,∀n≥ 0, (6b)

− ∑
σ∈EK

τσ (λ
2 +∆ t(Pn

σ +Nn
σ ))DΨ

n+1
K,σ = m(K)(Pn

K−Nn
K +CK)

+∆ t ∑
σ∈EK

τσ (DPn
K,σ −DNn

K,σ )∀K ∈T ,∀n≥ 0, (6c)

with the values (3a), (3b) and m = n + 1 for the numerical fluxes F n+1
K,σ , G n+1

K,σ .
The interface values, Pn

σ and Nn
σ are defined by taking the mean value between the

values of Nn and Pn at two neighboring control volumes. Let us also note that we
keep an implicit discretization on N and P in (6a) and (6b) in order to avoid any
CFL condition on the time step.

We stress that our scheme is decoupled. It means that, at each time step, if the
values (Nn

K)K∈T , (Pn
K)K∈T are known,

• we first compute (Ψ n+1
K )K∈T by solving the linear system (6c), whose matrix

and right-hand-side depend on Nn and Pn,
• then we compute (Nn+1

K )K∈T and (Pn+1
K )K∈T solutions of the linear systems (6a)

and (6b), whose matrices depend on Ψ n+1.

The matrices from (6a) and (6b) are identical to that obtained in the classical decou-
pled scheme. They are M-matrices, which ensure the positivity at Nn and Pn for all
n (starting with positive initial and boundary conditions). However, the numerical
analysis of the scheme (6) is not straightforward and is in progress. In the next sec-
tion, we present the results of numerical simulations in which we compare our new
decoupled scheme to the fully implicit scheme. We will focus on the behavior when
the rescaled Debye length tends to 0.
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5 Numerical experiments

Test case 1. The first test case is a one-dimensional test case (Ω =]0,1[). The doping
profile is a continuous function satisfying C(x) = −1 for 0 ≤ x ≤ 0.4, C(x) = +1
for 0.6≤ x≤ 1 and C(x) affine on [0.4,0.6]. The initial and the boundary conditions
satisfy the quasi-neutrality condition P+C−N = 0, in order to avoid any boundary
or initial time layers:

ND = 0,PD = 1,Ψ D = 0 in x = 0, ND = 1, PD = 0,Ψ D = 4 in x = 1, (7a)
N0(x) = max(C(x),0) P0(x) =−min(C(x),0). (7b)

With a time step ∆ t = 10−3, we run computations with the fully implicit scheme
and with the new one for different values of λ 2 on a mesh made of 100 cells. The
solution is computed at the final time T = 1. For the Newton’s method used in the
fully implicit scheme the precision criterion is set to 10−10 and the maximal number
of iterations to 60. In Table 1, we present the CPU times needed by both schemes
and also the relative error between the two solutions in a discrete L2-norm.

We note that the CPU time needed by the new scheme is almost independent
of λ . For the fully implicit scheme, we see that for λ 2 ≤ 10−6 the CPU time has
a ratio 3 with those of the new scheme. For smaller values of λ 2, it appears some
default of convergence of the Newton’s method with the given time step for the fully
implicit scheme. However, the new scheme still works and we show on Figure 1(a)
the density profiles obtained for λ 2 = 10−14.

Table 1 Comparison of the fully implicit scheme with the new scheme for the Test Case 1.

λ 2 CPU time CPU time ratio relative error relative error relative error
fully implicit new scheme on N on P on Ψ

1 1.92 0.64 3.00 1.32e-08 1.32e-08 5.94e-09
1e-2 1.82 0.59 3.08 5.73e-06 5.73e-06 2.98e-06
1e-4 2.07 0.59 3.51 2.77e-04 2.77e-04 1.99e-04
1e-6 1.67 0.60 2.78 5.15e-04 5.15e-04 5.70e-04
1e-8 51.46 0.60 85.77 5.24e-04 5.24e-04 5.88e-04

Test Case 2. We change the doping profile for a discontinuous doping profile:
C(x) =−1 for x≤ 0.5 and C(x) =+1 for x≥ 0.5. We keep (7) as initial and bound-
ary conditions. The numerical results, presented in Table 2, are similar to those of
Test Case 1. We just observe that the relative errors are bigger. This is due to the
discontinuity appearing in the density profiles (due to the discontinuity in C): the
two schemes do not capture the discontinuity similarly. However, we still note that
the new scheme has the same efficiency up to very small values of λ . On Figure
1(b), we present the density profiles obtained for λ 2 = 10−14.
Test Case 3. We consider now the simulation of a two-dimensional forward PN
diode. The device is made of two different regions : a P-region with a doping profile
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(a) Test case 1 (b) Test case 2

Fig. 1 Density profiles computed by the new scheme for λ 2 = 10−14 on a mesh made of 100 cells,
with ∆ t = 10−3.

Table 2 Comparison of the fully implicit scheme with the new scheme for the Test Case 2.

λ 2 CPU time CPU time ratio relative error relative error relative error
fully implicit new scheme on N on P on Ψ

1 2.09 0.67 3.12 1.31e-08 1.31e-08 5.89e-09
1e-2 1.88 0.60 3.13 7.50e-06 7.50e-06 4.22e-06
1e-4 2.15 0.61 3.52 1.36e-02 1.36e-02 9.51e-03
1e-6 1.73 0.61 2.84 1.03e-01 1.03e-01 6.07e-02
1e-8 51.51 0.60 85.85 1.08e-01 1.08e-01 6.23e-02

equal to -1 and an N-region with a doping profile equal to 1 (see [3]). We use a
triangular mesh made of 896 triangles and we set the time step ∆ t = 5 ·10−4.

Table 3 shows the efficiency of the new scheme. It really runs faster than the fully
implicit scheme. Moreover, the fully implicit scheme did not give results for values
of λ 2 less that 10−3, while the new scheme still works. We show on Figure 2, the
density profiles obtained with the new scheme for λ 2 = 10−10.

Table 3 Comparison of the fully implicit scheme with the new scheme for the Test Case 3.

λ 2 CPU time CPU time ratio relative error relative error relative error
fully implicit new scheme on N on P on Ψ

1 203.28 14.68 13.85 1.13e-01 2.78e-01 2.54e-03
1e-1 219.85 14.52 15.14 8.54e-02 2.19e-01 3.01e-02
1e-2 310.72 14.52 21.40 3.21e-02 1.00e-01 4.50e-02
1e-3 718.09 14.68 48.92 4.84e-02 8.30e-02 7.49e-02

As a conclusion, we recall that we have proposed in this paper a new scheme
for the drift-diffusion system, whose efficiency is independent of the value of the
rescaled Debye length. This scheme can be used at the quasi-neutral limit. Numeri-
cal analysis of the scheme is in progress.
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Electron density N Hole density P

Fig. 2 Test case 3. Density profiles computed by the new scheme for λ 2 = 10−10 on a mesh made
of 896 triangles, with ∆ t = 5 ·10−4.
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