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Abstract

This paper reports on recent developments in diffusive limits of kinetic systems. Usu-
ally, collision operators in kinetic theory exhibit multiple relaxation scales and before a
full relaxation towards a Maxwellian equilibrium has been achieved, the system passes
through a series of states that can be described by partial equilibria. The paper de-
scribes various models describing the dynamics of these partial equilibria, namely the
SHE (Spherical Harmonics Expansion) and the ET (Energy Transport) models. Various
examples of applications of these models to plasma problems are presented. models.
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1 Introduction

Let us consider a particle system (e.g a gas, a plasma, or a semi-conductor, etc). A fundamental
question is how the elementary particles properties translate into the large-scale behaviour of
the system. This question is an old problem (which goes back, to Maxwell, Boltzmann, Einstein,
...). However, recent developments have revived this question as it is central to the problem of
model reduction in many scientific or industrial areas. Indeed, the use of microscopic models
of kinetic type is too expensive. However, resorting to standard macroscopic models such as
the drift-diffusion model leads to unacceptable inacurracy, as the account for the microscopic
physics in such model is too coarse.

The aim of this paper is to present a strategy in order to derive a hierarchy of intermediate
models which provide a better description of the physics at still an affordable numerical cost.

The outline of the paper is as follows. In section 2, we shall review the standard derivation
of macroscopic diffusion models from microscopic kinetic models. Then, section 3 will present
a first ’improved’ model: the Spherical Harmonics Expansion (SHE) model. Section 4 will
deal with a second such ’improved’ model: the Energy-Transport model (ET) model, which is
derived from the SHE model by a suitable averaging. Then, we shall conclude in section 5.

2 From micro to macro: standard theory and Drift-

Diffusion limits

The microscopic description of particle systems uses the concept of distribution function (or
phase-space density) f(x, v, t), which describes the number of particles at position x, with veloc-
ity v, at time t. Each individual particle moves according to a succession of free flights in a given
(or self-consistent) force field F (x, t) and of collisions (among themselves and with surrounding
obstacles). During their free flight, each individual particle follows Newton’s equations

dx

dt
= v , m

dv

dt
= F (x, t) ,

where m is the particle mass.
The time evolution of the distribution function f is such that the total time derivative of f

while following free-flight trajectories is given by a collision operator Q(f):

d

dt
f(x(t), v(t), t) = Q(f)|(x(t),v(t),t) .

The collision operator Q(f) is local in (t, x) (as collisions are supposed instantaneous and
the distance travelled by the particle during a collision is supposed small compared with the
distance travelled during free-flights). Therefore, Q(f) operates on the velocity variable v only.
Applying the chain rule immediately leads to the Boltzmann equation:

∂f

∂t
+ v · ∇xf +

1

m
F · ∇vf = Q(f) . (2.1)
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A prototype model for the collision operator, which is a suitable for plasmas or semicon-
ductors is

Q(f)|v =

∫

v′

φ(v, v′)[M(v)f(v′) −M(v′)f(v)]dv′ , (2.2)

where φ(v, v′) is related to the collision scattering cross section. φ contains most of the infor-
mation about the nature of the interaction which causes the collision event. The function

M(v) =

(

m

2πkBT

)3/2

e
−

mv
2

2kBT ,

is the Maxwellian. It is the equilibrium distribution function towards which the system is going
to relax under the influence of the collisions.

The description of a particle system through (2.1), (2.2) is fairly expensive from a numerical
view-point because of the high dimensionality of the model (3 space coordinates, 3 velocity coor-
dinates, plus time). In most industrial applications, it is necessary to reduce the dimensionality
of the model and to use fluid equations.

The first idea for deriving fluid equations is to use moments. Example of such moments are
the density n, the flux j and the energy W , given by:





n
j
W



 =

∫

f





1
v

m|v|2/2



 dv .

Evolution equations for (n, j,W ) can be obtained by integrating the Boltzmann equation with
respect to v. However, in such a procedure, one faces a closure problem as the evolution system
for n, j,W involves unknown moments, i.e. quantities obtained by integrating f against other
functions of v than just 1, v or |v|2. Therefore, since f is a priori not known, an arbitrary
prescription is necesary to express these moments in terms of n, j and W . Several approahes
have been proposed, e.g. [33], [41] and more recently, [37]. However, the so-obtained moment
system may be ill-posed. Also, the presription may sometimes seem arbitrary as it is difficult
to relate it to some properties of the system and to the associated physical scales.

To overcome the closure problem, a second idea is to consider the physical scales. Indeed,
the Boltzmann equation is suitable for the microscopic scale, where the time scale is fixed by
the mean time between collisions while the space scale is connected with the distance travelled
by particles between two collisions (the so-called mean free path). The macroscopic description
however deals with larger scales.

In our context, it is appropriate to introduce a diffusion rescaling. Let us introduce the
small parameter η being the ratio of the mean free path to the typical macroscopic distance.
The assumption that we are interested in the large scale behaviour of the system translates
into η ≪ 1. We now introduce the following change of variables:

x′ = ηx , t′ = η2t , F = ηF ′ . (2.3)

The η2 in the time rescaling is characteristic of diffusion rescaling, where diffusion occurs on
time scales much larger than transport (or hydrodynamic) phenomena.

3



With this change of variables, the Boltzmann equation is now written:

η2∂f
η

∂t
+ η

(

v · ∇xf
η +

1

m
F · ∇vf

η

)

= Q(fη) (2.4)

The limit η → 0 in (2.4) describes the large scale behaviour of the system. The following
presentation will stay at a formal level. We refer the interested reader to [42], [32] for rigorous
proofs.

The determination of the η → 0 limit depends crucially on the Properties of Q, as it appears
in the leading order term in (2.4). We list below the most important of these properties:

(i) Conservation of particle number:
∫

Q(f)dv = 0

(ii) Null set N(Q) (equilibria) :

Q(f) = 0 ⇐⇒ ∃n ∈ R such that f = nM(v)

(iii) −Q is a self-adjoint non-negative operator:

(iv) −Q is Positive-definite and invertible on N(Q)⊥

Property (iii) is related to entropy decay and states that the manifold of equilibria (i.e. the
Maxwellians) is stable

The formal derivation of the limit η → 0 follows easily from these properties and leads to
the so-called Drift-Diffusion (DD) model. More precisely, as η → 0, fη −→ n(x, t)M(v) where
n(x, t) satisfies the system:

∂n

∂t
+ ∇x · j = 0 , (2.5)

j = −A(∇xn− nF ) . (2.6)

The first eq. is called the Continuity equation while the second one is the Current equation.
The Diffusion tensor A is related to Q and φ according to

A = −
∫

vQ−1(vM) dv ,

where Q−1 denotes the pseudo-inverse (acting from N(Q)⊥ into itself), Q−1(vM) denotes the
vector of components Q−1(viM) and vQ−1(vM) is a tensor product. As a consequence of (iv),
A is a symmetric, positive-definite tensor.

The proof of this result follows the following steps: First, we note that if fη → f smoothly,
then , by (2.4), Q(f) = 0, i.e. by property (ii), f = n(x, t)M(v) where the function n(x, t)
is still to be determined. Then, the continuity eq. (2.5) follows from integrating eq. (2.4),
with respect to v, using the Conservation of particle number (property (i)) and letting η → 0.
Finally, to derive the current eq (2.6), it is necessary to use a perturbation approach and to
write

fη = nM + ηf 1 + o(η) , (2.7)
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from which, j =
∫

f 1v dv is obtained. f 1 may be viewed as the microscopic response of the
system to gradients of macroscopic variables. To obtain f 1, one inserts the Hilbert expansion
(2.7) into (2.4) and restricts to the leading order term. This leads to an equation for Q(f 1)
which is solved, thanks to property (iv). Details can be found in the above-cited references.

The Drift-Diffusion model is widely used by the engineers and has motivated considerable
studies in both the semiconductor, plasma or gas discharge physics contexts (see e.g. [38], [44],
[27]. However, it has proved unsuitable to describe strongly non equilibrium phenomena. One
major reason for this is that it supposes instantenous relaxation of the particle temperature
to the background temperature T . This assumption fails for fast phenomena in which energy
relaxation may be slower than the time evolution of the system.

The question which we are going to investigate in the next sections is the derivation through
the same kind of methodology, of other more elaborate macroscopic models with a broader range
of physical applicability.

3 The Spherical Harmonics Expansion (SHE) model

Our approach relies on the observation that most collision operators exhibit a wide range of
Relaxation scales. Indeed, collisions may relax some moments faster than other ones: typi-
cally, momentum relaxation is usually faster than energy relaxation: This is particularly the
case in plasmas, becaue of the very small electron mass compared with the ions mass, or in
semiconductors, wheree the phonon energy is much smaller than the electron energy.

Therefore, our aim is to derive a model for the intermediate scale, i.e. after momentum
relaxation has occurred but Before energy relaxation has taken place. In such a case, we
can expect that the distribution function f is isotropic with respect to v as a consequence of
momentum relaxation, but is not yet Maxwellian.

Our method is to split the collision operator Q into an elastic operator E (the one which is
going to produce momentum relaxation) and an inelastic operator I (which is responsible for
energy relaxation), and then, to consider situations such that E ≫ I. Then we shall proceed
like in the first section, with the elastic operator E replacing Q.

The splitting is performed through a passage to spherical coordinates in velocity space v =
(ε, ω), where ε = m|v|2/2 is the energy and ω = v/|v| is the velocity angle). We then decompose
the ’real’ collision v′ = (ε′, ω′) → v = (ε, ω) into 2 fictitious processes (ε′, ω′) → (ε, ω′) and
(ε, ω′) → (ε, ω), introducing a fictitious state (ε, ω′). The first process changes the energy and
gives rise to the inelastic operator while the second one only changes the velocity angle and
gives rise to the elastic operator. We shall not detail the expressions of these operators and
refer to [11] for details. We note Q(f) = E(f)+I(f) the resulting decomposition of the collision
operator into elastic and inelastic operators.

We now suppose that elastic scattering dominates over inelastic scattering: E ≫ I. We are
therefore entitled to rescale the operators according to

E = O(1) , I = O(η2) ,

and we use again a diffusive scaling (2.3) for the variables x, t and F . Linking the scaling of
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the inelastic operator to the parameter η can be viewed as somewhat arbitrary. However, other
scaling hypotheses lead to similar models [21].

The resulting rescaled Boltzmann equation is now written:

η2∂f
η

∂t
+ η

(

v · ∇xf
η +

1

m
F · ∇vf

η

)

= E(fη) + η2I(fη) (3.1)

Again, the investigation of the limit η → 0 requires the determination of the properties of
the leading term, namely the collision operator E . First, we note that E is given by

E(f)|(ε,ω) =

∫

ω′

ψ(ε;ω, ω′)[f(ε, ω′) − f(ε, ω)]dω′

where ψ(ε;ω, ω′) is related to φ by integration with respect to ε′. In particular, it is seen that
E operates on the ω variable only . Now we have

(i) Conservation of particle number on each energy surface:
∫

E(f)|(ε,ω)dω = 0 , mbox∀ε.

(ii) The null set N(E) consists of constant functions with respect to ω (i.e. all functions of
the energy only: f(v) = G(ε))

(iii) −E is a self-adjoint non-negative operator and is positive-definite and invertible onN(E)⊥

Then, the limit η → 0 follows in the same way as in the previous section. We have:
fη −→ G(x, ε, t) solving the SHE model:

N(ε)
∂G

∂t
+ ∇̃J = Ĩ(G) , (3.2)

J = −D(ε)∇̃G , (3.3)

where ∇̃ denotes the operator ∇̃ = ∇x+F ∂
∂ε

. Eq. (3.2) is a continuity equation in the ’extended
space’ (x, ε) while eq. (3.3) is a current equation. The diffusion tensor D(ε) is related with E
through

D(ε) = −
√

2ε

∫

vE−1(v) dω ,

while N(ε) =
√

2ε, is related with the geometry of the energy surfaces. Finally, Ĩ is the
contribution of the inelastic collision operator I and is given by

Ĩ =
√

2ε

∫

I(G) dω .

The SHE model has received considerable attention lately. On can find for instance in [7],
[8] a derivation of the model via stochastic processes. It is currently used by semiconductor
engineers on a routine basis [30], [31]. The present derivation which does not make use of any
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expansion of the Boltzmann eq. in spherical harmonics can be extended to non spherically
symmetric situations, which are common in semiconductor physics. It has first been derived in
this way by [29] for simplified relaxation time collision operators. This derivation has later been
extended to arbitrary collision operators in [2] (see also [10] for a review in the semiconductor
physics context) and by [43] (where additionally, an approximation of the inelastic collision
operator in terms of a Fokker-Planck operator is proposed). The proof of convergence of
solutions from the Boltzmann to the SHE model is done in [11] in a slightly more general
setting.

The SHE model is particularly attractive where relaxation towards an isotropic state results
from collisions with the boundary. Indeed, the process in which particles are reflected by the
boundary with conservation of energy and randomization of the velocity angle bears similarities
with elastic collisions as described above. If particles undergo some confinement along the
boundary which makes encounters with the boundary extremally frequent, then, the lateral
dynamics (in the directions parallel to the boundary) can be described by a SHE type model.
In this case, the passage from Boltzmann to SHE not only saves 2 velocity dimensions (the
coordinates of the velocity angle), but also one space dimension (the coordinate in the direction
normal to the boundary) and is particularly efficient.

Two situations have been investigated in which such an occurrence happens: first the motion
between two parallel plates seperated by a very small gap. Second, the case of a confinement
force which reflects the particles back to the boundary. Both cases correspond to situations
of practical interest. The first case is a model for electron transport in Stationary Plasma
Thrusters, a device used in satellite propulsion. The precise physical model is described in [18]
and [36] as well as in [35]. As a matter of example of the efficiency of the SHE model, we show
in figure 1 a comparison between the SHE model and the solution of the original Boltzmann
equation by means of a standard Monte-Carlo simulation. The SHE model is about a hundred
times faster.

The case where the confinement is due to a confining force has been investigated in [12].
The resulting SHE model has been used to derive an Energy-Transport model (see next section)
for certain kinds of surface discharges that occur for instance on satellite solar pannels [25].
Indeed, in physically complex situations, the SHE model, with its additional energy variable, is
still too costly compared with a standard fluid model. This is why it is attractive to investigate
if the SHE model can be reduced to such a standard model. This is the aim of the next section.

4 The Energy-Transport (ET) model

We are going to consider a relaxation limit of the SHE model in which the inelastic operator Ĩ
tends to relax G(x, ε, t) to a thermodynamical equilibrium. Such a relaxation mechanism may
be due to e.g. binary collision, turbulence, etc ... For that purpose, we assume that Ĩ satisfies
the following hypotheses:

(i) The Null Set N(Ĩ) consists of Maxwellian equilibria, with arbitrary temperature T :

Gµ,T (ε) = e−((ε−µ)/kBT ) , (4.1)
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Figure 1: Electron distribution function as a function of the energy at various locations of a
plasma thruster. Solid line: Monte-Carlo simulation; dashed line: SHE model. From left to
right and top to bottom: respectively at 0.1 cm, 2 cm and 3.4 cm from the anode. The total
length of the device is 4 cm (see [18] and [36])
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where µ is the chemical potential (related with the density).

(ii) Ĩ decreases the entropy ( i.e. it relaxes G to the equilibrium Gµ,T )

(iii) Ĩ preserves the local density and energy, i.e.
∫

Ĩ(G)dε = 0 ,

∫

Ĩ(G)εdε = 0

Now, we rescale the SHE model as follows: let α denote the ration of the inelastic mean
free path to the macroscopic scale (α≪ 1). We change to the macroscopic variables:

x′ = αx , t′ = α2t , F = αF ′ , J = αJ ′ ,

and obtain the rescaled SHE model, which reads (after dropping the primes):

α2

(

N(ε)
∂Gα

∂t
+ ∇̃Jα

)

= Ĩ(Gα) , (4.2)

Jα = −D(ε)∇̃Gα , ∇̃ = ∇x + F
∂

∂ε
. (4.3)

Now, the formal limit α→ 0 of (4.2), (4.3) lead to the Energy-Transport model:

Gα → equilibrium MaxwellianGµ,T ,

where the Chemical potential µ and the temperature T satisfy the Energy-Transport system:

∂

∂t

(

n(µ, T )
W (µ, T )

)

+ ∇ ·
(

jn
jW

)

+

(

0
−F · jn

)

= 0 , (4.4)

(

jn
jW

)

= −D

(

∇ (µ/T ) − F/T
∇ (−1/T )

)

. (4.5)

(4.6)

In (4.4) The density n and the Energy W are local functions of µ and T , given by the inte-
gration of the Maxwellian (4.1) with respect to the energy ε, premultiplied by N(ε) and εN(ε)
respectively, while jn and jW are the particle and energy fluxes respectively.

The Energy Transport (ET) model is a nonlinear diffusion system. The diffusion matrix D

is symmetric, positive-definite (and tranlates a well-known thermodynamic property, known as
Onsager’s reciprocity relation). It is derived from the SHE-diffusivity D by integration w.r.t.
ε [3], [2].

The ET model expresses the time evolution of conservative variables (the density n and
the energy W ) in terms of flux jn and jW which in turn are expressed in terms of gradients of
the state (or entropic) variables µ and T . There exists a one-to-one correspondance between
(n,W ) and (µ, T ) through the entropy (more precisely, between (n,W ) and (µ/T,−1/T )) (see
e.g. [10] and [14]). This relation can be exploited to obtain existence results (see e.g. [15],
[16]). The ET system can also be seen as a relaxation limit of the Navier-Stokes system [3].
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The ET model is increasingly used for semiconductor or plasma discharge modeling. The
present derivation stems from [3], [2]. A rigorous convergence result of the Boltzmann solution
to the ET model has been proved in [5]. A formal derivation in the plasma physics context has
been carried through in [22] and leads to the coupling of Euler equations for the ions with the
ET model for electrons.

As an example of the use of the ET model, we present an application to certain kinds of
surface discharges which occur on satellite solar panels. This model is derived from the SHE
model obtained through collisions with the boundary and confinement along the boundary by
a confining force, as presented in [12]. In this case, the occurence of the discharge and the
confinement along the boundary originates from the charging of the satellite by the spatial
environement like e.g. the solar wind, the impact by UV photons, etc. The model is adapted
from a scenario originally proposed by M. Cho in [9]. The impact of the electrons on the
boundary also generate secondary emission, thus increasing the number of elecrons involved
in the process and eventually leading to an avalanche phenomenon. Additionally, secondary
emission leaves positive charges along the boundary which increase the confinement force, the
collision frequency with the boundary, leading to a positive feedback which enhances the elec-
tron avalanche. Let us stress that, through the derivation of the diffusion constants, the ET
model retains information about the hopping dynamics of the electrons along the boundary.
The model and the results are described in more detail in [25]. Here, we only show in figure
2 the electron density as a function of the distance along the boundary for various times. The
picture clearly the avalanche breakdown phenomenon.

Another example of use of the ET model in plasma modeling is for 2-fluid plasmas. Ac-
cording to the model derived in [22] (see also [28]), a convenient model for plasmas is obtained
by coupling the ET model for electrons with the Euler equations for the ions. Compared with
a more standard 2-fluid Euler model for both electrons and ions, the present model is obtained
by letting the ratio of the electron to ion mass tend to zero. This amounts to assuming that
the electron collisions against the ions are almost elastic, which they are up to terms of the
order of this mass ratio. The advantage in doing such an approximation is that no time-scale
limitation in the computation is linked with the plasma frequency, which is fortunate since the
plasma frequency is a very short scale phenonmenon. We refer to [28] for details about this
point.

Such a model is very useful for the modeling of devices such as the Plasma Opening Switch.
In these devices, the plasma exhibits a strong departure from quasi-neutrality which makes the
use of a 2-fluid model necessary. The particle dynamics is coupled with Maxwell equations in
order to describe the interaction of the plasma with an electromagnetic wave. Simulations of
such devices can be found in [39], [34] as well as references therein. However, in many instances,
the ion to electron mass ration has been artificially modified, in order to cope with the very
different time scales associated with the two species of particles. By using an ET model for the
electrons, we directly place ourselves in the time scale of the ion dynamics and avoid unphysical
results that could result from a artificial change of the mass ratio.

Results of simulations of the POS by means of Particle-in-Cell type for the coupled electron-
ET and ions-Euler system and with difference discretization of the Maxwell equations are
presented in figures 3 and 4. They clearly show the appearence of a non quasineutral region
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Figure 2: Electron density along the dielectric surface of a solar cell during a discharge event.
Snapshots at times ranging from 1 ns up to 55 ns are shown and displayed in 4 seperate pictures
for clarity. Note that the density scale changes by 3 orders of magnitude between the begining
and the end of the simulation, clearly showing that an avanlanche is occuring. Details are found
in [25].
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close to the cathode (sheath region). The test problem and the numerical results are presented
in detail in [28].
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Figure 3: Electron (left) and Ion (right) densities in the post during the erosion of the plasma
by the electromagnetic wave. Differences in density clearly show that quasineutrality breaks
down close to the cathode (lower boundary). See also [28].

5 Conclusion

In this paper, we have summarized the derivation of intermediate models between kinetic
and fluid models from diffusion limits of kinetic models. The key ide is to use ’incomplete’
relaxation by the physical dissipation mechanisms (such as e.g. collisions). More precisely, a
first intermediate model, the SHE model, has been derived under the assumption of dominant
elastic scaling. Then, the SHE model can be futher reduced to a second intermediate model, the
Energy-Transport model, which appears as a diffusion system for the fluid density and internal
energy. These model have been practically implemented in physically realistic situation and
they have proven to be good compromises between physical accuracy and solution efficiency

Further developments have been or are currently being undertaken concerning boundary
conditions and kinetic boundary layers [24], coupling with quantum models [13], scattering by
interfaces [23], homogenization [4], [26], [1] (see also [40] and references therein).

Future research directions concern finding ’new’ applications of these models, their careful
numerical validation [6], the design of new ’artificial’ collision operators in order to enrich the
set of available macroscopic models.

Note that these systems have their counterpart in the context of Hydrodynamic limits
[19] and can be applied to the kinetic modeling of turbulence [20]. Also, these model can
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Figure 4: Electron velocity (left) and magnetic field intensity (right) during the erosion phase
of the POS.

themselves be ’Improved’ e.g. by considering SHE models with energy levels coupling in the
diffusion operator [11] or by considering collisions with no principle of detailed balance [17] or
[40].
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[16] P. Degond, S. Génieys, A. Jüngel, A steady-state system in non-equilibrium thermodynam-

ics including thermal and electrical effects, Math. Methods in the Applied Sciences 21
(1998), pp. 1399-1413.

[17] P. Degond, T. Goudon et F. Poupaud, Diffusion limit for non homogeneous and non

micro-reversible processes, Indiana University Math. J. 49 (2000), pp. 1175–1198.

[18] P. Degond, V. Latocha, L. Guarrigues, J. P. Boeuf, Electron Transport in Stationary

Plasma Thrusters, Transp. Theory and Stat. Phys 27 (1998), pp. 203-221.

[19] P. Degond et M. Lemou, On the viscosity and thermal conduction of fluids with multivalued

internal energy, European J. Mech. B/fluids 20 (2001), pp. 303–327.

[20] P. Degond, M. Lemou, Turbulence models for incompressible fluids derived from kinetic

theory, J. Math. Fluid Mech. (2002).

[21] P. Degond, D. Levermore, C. Schmeiser, A note on the energy-transport limit of the semi-

conductor Boltzmann equation, to appear in the Proceedings of the Institute of Mathemat-
ics and Applications, Minneapolis.

[22] P. Degond, B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass bi-

nary gases, Transp. Theory and Stat. Phys. 25 (1996), pp. 595-633.

[23] P. Degond, C. Schmeiser, Macroscopic models for semiconductor heterostructures, J. Math.
Phys 39 (1998), pp. 1-30.

[24] P. Degond, C. Schmeiser, Kinetic boundary layers and fluid-kinetic coupling in semicon-

ductors, Transp. Theory and Stat. Phys. 28 (1999), pp. 31-55.

[25] P. Degond, R. Talaalout, M. H. Vignal, Electron transport and secondary emission in a

surface of a solar cell, Proceedings of the conference on ’multipactor, RF and DC corona
and passive intermodulation in space RF hardware’, ESTEC, Noordwijk, The Netherlands,
Sept 4-6, 2000.

[26] P. Degond et K. Zhang, Diffusion approximation of a scattering matrix model of a semi-

conductor superlattice, to appear in SIAM J. Appl. Math.

[27] J. L. Delcroix and A. Bers, Physique des plasmas, CNRS éditions, Paris, 1994.
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