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Abstract

This paper deals with the modeling of a plasma in the quasi-neutral limit using the
two-fluid Euler-Poisson system. In this limit, explicit numerical schemes suffer from
severe numerical constraints related to the small Debye length and large plasma
frequency. Here, we propose an implicit scheme which reduces to a scheme for the
quasi-neutral Euler model in the quasi-neutral limit. Such a property is referred
to as “asymptotic preservation”. One of the distinctive features of this scheme is
that it has a comparable numerical cost to that of an explicit scheme: simply the
Poisson equation is replaced by a different (but formally equivalent) elliptic problem.
We present numerical simulations for two different one-dimensional test cases. They
confirm the expected stability of the scheme in the quasi-neutral limit. They also
show that this scheme has some accuracy problems in the limit of small electron
to ion mass ratio in reproducing the correct electron velocity. But this problem is
already present in the results of the classical algorithm. Numerical simulations are
also performed for a two-dimensional problem of a plasma expansion in vacuum
between two electrodes.
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1 Introduction

In this paper, which has been summarized in the short note [14], we are in-
terested in numerical algorithms to solve plasma fluid models. For the sake of
simplicity, we assume that the plasma consists of electrons and one ion species
and the model consists of the isentropic Euler equations for each species cou-
pled with the Poisson equation. The methodology can actually be extended
to other types of fluid models, such as full Euler equations for both species,
of Euler equations for the ions and drift-diffusion equations (supplemented by
an energy equation) for the electrons like in [9], [17].

There are two important physical length and time scales associated with this
model (see e.g. [5], [43]): the Debye length and the electron plasma period.
The Debye length measures the typical length scale of charge imbalances in the
plasma, and the electron plasma period is the period of the oscillations which
take place (due to the electrostatic restoring force) when such charge imbal-
ances occur. We are interested in situations where both parameters can be
very small compared with typical macroscopic length and time scales. In this
so-called quasi-neutral regime, the local electric charge vanishes everywhere.
However, simultaneously, the electron plasma period becomes very small as
well, so that when charge imbalances accidentally occur (as a numerical arti-
fact for instance), very high frequency plasma oscillations are triggered. When
a standard explicit scheme is used, these micro-scale phenomena must be re-
solved. Hence, the space and time steps must be smaller than the Debye length
and electron plasma period otherwise a numerical instability is generated. The
satisfaction of these constraints requires huge computational resources which
make the use of explicit methods almost impracticable.

The search for schemes free of such constraints has been the subject of a vast
literature. A number of works deal with particle models (instead of fluid mod-
els). Basically, two kinds of implicit methods have been proposed for Particle-
in-Cell (PIC) simulations: the direct implicit method [8], [45] and the implicit
moment method [50], [51]. Both method have then been coupled with the
Maxwell equations ([3], [35], [44] for the direct implicit method, [52], [53],
[73] for the implicit moment method and [31], [32] for the use of the Darwin
approximation of the Maxwell system). For collisional kinetic models, or hy-
brid (electron) fluid - (ion) kinetic models, we can refer to [57], [58]. There
has been an intense literature on this subject and it is virtually impossible to
cite it all. These methods have proved extremely efficient in number of situa-
tions but there are still regions where short time steps must be used (see e.g.

⋆ The authors thank D. Payan (CNES) and J-F. Roussel (ONERA) for their support
and encouragements. Support by the European network HYKE, funded by the EC
as contract HPRN-CT-2002-00282, is also acknowledged.
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the recent discussion in [30]). Sophisticated numerical algorithms have been
developed to overcome this problem, such as multiscale simulations [29], or
recently, Discrete Event Simulation techniques [40], but their implementation
requires specific developments. So the improvement of classical time-stepping
strategies, if possible, would offer attractive perspectives.

Our work is in this direction but (so far) deals with fluid models. For fluid
models the literature is comparatively less abundant. We can refer to the
pioneering work [27], and more recently to [7], [9], [62], [64]. When the fluid
models are drift-diffusion models, implicit strategies have been proposed in
[71], [72], [46].

To cancel the fast scales associated with electron plasma frequency, quasineu-
tral models have been very frequently considered [25]. Most frequently, hybrid
(electron) fluid - (ion) kinetic quasineutral models have been considered [36],
[48], [59] but other cases have also been investigated [39], [47]. Recently, two-
fluid quasineutral models have been studied [13], [15], [18], [19], [20], [21]. Such
models are formally obtained by letting the ratio of the Debye length to the
macroscopic length scale and accordingly that of the electron plasma period
to the macroscopic time scale to zero.

However, in situations where quasineutral and non quasineutral regions coex-
ist, a specific treatment is needed to connect the quasineutral model with a
non quasineutral model across the interface. Such situations arise in sheath
problems [28], [34], [65], [66], [67], [68], ion extraction problems [37], plasma
diode modeling [69], arc formation on satellite solar cells [2], [4], [6], [24], and
potentially many other situations where edge plasmas occur, like the divertor
region of a tokamak [42].

In such problems, one has often to deal with a dynamic interface the tracking
of which gives rise to a complex numerical problem. Various algorithms have
been proposed for interface dynamics, such as Front Tracking [70], Volume of
Fluid methods [78], Level Set methods (see e.g. [55], [63]) or Diffuse Interface
Methods (see e.g. [1], [61]). Specific algorithms have been developed in the
context of PIC simulations of plasmas [75]. All these methods require specific
developments. Additionally, the interface dynamics is not a priori known, and
must either be derived from an asymptotic analysis like in [19], [20], or [34],
or must be inferred from physical considerations. In both cases, great care is
required to ensure that the proper dynamics is implemented. Another problem
is related to the fact that the quasineutral to non-quasineutral transition may
not be a sharp transition, but rather a fairly diffuse one, and its approximation
into a sharp interface may actually lead to some unphysical behavior.

For these reasons, it is highly desirable to develop numerical methods which
automatically shift from a quasineutral to a non-quasineutral model across
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the transition region when such a transition is encountered. In this work, we
show that the two-fluid Euler-Poisson model can be discretized by means of
an implicit scheme such that, in the quasineutral limit, a discretization of the
quasineutral Euler model is recovered. Such a property is sometimes referred
to as “asymptotic preservation” (in that the scheme preserves the asymptotic
limit) and the scheme then enjoys the so-called AP property (Asymptotic Pre-
serving) 1 . Other approaches targeting the same property have been previously
published in the literature, such as [7] and [9].

Our strategy does not require any restrictive assumption on the solution of the
problem and is valid in any number of space dimensions. Additionally, in spite
of being implicit, the scheme has the same computational cost as the standard
explicit strategy, the resolution of the Poisson equation being replaced by that
of a different (but formally equivalent) elliptic equation, which is not more
difficult to solve. This is, up to our knowledge, the first time that this elliptic
equation is introduced. In this paper, we report on numerical simulations in
one and two space dimensions which experimentally prove that the scheme
performs well in the quasineutral limit. In a forthcoming work by the same
authors in collaboration with J-G. Liu, a linearized stability analysis of the
scheme is performed. It demonstrates that its stability region is independent
of the Debye length and of the electron plasma period.

To better introduce our strategy, we first consider the continuous model and
show that the Poisson equation can be reformulated into an elliptic equation
which does not degenerate when the Debye length and electron plasma period
tend to zero (like the Poisson equation does), but instead leads to the equation
for the quasineutral potential. This is done in section 2.

Then, in section 3, we propose an implicit time-stepping strategy which al-
lows to reproduce the derivation of the reformulated elliptic equation for the
potential in a discrete setting. Again, the reformulated equation does not de-
generate when the Debye length and electron plasma period tend to zero but
instead leads to the equation for the quasineutral potential. This indeed means
that the scheme enjoys the (AP) property. An important point is that we can
formulate this time-stepping strategy in such a way that the (AP) scheme has
a comparable cost to that of an explicit discretization.

The standard time-stepping strategy (following [27]; see also [64]) already
involves implicit electric force terms in the momentum balance equations.
Our implicit time-stepping strategy requires that, additionally to the electric
force terms, the mass flux terms in the mass conservation equations be taken
implicitly. By contrast, the momentum flux terms (both the drift and pressure
ones) can be discretized explicitly. By taking these terms explicitly, we may

1 This terminology has been introduced by S. Jin for relaxation limits of kinetic
systems [38].
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formulate the algorithm in such a way that the (AP) scheme has a comparable
cost to that of the standard time-stepping strategy. Time-implicit algorithms
for the compressible Euler equations have been considered in many references,
see e.g. [10], [76], [77].

With some of the hydrodynamic fluxes discretized explicitly, the stability do-
main of the scheme is still limited by the CFL number of the hydrodynamics.
This can be quite detrimental for electrons because of their very small mass.
However, the time-stepping strategy can be extended in order to waive the
limitation due to the very small electron mass. This improvement will be re-
ported in future work. The small electron mass problem is somewhat similar
to the low Mach number limit in compressible flows (see e.g. [41]).

Finally, space-discretization strategies are discussed. Since we are interested
in stiff problems where the plasma density drops to virtually zero, we have
considered a modified Lax-Friedrichs scheme, which is very robust. Obviously,
this is a very diffusive scheme and the control of numerical diffusion requires
further improvements. There is a huge variety of hydrodynamic solvers which
require a systematic testing for determining the best (AP) coupled strategy
with the Poisson equation. As a preliminary step, we have investigated two
other solvers, the Lax-Wendroff scheme and a Riemann solver based scheme,
the Polynomial scheme [15], [22]. They both perform well in smooth regions
(as can be seen in section 4) but develop instabilities at the plasma-vacuum
transition. Still, the results with the modified Lax-Friedrichs scheme already
seem promising, as section 4 will show.

Indeed, section 4 is devoted to the discussion of the numerical results. First,
comparisons between the classical and (AP) schemes are provided in a one-
dimensional geometry. The first test problem consists of a periodic pertur-
bation of a quasineutral uniform stationary plasma with non-zero current.
For this test-case, an exact solution of the linearized Euler system about the
considered steady state is analytically known. For small perturbations, the
solutions of the linearized and non-linear problems are believed to be close.
The classical and asymptotic preserving scheme are compared. We numeri-
cally observe that the (AP) scheme remains stable while the classical scheme
develops instabilities for time steps greater than the electron plasma period.

The second configuration is a one dimensional physical application linked to
high-current plasma diodes [18], [19], [20], [21], [69] and arcing on satellite solar
cells [4], [6], [15], [24]. This test case describes the expansion of a quasi-neutral
plasma in the vacuum separating two electrodes. The high density quasineutral
plasma is emitted at the cathode and undergoes a thermal expansion. At
the plasma-vacuum interface, electron emission occurs in the Child-Langmuir
regime (see e.g. [5], [16], [23]). This test case is particularly well adapted to the
(AP) scheme, since a transition between a quasineutral region (the plasma) to
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a non-quasineutral one (the gap where the electrons are accelerated) occurs.
We observe that the (AP) scheme remains stable in all the cases while the
classical scheme develops a non physical behavior for time steps greater than
the plasma electron period.

Finally a two-dimensional simulation is presented. The physical problem is
again that of the plasma expansion between two electrodes. The results show
that the scheme performs well in a multi-dimensional setting, and confirms its
stability for large time and space steps (compared to the Debye length and
the electron plasma period). Such a simulation would be virtually impossible
to achieve with an explicit scheme, and would require considerable computer
resources.

2 The two-fluid Euler-Poisson system and its quasi-neutral limit

In this section, we present the two-fluid Euler-Poisson system and its quasi-
neutral limit. We review the fundamental time and length scales (the electron
plasma period and the Debye length). We show that the Poisson equation
can be reformulated into an elliptic equation which does not degenerate in the
quasineutral limit and, in this limit, provides the equation for the quasineutral
potential.

2.1 The two-fluid isentropic Euler-Poisson system

We consider a plasma constituted of electrons and one positively charged ion
species. We denote by mi,e the ion and electron masses, by ni,e their densities
and by ui,e their mean velocities. For simplicity, the ions are supposed singly
charged and both the electron and ion pressure laws, pi,e, are assumed isen-
tropic, i.e. pi,e = ci,en

γi,e

i,e , where γi,e > 1 are the ratio of specific heats and
ci,e > 0 are given positive constants. We denote by φ the electric potential.

We suppose that the position variable x belongs to the physical domain Ω ⊂
IRd, d = 1, 2, or 3. We shall discard the description of the boundary conditions
(but some of them are treated in the numerical examples below). The 2-fluid
Euler-Poisson system in the domain Ω is written:

∂tni + ∇.(niui) = 0, (1)

mi [∂t(niui) + ∇ · (niui ⊗ ui)] + ∇pi(ni) = −eni∇φ, (2)

∂tne + ∇.(neue) = 0, (3)

me [∂t(neue) + ∇ · (neue ⊗ ue)] + ∇pe(ne) = ene∇φ, (4)
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where e is the positive elementary charge and where the electric field E = −∇φ
is given by the Poisson equation

−ε0 ∆φ = e (ni − ne) , (5)

with ε0 the vacuum permittivity.

Let us point out that our strategy can easily be extended to more complex
models. We can consider full Euler systems with energy equations, multiple ion
species (including negatively charged ions). Similarly, we could consider that
some or all species are rather modeled by drift-diffusion equations (possibly
supplemented by energy equations). Finally, the Maxwell equations can be
substituted to the Poisson equation as well. All these points will be developed
in future work. The consideration of kinetic models instead of fluid ones is
under investigation.

The two important physical scales which characterize this model (see [5], [43])
are the Debye length λD and the electron plasma frequency ωp given by

λD =

(

ε0kBT0

e2n0

)1/2

, ωp =

(

n0e
2

ε0me

)1/2

,

where kB is the Boltzmann constant, n0 is the density scale (n0 ∼ ni ∼ ne),
T0 is the temperature scale (kBT0 ∼ pi(n0)/n0 ∼ pe(n0)/n0) and me is the
electron mass. The Debye length measures the typical length scale of charge
imbalances in the plasma, and the electron plasma period is the period of the
oscillations which take place (due to the electrostatic restoring force) when
such charge imbalances occur. We note that an ion plasma frequency can be
defined (changing me into mi) but, due to the large ion to electron mass ratio,
this parameter is much smaller than ωp. The electron plasma period is defined
by τp = 1/ωp.

We are interested in the very frequent situation where both the Debye length
and the electron plasma period are very small compared with typical macro-
scopic length and time scales. In this so-called quasi-neutral regime, the lo-
cal electric charge vanishes everywhere. However, simultaneously, the electron
plasma period becomes very small as well, so that when charge imbalances
accidentally occur (as a numerical artifact for instance), very high frequency
plasma oscillations are triggered.

When a standard explicit scheme is used, these micro-scale phenomena must
be resolved. Hence, the space and time steps ∆x and ∆t, must satisfy

∆x ≤ λD and ωp∆t ≤ 1,

otherwise a numerical instability is generated. These constraints are particu-
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larly penalizing in quasi-neutral regimes and simulations require huge compu-
tational resources. For this reason, the quasineutral model is usually preferred.

To introduce the quasineutral model, it is convenient to first perform a scaling
of the Euler-Poisson problem. The scaled variables are given by x̄ = x/L and
t̄ = t u0/L where L is the typical length of the problem and u0 is the ion
velocity scale (typically u0 = (kBT0/mi)

1/2 = (pi(n0)/(n0mi))
1/2, where we

recall that n0 and T0 are the density and temperature scales). The scaled
unknowns are defined by n̄i = ni/n0, n̄e = ne/n0, ūi = ui/u0, ūe = ue/u0,
φ̄ = e φ/(mi u

2
0) and p̄i,e = pi,e/(min0u

2
0). Inserting this scaling into (1)-(5)

and omitting the bars gives rise to the following scaled two-fluid Euler-Poisson
model:

∂tni + ∇.(niui) = 0, (6)

∂t(niui) + ∇fi = −ni∇φ, (7)

∂tne + ∇.(neue) = 0, (8)

∂t(neue) + ∇fe = ne∇φ/ε, (9)

−λ2∆φ = ni − ne, (10)

where fi and fe are the scaled momentum fluxes:

fi = niui ⊗ ui + pi(ni) Id and fe = neue ⊗ ue +
1

ε
pe(ne) Id, (11)

with ε = me/mi being the particle mass ratio and the symbols ⊗ and Id
respectively denoting the tensor product of vectors and the Identity tensor.
The terms ∇fi, ∇fe denote the divergence of the tensors fe and fi.

The mathematical theory of the Euler-Poisson system has been investigated
in [12] and [56] for the isothermal case and in [49] for the isentropic case.

The parameter λ is the scaled Debye length given by λ = λD/L. Note that the
scaled plasma frequency is given by ω = ωp L/u0 = 1/(

√
ε λ). In what follows,

we shall keep ε an order O(1) quantity and investigate the limit λ → 0.
However, the strategy can be extended when both parameters λ and ε tend
to zero. This will be reported in future work. Note that the limit ε → 0 alone
is similar to the so-called low Mach number limit of hydrodynamics (see e.g.
[41]).

2.2 The quasi-neutral model

The formal quasi-neutral limit on the two-fluid Euler-Poisson system λ → 0
has been studied in a series of works [20], [15]. Here, we recall some results
included in these works.
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Formally passing to the limit λ → 0 in the two-fluid Euler-Poisson problem
merely amounts to replacing eq. (10) by the quasineutrality constraint ni = ne.
The Poisson equation is lost, while the electrostatic potential becomes the La-
grange multiplier of this constraint. Assuming that quasineutrality is satisfied
initially ni(t = 0) = ne(t = 0) (the possible occurrence of non-quasineutral ini-
tial layers being discarded in these considerations), the constraint ni = ne can
be expressed by taking the difference of the mass conservation equations (6),
(8) and leads to the divergence-free constraint for the scaled electric current
j = niui − neue:

∇ · j = ∇ · (niui − neue) = 0 . (12)

Now, taking the divergence of Eqs. (7) and (9), subtracting them and insert-
ing into (12), we obtain the following elliptic equation for the quasineutral
potential φ:

−∇ ·
((

ni +
ne

ε

)

∇φ
)

= ∇2 : (fi − fe) ,

where the symbols ∇2 and : respectively denote the tensor of second order
derivatives and the contracted product of two tensors.

In summary, the quasineutral model consists of the following system:

∂tni + ∇ · (niui) = 0, (13)

∂t(niui) + ∇fi = −ni∇φ, (14)

∂tne + ∇ · (neue) = 0, (15)

∂t(neue) + ∇fe = ne∇φ/ε, (16)

−∇ ·
((

ni +
ne

ε

)

∇φ
)

= ∇2 : (fi − fe) . (17)

Again, this model is formally equivalent with taking the quasineutrality limit
ni = ne of the Euler-Poisson problem, provided that quasineutrality is satisfied
initially.

Quasi-neutral limits have been rigorously studied in [11], [74] and [67] for
simplified systems.

We first note that the two-fluid Euler-Poisson system (6)-(10) and the quasi-
neutral Euler system (13)-(17) only differ by the elliptic equations for the po-
tential φ namely the Poisson equation (10) for the former, and the quasineutral
equation (17) for the latter. The second remark is that these two equations are
quite different, explaining why the two regimes have so different properties.
The third remark is that there is no direct way of guessing eq. (17) from the
quasineutral limit of (10). However, if we wish to attempt to find a unified nu-
merical strategy for both regimes, we need to find an equation which embeds
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both (10) and (17). In the next section we present a way of unifying these two
different equations.

2.3 A reformulation of the Poisson equation

Here we return to the Euler-Poisson system and provide a formally equivalent
formulation to the Poisson equation (10) which allows to recover the quasineu-
tral equation (17) in the quasineutral limit. We show that the Poisson equation
is formally equivalent to the following

ελ2 ∂2

tt(−∆φ) −∇ · ((εni + ne)∇φ) = ε∇2 : (fi − fe) , (18)

provided that
(i) fi and fe are the fluxes of the Euler system (11),
(ii) Initially, the Poisson equation is satisfied:

(−λ2∆φ − ρ)t=0 = 0 and

(

d

dt
(−λ2∆φ − ρ)

)

t=0

= 0 , (19)

where ρ = ni − ne is the scaled charge density. This equation will be referred
to as the “reformulated Poisson equation”.

Indeed, taking the difference of (7) and (9), we obtain the evolution equation
of the current density j = niui − neue:

∂tj + ∇(fi − fe) = −
(

ni +
ne

ε

)

∇φ . (20)

From the difference of (6) and (8), we also get the continuity equation:

∂tρ + ∇ · j = 0. (21)

Then, taking the divergence of (20), the time derivative of (21), and combining
these equations in order to eliminate the current, we obtain:

∂2

ttρ −∇2 : (fi − fe) = ∇ ·
((

ni +
ne

ε

)

∇φ
)

. (22)

We remark that (22) is a consequence of system (6)-(9), whatever the way the
potential φ is computed. Now, using the scaled Poisson equation (10), we can
eliminate ρ in (22) and get (18).

Conversely, assuming (18) and using (22), we deduce that

∂2

tt(−λ2∆φ) = ∂2

ttρ . (23)
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Then, the initial conditions (19) allow to integrate (23) twice and find the
Poisson equation.

In the quasi-neutral limit λ → 0, the reformulated equation (18) formally
converges toward the quasi-neutral potential equation (17). It does not de-
generate into an algebraic equation like the Poisson equation does. Then, the
reformulated two-fluid Euler-Poisson system (6)-(9), (18), seems to be the ap-
propriate framework to deal with problems which are partly or totally in the
quasi-neutral regime.

The reformulated Poisson equation (18) is nothing but an harmonic oscillator
equation for the electric charge with an appropriate forcing term. Indeed, for
constant ion and electron densities, this equation yields

∂2

ttρ + ω2

(

ni +
ne

ε

)

ρ = ∇2 : (fi − fe). (24)

The time discretization of this differential equation is a well known subject.
Indeed it is a common fact that an explicit discretization of this equation is
conditionally stable while an implicit one is unconditionally stable. This is
the idea behind the construction of the asymptotically stable scheme for the
two-fluid Euler-Poisson system. In physical variables, eq. (24) gives:

∂2

ttρ +
(

ω2

pi + ω2

pe

)

ρ = e∇2 :
(

1

mi

f̄i −
1

me

f̄e

)

, (25)

where ωpi and ωpe are respectively the local ion and electron plasma frequen-

cies: ω2
pi,e = e2ni,e

ε0mi,e
with ni,e the local values of the ion and electron densities

and where f̄i and f̄e are the momentum fluxes in physical variables, given by
f̄i,e = mi,e ni,e ui,e ⊗ ui,e + pi,e(ni,e) Id. In this form, it clearly appears that
this harmonic oscillator equation monitors the plasma oscillations. Therefore,
we have embedded the information about the plasma oscillations within the
elliptic equation for the potential.

In the next section, we show how we can use this reformulated Poisson equation
to derive Asymptotic Preserving time-stepping strategies for the Euler-Poisson
problem.

3 An asymptotic preserving scheme for the two-fluid Euler-Poisson
system

We first investigate time semi-discretizations of the two-fluid Euler-Poisson
system. Indeed, the breakdown of the standard time-stepping strategies in
the quasineutral regime is primarily a time stability problem. We defer the
discussion of the space discretization to a forthcoming section.
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3.1 Time discretization for the two-fluid Euler-Poisson system

3.1.1 The classical time discretization

We denote by ∆t the time step, and by gm an approximation of any function
x 7→ g(x, tm) with tm = m∆t. The classical time discretization of the two-
fluid Euler-Poisson system (6)-(10) consists of an implicit computation of the
electric potential and an explicit computation of the hydro-fluxes such that:

nm+1
i,e − nm

i,e

∆t
+ ∇ · qm

i,e = 0, (26)

qm+1
i − qm

i

∆t
+ ∇fm

i = −nm+1

i ∇φm+1, (27)

qm+1
e − qm

e

∆t
+ ∇fm

e =
nm+1

e

ε
∇φm+1, (28)

−λ2∆φm+1 = nm+1

i − nm+1

e , (29)

where qi,e = ni,eui,e are the scaled fluid momenta.

In spite of being implicit in the source term, this scheme can be advanced
like an explicit method. Indeed, assuming quantities known at time tm, the
densities are computed at time tm+1 using (26). Then (29) gives the potential
φm+1 and finally the momentum equations (27) and (28) are updated.

Like in the continuous case, we can derive a reformulation of the Poisson
equation as follows (provided the Poisson equation is satisfied at time steps
m = 0 and m = 1):

−ελ2
(∆φm+1 − 2∆φm + ∆φm−1)

∆t2
−∇ · ((ε nm

i + nm
e )∇φm)

= ε∇2 : (fm−1

i − fm−1

e ) , (30)

We remark that (30) is a time-explicit discretization of the reformulated Pois-
son equation (18). This scheme is known to be stable under the condition
ω∆t ≤ 1 (where we recall that ω = (λ2ε)−1 is the scaled plasma frequency)
(see e.g. [27]). We do not prove (30) since the proof is similar to that of the
corresponding formula for the (AP) scheme below.

3.1.2 An asymptotic preserving strategy

We now propose the following time-stepping strategy, which uses implicit mass
fluxes but explicit momentum fluxes and implicit source terms:
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nm+1
i,e − nm

i,e

∆t
+ ∇ · qm+1

i,e = 0, (31)

qm+1
i − qm

i

∆t
+ ∇fm

i = −nm
i ∇φm+1, (32)

qm+1
e − qm

e

∆t
+ ∇fm

e =
nm

e

ε
∇φm+1, (33)

−λ2∆φm+1 = nm+1

i − nm+1

e . (34)

Here, the reformulation of the Poisson equation (which again is formally equiv-
alent to the original Poisson equation provided the Poisson equation is satisfied
at time steps m = 0 and m = 1) is as follows:

−ελ2
(∆φm+1 − 2∆φm + ∆φm−1)

∆t2
−∇ ·

(

(ε nm
i + nm

e )∇φm+1
)

= ε∇2 : (fm
i − fm

e ) . (35)

Now (35) corresponds to a time-implicit discretization of the reformulated
Poisson equation (18).

We stress that the scheme (31)-(33), (35) has the same cost as an
explicit method. Indeed, (35) can also be written:

− ελ2

∆t2
∆φm+1 −∇ ·

(

(ε nm
i + nm

e )∇φm+1
)

= ε∇2 : (fm
i − fm

e ) +
ε

∆t2
(2ρm − ρm−1) , (36)

where ρm = nm
i − nm

e is the time discretization of the charge density. Eq. (36)
appears as an elliptic problem which allows to compute φm+1 provided that all
quantities up to time step m are known. Then (32) and (33) allow to compute
qm+1
i and qm+1

e in terms of known data and finally the densities are updated
with (31).

The uniform stability property of this scheme for the linearized system is
proved in a forthcoming article by the same authors in collaboration with
J-G. Liu. More precisely, it is proven that its stability region is independent
of the small parameter λ when λ → 0. In the present work (see section 4),
this uniform stability is observed in the fully nonlinear case for one and two-
dimensional test problems. Therefore, for an explicit method like numerical
cost, a uniformly stable scheme for the Euler-Poisson system in the quasineu-
tral limit is obtained 2 . When λ → 0, the scheme converges to a scheme for

2 In a forthcoming work, we will present a variant of this scheme which is uniformly
stable for both parameters λ and ε when they tend to zero
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the quasineutral limit, as it should, and as is apparent from (35).

At this point, a discussion of this method in view of the now classical di-
rect implicit method [8], [45] and implicit moment method [50], [51] for PIC
simulations is in order. We can rewrite eq. (36) as

−∇ ·
(

(1 + χm)∇φm+1
)

=
∆t2

λ2
∇2 : (fm

i − fm
e ) +

1

λ2
(2ρm+1 − ρm) , (37)

χm =
∆t2

ελ2
(ε nm

i + nm
e ) , (38)

where, by analogy with the direct implicit method, we have introduced an
“implicit susceptibility” χm. In the direct implicit method, the implicit sus-
ceptibility is computed from the particle discretization. Both (38) and the
direct implicit expression of the susceptibility become much larger than unity
when large time steps compared to the plasma period are used. However, the
right-hand side of (37) involves the momentum fluxes, which do not appear in
the direct implicit method and which makes it more similar, at this level, to
the implicit moment method. In the latter, the momentum flux is computed
from the particle distribution. However, the implicit moment method uses the
electric field as the unknown for the field equations, by contrast to the present
case where the equations are solved for the electric potential. Therefore the
present method constitutes an alternative and has so far been developed in the
fluid context. Its extension to kinetic models and particles methods is under
current scrutiny.

The method is not fully implicit in the treatment of the electric field source
term since the expression ni,e∇φ is approximated by nm

i,e∇φm+1 at the right-

hand sides of (32), (33). A fully implicit treatment like e.g. nm+1
i,e ∇φm+1 would

make the susceptibility (38) depend on the densities at step m + 1 and would
prevent the reduction of the scheme to an explicit one. However, a higher level
of implicitation can be performed without requiring a fully implicit treatment.
Further investigations are planned for future work but our first series of tests
seem to indicate that the partly implicit treatment of the source term is suf-
ficient.

The present time-stepping strategy is only first order in time. The method can
easily be extended to second order time stepping strategies. In section 4, we
shall present preliminary results with the Lax-Wendroff scheme. The results
show that the method performs well and is actually more accurate than the
first order time-stepping strategy in smooth regions. However, the method
develops instabilities at the plasma-vacuum transition, probably because of
too small a numerical diffusion and further work is necessary to stabilize them.
Other second order time-stepping strategies can also be investigated such as
central schemes [54].
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To be complete, we give a few words about how (35) is obtained. We proceed
like in the continuous case. Equations (31) and (32), (33) give respectively:

ρm+1 − ρm

∆t
+ ∇ · jm+1 = 0, (39)

and
jm+1 − jm

∆t
+ ∇(fm

i − fm
e ) = −∇ ·

((

nm
i +

nm
e

ε

)

∇φm+1

)

. (40)

Taking the discrete time derivative of (39), the divergence of (40) and com-
bining the results gives:

ρm+1 − 2 ρm + ρm−1

∆t2
−∇2 : (fm

i − fm
e ) = ∇ ·

((

nm
i +

nm
e

ε

)

∇φm+1

)

, (41)

Using Poisson’s equation to eliminate the charge density at the l.h.s. of (41),
we obtain (35). Reciprocally, starting from (35) and using that the Poisson
equation is satisfied at time steps m = 0 and m = 1, we obtain Poisson
equation (34).

3.2 Full discretization of the reformulated two-fluid Euler-Poisson system

In this section we propose full discretizations of the time semi-discretized
systems (26)-(29) and (31)-(34). The space discretization uses the modified
Lax-Friedrichs scheme [26], [33]. Starting from this discretization, equivalent
schemes corresponding to the reformulated two-fluid Euler-Poisson discretiza-
tion are derived. The modified Lax-Friedrichs scheme is used in spite of its
well-known large numerical diffusion because it involves discrete mass fluxes
which are simple analytic functions of the momentum variables. This simplic-
ity allows to pass from the discretization of the original Euler-Poisson system
to that of the reformulated Euler-Poisson system. Generalizations to Godunov
type solvers is actually in progress and we shall also present some preliminary
results using Godunov based schemes in Section 4. However, additional work
must be undertaken in order to explore the huge variety of available numerical
schemes and to select the most suited ones to this new coupling methodology
with the Poisson equation.

In this section we begin with the presentation of the classical discretization for
the two-fluid Euler-Poisson system. Then we present the asymptotic preserving
scheme. The schemes are presented in one space dimension for simplicity.
The generalization to a multi dimensional schemes is straightforward and is
omitted.

We consider the domain Ω = (0, 1) and we discretize it with a uniform mesh
of step ∆x given by ∆x = 1/N where N is the number of cells. We set
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xk+1/2 = k ∆x for all k = 0, · · · , N . Let ∆t be the time step, for all m ≥ 0 we

set tm = m ∆t and we denote by (Ui,e)
m
k =

(

(ni,e)
m
k , (qi,e)

m
k

)

and by φm
k the

approximations of
(

(ni,e)(x, t) , (qi,e)(x, t)
)

and φ(x, t) for x ∈ (xk−1/2, xk+1/2)

and t ∈ (tm, tm+1), with k = 1, · · · , N and m ≥ 0. First, we recall the classical
discretization.

3.2.1 Classical scheme for the two-fluid Euler-Poisson system

The full discretized equations associated to (26)-(29) using a modified Lax-
Friedrichs solver is given by

(ni)
m+1

k − (ni)
m
k

∆t
+

1

∆x

[

Qm
i

(

(Ui)
m
k , (Ui)

m
k+1

)

−Qm
i

(

(Ui)
m
k−1, (Ui)

m
k

)]

= 0, (42)

(qi)
m+1

k − (qi)
m
k

∆t
+

Fm
i

(

(Ui)
m
k , (Ui)

m
k+1

)

−Fm
i

(

(Ui)
m
k−1, (Ui)

m
k

)

∆x
(43)

= −(ni)
m+1

k

φm+1

k+1 − φm+1

k−1

2 ∆x
,

for ions and

(ne)
m+1

k − (ne)
m
k

∆t
+

1

∆x

[

Qm
e

(

(Ue)
m
k , (Ue)

m
k+1

)

−Qm
e

(

(Ue)
m
k−1, (Ue)

m
k

)]

= 0,

(44)

(qe)
m+1

k − (qe)
m
k

∆t
+

Fm
e

(

(Ue)
m
k , (Ue)

m
k+1

)

−Fm
e

(

(Ue)
m
k−1, (Ue)

m
k

)

∆x
(45)

=
(ne)

m+1

k

ε

φm+1

k+1 − φm+1

k−1

2 ∆x
,

for electrons, where the numerical fluxes are the following for l = i or e:

Qm
l (Ug, Ud) =

qg + qd

2
+ Λm

l (ng − nd) , (46)

Fm
l (Ug, Ud) =

fl(ng, ug) + fl(nd, ud)

2
+ Λm

l (qg − qd).

The fluxes fl(n, u) are given by (11). The upwind constants Λm
i and Λm

e , are
chosen in order to ensure the consistency of the scheme (see [26]), we set:

Λm
l =

1

2
max

{

|(ul)
m
k ±

√

p′l((nl)m
k )/εl| ; k = 1, · · · , N

}

,

for l = i or e with εi = 1 and εe = ε.
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The discrete potential φm+1

k is given by the classical discretized Poisson equa-
tion:

−λ2 ∆ap(φ
m+1

k ) := −λ2
φm+1

k+1 − 2 φm+1

k + φm+1

k−1

∆x2
= (ni)

m+1

k − (ne)
m+1

k . (47)

To ensure stability of the Lax-Friedrichs scheme in the absence of coupling
with the Poisson equation, the time step must satisfy the C.F.L. (Courant -
Friedrichs - Levy) condition:

∆t ≤ ∆x

max(Λm
i , Λm

e )
. (48)

When coupled with Poisson equation, the time step must additionally satisfy
the constraint ω∆t ≤ 1, as shown in [27] (where we recall that ω = (λ

√
ε)

−1

is the electron plasma frequency).

The modified Lax-Friedrichs solver differs from the classical Lax-Friedrichs
solver by the choice of the upwind constants. In the classical method, Λm

i =
Λm

e = ∆x/(2 ∆t). Here, with two fluids, it is not possible to stabilize the
classical method. Indeed, it is well known that in order to ensure the stability of
the classical Lax-Friedrichs one must impose a C.F.L. condition and an inverse
C.F.L. condition [26]. Here, for the stability of both the ion and electron Euler
systems, we must set

Ci,−
∆x

Λi

≤ ∆t ≤ Ci,+
∆x

Λi

, and Ce,−
∆x

Λe

≤ ∆t ≤ Ce,+
∆x

Λe

.

where Ci,−, Ce,−, Ci,+ and Ce,+ are given positive constants. But, due to the
small electron mass Λe = O(1/

√
ε) ≫ Λi = O(1). Hence

Ce,+
∆x

Λe

< Ci,−
∆x

Λi

,

and so it is not possible to find a time step satisfying both stability conditions.

Throughout the rest of the paper, the scheme (42)-(47) will be referred to
as the classical scheme for the two-fluid Euler-Poisson system (C-EP). The
scheme is semi-implicit since the electric force terms are implicit, but the res-
olution cost is the same as a fully explicit one, see Section 3.1.1. We note
that taking explicit electric force terms would lead to an unstable discretiza-
tion [27].

17



3.2.2 The asymptotic preserving scheme

The full discretization associated to (31)-(34) is given by

(ni)
m+1

k − (ni)
m
k

∆t
+

1

∆x

[

Qm
i

(

(Ui)
m+1/2

k , (Ui)
m+1/2

k+1

)

(49)

−Qm
i

(

(Ui)
m+1/2

k−1 , (Ui)
m+1/2

k

)]

= 0,

(qi)
m+1

k − (qi)
m
k

∆t
+

Fm
i

(

(Ui)
m
k , (Ui)

m
k+1

)

−Fm
i

(

(Ui)
m
k−1, (Ui)

m
k

)

∆x
(50)

= −(ni)
m
k

φm+1

k+1 − φm+1

k−1

2 ∆x
,

(ne)
m+1

k − (ne)
m
k

∆t
+

1

∆x

[

Qm
e

(

(Ue)
m+1/2

k , (Ue)
m+1/2

k+1

)

(51)

−Qm
e

(

(Ue)
m+1/2

k−1 , (Ue)
m+1/2

k

)]

= 0,

(qe)
m+1

k − (qe)
m
k

∆t
+

Fm
e

(

(Ue)
m
k , (Ue)

m
k+1

)

−Fm
e

(

(Ue)
m
k−1, (Ue)

m
k

)

∆x
(52)

=
(ne)

m
k

ε

φm+1

k+1 − φm+1

k−1

2 ∆x
,

with U
m+1/2

i,e =
(

(ni,e)
m
k , (qi,e)

m+1

k

)

and where the numerical fluxes Qm
i,e and

Fm
i,e are given by (46). The discrete potential φm+1

k is still given by the classical
discretized Poisson equation (47).

Like in the continuous case, for all m ≥ 2, the discretized Poisson equation (47)
is equivalent to

−λ2ε
∆ap(φ

m+1

k ) − 2∆ap(φ
m
k ) + ∆ap(φ

m−1

k )

∆t2
(53)

− 1

2∆x

(

(ε ni + ne)
m
k+1

φm+1

k+2 − φm+1

k

2 ∆x
− (ε ni + ne)

m
k−1

φm+1

k − φm+1

k−2

2 ∆x

)

= ε
Fm

k+3/2
− Fm

k+1/2
− Fm

k−1/2
+ Fm

k−3/2

2 ∆x2
− ε

Dm
k − Dm−1

k

∆t
,

provided that Fm
k+1/2

= Fm
i

(

(Ui)
m
k , (Ui)

m
k+1

)

−Fm
e

(

(Ue)
m
k , (Ue)

m
k+1

)

, where

Dm
k = −Λm

i

∆x

(

(ni)
m
k+1 −2 (ni)

m
k +(ni)

m
k−1

)

+
Λm

e

∆x

(

(ne)
m
k+1 −2 (ne)

m
k +(ne)

m
k−1

)

,

(54)
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and that the discrete Poisson equation (47) (with m + 1 replaced by m) is
satisfied at steps m = 0 and m = 1.

To prove this formula, we first remark that (49) can be rewritten

(ni)
m+1

k − (ni)
m
k

∆t
+

(qi)
m+1

k+1 − (qi)
m+1

k−1

2 ∆x
− Λm

i

∆x

(

(ni)
m
k+1 − 2 (ni)

m
k + (ni)

m
k−1

)

= 0.

The difference with the similar equation for electrons gives

ρm+1

k − ρm
k

∆t
+

jm+1

k+1 − jm+1

k−1

2 ∆x
+ Dm

k = 0, (55)

where we recall that ρ = ni − ne and j = ni ui − ne ue and where Dm
k is given

by (54). The discrete time derivative of (55) yields

ρm+1

k − 2 ρm
k + ρm−1

k

∆t2
+

1

∆t

(

jm+1

k+1 − jm+1

k−1

2 ∆x
− jm

k+1 − jm
k−1

2 ∆x

)

+
Dm

k − Dm−1

k

∆t
= 0.

(56)
From the momentum equations, we deduce

jm+1

k+1 − jm
k+1

∆t
+

Fm
k+3/2

− Fm
k+1/2

∆x
= −

(

(ni)
m
k+1 +

(ne)
m
k+1

ε

)

φm+1

k+2 − φm+1

k

2 ∆x
.

Taking the discrete space derivative of this equation we obtain

1

2 ∆x

(

jm+1

k+1 − jm
k+1

∆t
− jm+1

k−1 − jm
k−1

∆t

)

+

+
1

2 ∆x

(

Fm
k+3/2

− Fm
k+1/2

∆x
−

Fm
k−1/2

− Fm
k−3/2

∆x

)

=

= − 1

2 ∆x

((

(ni)
m
k+1 +

(ne)
m
k+1

ε

)

φm+1

k+2 − φm+1

k

2 ∆x

−
(

(ni)
m
k−1 +

(ne)
m
k−1

ε

)

φm+1

k − φm+1

k−2

2 ∆x

)

.

Then, we combine this equation with (55) in order to eliminate the current,
this gives
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ρm+1

k − 2 ρm
k + ρm−1

k

∆t2
+

Dm
k − Dm−1

k

∆t

−
Fm

k+3/2
− Fm

k+1/2
− Fm

k−1/2
+ Fm

k−3/2

2 ∆x2
=

=
1

2 ∆x

((

(ni)
m
k+1 +

(ne)
m
k+1

ε

)

φm+1

k+2 − φm+1

k

2 ∆x

−
(

(ni)
m
k−1 +

(ne)
m
k−1

ε

)

φm+1

k − φm+1

k−2

2 ∆x

)

.

This equation is just a consequence of the discretized two-fluid Euler sys-
tem (49)-(52). Now, like in the continuous case, using this result, we deduce
the equivalence between the discrete Poisson equation (47) and the discrete
reformulated Poisson equation (53) provided that (49)-(52) are satisfied and
that the Poisson equation is satisfied at the two initial time steps. This con-
cludes the proof of (53).

Throughout the rest of this paper, the scheme (49)-(52), (53) will be referred
to as the asymptotic preserving scheme for the two-fluid Euler-Poisson system
(AP-EP). The first and second time iterations are performed with the classical
scheme (C-EP) defined by (42)-(47). We stress again that this scheme can be
solved with the cost of an explicit scheme and so, it induces no additional cost
compared with the classical discretization (C-EP). Furthermore, the scheme
(AP-EP) is expected to be asymptotically stable in the quasi-neutral limit
since it provides an implicit discretization of the reformulated Poisson equa-
tion (18). This expected stability behavior is confirmed both by the analytical
study (which will be published in a forthcoming work by the same authors
in collaboration with J-G. Liu) and by the numerical results presented in the
following section.

4 Numerical results: comparison between the classical and the
asymptotic preserving schemes

In this section we perform numerical simulations in one space dimension for
the two-fluid Euler-Poisson system. We present two test cases and we compare
the classical scheme, C-EP, defined by (42)-(47) and the asymptotic preserving
scheme, AP-EP, defined by (49)-(52), (53). The first test case is the perturba-
tion of a uniform quasi-neutral stationary solution to two-fluid Euler-Poisson
system. The second test case models the expansion of a quasi-neutral plasma
in the vacuum separating two electrodes.
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4.1 Periodic perturbation of a stationary uniform quasi-neutral plasma

We consider the quasi-neutral uniform stationary solution W 0 of the two-fluid
Euler-Poisson system given by W 0 = (n0

i = 1, n0
e = 1, q0

i = 0, q0
e = 1, E0 = 0)

where we recall that E = −∂xφ is the electric field. The first test-case is
the perturbation of this steady state. To this aim, we perform a simulation
on the domain (0, 1) with periodic boundary conditions for the Euler systems
and with homogeneous Dirichlet boundary conditions for the Poisson equation.
Furthermore we consider the following initial condition which is a perturbation
of W 0:

ni(x, 0) = ne(x, 0) = 1, qi(x, 0) = δ cos 2πx, qe(x, 0) = 1 + δ cos 2πx.

where δ = 10−2 is the perturbation amplitude. This test-case has already been
studied in [13], [15] where the solution of the linearized two-fluid Euler-Poisson
system is given analytically. For small perturbations, this solution is close
enough to the solution of the nonlinear system. We compare this analytical
solution to the numerical solution computed by the classical scheme (C-EP)
defined by (42)-(47) and the asymptotic preserving scheme (AP-EP) defined
by (49)-(52), (53)

We select parameters issued from plasma arc physics (see e.g. [6], [2], [4]) such
that ci = ce = 1, γ = 5/3 and

ε = 10−4, λ = 10−4, (i.e. ω =
1

λ
√

ε
= 106). (57)

We initiate the AP-EP scheme with two iterations performed with the C-EP
scheme following the conditions of the equivalence between the Poisson and
reformulated Poisson equation as emphasized in section 3.2.2. We summarize
the conditions of the various simulations and the observed stability of the
numerical solution in the following table:

∆x = λ, ∆t < ω−1 ∆x > λ, ∆t < ω−1 ∆x > λ, ∆t > ω−1

C-EP Figs. 1, 2, 3 - Stab. Figs. 4, 5, 6 - Stab. Figs. 8, 9, 10 - Unstab.

AP-EP Figs. 1, 2, 3 - Stab. Figs. 4, 5, 6 - Stab. Figs. 11, 12, 13- Stab.

Table 1
Summary of the conditions of the various simulations and observed stability of the
numerical solution

We note that it is not possible to simulate the case ∆t > ω−1 and ∆x < λ.
Indeed, when the space step ∆x is such that ∆x < λ, then the condition
∆t < ω−1 is necessarily satisfied thanks to the C.F.L. condition (48). The
small inertia of the electrons implies |Λe| ≫ |Λi| since Λe ∼ O(1/

√
ε). This is

sufficient to ensure that ∆t < ω−1.
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Fig. 1. Periodic perturbation test-case with ∆x = λ and ∆t < ω−1, λ = 10−4,
ε = 10−4, ω = 106. Ion density (left) and electron density (right): the classical
scheme C-EP (dashed line) and the asymptotic preserving scheme AP-EP (dotted
line) are compared to the analytical solution of the linearized two-fluid Euler-Poisson
model (solid line) at the scaled time t = 0.1. All curves are identical.
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Fig. 2. Periodic perturbation test-case with ∆x = λ and ∆t < ω−1, λ = 10−4,
ε = 10−4, ω = 106. Ion velocity (left) and electron velocity (right): the classical
scheme C-EP (dashed line) and the asymptotic preserving scheme AP-EP (dotted
line) are compared to the analytical solution of the linearized two-fluid Euler-Poisson
model (solid line) at the scaled time t = 0.1. On the right the C-EP and AP-EP
curves are identical.

On Figs. 1, 2 and 3 we present the results obtained with the classical scheme C-
EP and with the asymptotic preserving scheme AP-EP. On these simulations,
the time step and the space step satisfy ∆x = λ and ∆t < ω−1. The presented
quantities are the particle densities, the velocities and the electric potential.
They are compared to the analytical values obtained with the linearized two-
fluid Euler-Poisson model. The results are given at the scaled time t = 0.1.
For both schemes the results are stable.

On Figs. 4, 5 and 6 we present the same quantities when the space step does
not respect anymore the condition ∆x ≤ λ while the time step still satisfies
∆t < ω−1. We observe that the schemes remain stable. It appears, comparing
Figs. 2 and 11, that there is a difference with the analytical solution in the
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Fig. 3. Periodic perturbation test-case with ∆x = λ and ∆t < ω−1, λ = 10−4,
ε = 10−4, ω = 106. Electric potential: the classical scheme C-EP (dashed line)
and the asymptotic preserving scheme AP-EP (dotted line) are compared to the
analytical solution of the linearized two-fluid Euler-Poisson model (solid line) at the
scaled time t = 0.1.
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Fig. 4. Periodic perturbation test-case with ∆x = 10−2 > λ and ∆t < ω−1,
λ = 10−4, ε = 10−4, ω = 106. Ion density (left) and electron density (right): the
classical scheme C-EP (dashed line) and the asymptotic preserving scheme AP-EP
(dotted line) are compared to the analytical solution of the linearized two-fluid Eu-
ler-Poisson model (solid line) at the scaled time t = 0.1. In both figures, the curves
“C-EP” and “AP-EP” are identical.

computation of the electron velocity amplitude and phase. This difference can
be imputed to the bad consistency of the scheme for the electron velocity
equation due to the mass ratio stiffness as ε = 10−4 ≪ 1. Indeed, when ε
increases this lack of precision decreases as we can see on Fig. 7.

On Figs. 8, 9 and 10 we present the results obtained with the classical scheme
C-EP when none of the conditions ∆x ≤ λ and ∆t < ω−1 are satisfied. We
note that after a very short time t = 2.10−4, the solution diverges for all
variables. Then, the scheme C-EP is unstable for ∆t > ω−1.

On Figs. 11, 12 and 13 we compare the results obtained with the asymptotic
preserving scheme AP-EP to the linearized analytical solution in the same
condition i.e. when none of the conditions ∆x ≤ λ and ∆t < ω−1 are satisfied.
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Fig. 5. Periodic perturbation test-case with ∆x = 10−2 > λ and ∆t < ω−1,
λ = 10−4, ε = 10−4, ω = 106. Ion velocity (left) and electron velocity (right): the
classical scheme C-EP (dashed line) and the asymptotic preserving scheme AP-EP
(dotted line) are compared to the analytical solution of the linearized two-fluid Eu-
ler-Poisson model (solid line) at the scaled time t = 0.1. In both figures, the curves
“C-EP” and “AP-EP” are identical.
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Fig. 6. Periodic perturbation test-case with ∆x = 10−2 > λ and ∆t < ω−1,
λ = 10−4, ε = 10−4, ω = 106. Electric potential: the classical scheme C-EP (dashed
line) and the asymptotic preserving scheme AP-EP (dotted line) are compared to
the analytical solution of the linearized two-fluid Euler-Poisson model (solid line) at
the scaled time t = 0.1. The curves “C-EP” and “AP-EP” are identical.

We observe that the scheme is stable. The approximation for the electron
velocity still suffers from a lack of precision mostly in the phase velocity.

Finally, on Figs. 14, we present results obtained with other solvers than Lax-
Friedrichs scheme. We use the Lax-Wendroff scheme which is an order two
scheme (see [33]) and the polynomial scheme which is a Riemann type solver
(see [22], [15]). They both give stable results when none of the conditions
∆x ≤ λ and ∆t < ω−1 are satisfied. Note that the error on the electron
velocity is smaller for the order two Lax-Wendroff scheme.
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Fig. 7. Periodic perturbation test-case with λ = 10−4 and ω = 104/
√

ε. Electron
velocity at the scaled time t = 0.1 on the left for ε = 10−4 and on the right for
ε = 10−1. Dotted line: the Asymptotic Preserving scheme AP-EP with ∆x = λ and
∆t < ω−1 (both plasma frequency and Debye length are resolved). Dashed line: the
AP-EP scheme with ∆x > λ and ∆t > ω−1 (plasma frequency and Debye length are
under-resolved). Solid line: analytical solution of the linearized problem. The curves
“AP-EP, resolved” and “Analytical sol.” are identical.
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Fig. 8. Periodic perturbation test-case with ∆x = 10−2 > λ and ∆t > ω−1, ε = 10−4,
λ = 10−4, ω = 106. Ion density (left) and electron density (right) obtained with the
classical scheme C-EP (dotted line) at the scaled time t = 2.10−4.
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Fig. 9. Periodic perturbation test-case with ∆x = 10−2 > λ and ∆t > ω−1, ε = 10−4,
λ = 10−4, ω = 106. Ion velocity (left) and electron velocity (right) obtained with
the classical scheme C-EP (dotted line) at the scaled time t = 2.10−4.
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Fig. 10. Periodic perturbation test-case with ∆x = 10−2 > λ and ∆t > ω−1,
ε = 10−4, λ = 10−4, ω = 106. Electric potential obtained with the classical scheme
C-EP (dotted line) at the scaled time t = 2.10−4.
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Fig. 11. Periodic perturbation test-case with ∆x = 10−2 > λ and ∆t > ω−1,
ε = 10−4, λ = 10−4, ω = 106. Ion density (left) and electron density (right): the
asymptotic preserving scheme AP-EP (dotted line) is compared to the analytical
solution of the linearized two-fluid Euler-Poisson model (solid line) at the scaled
time t = 0.1.
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Fig. 12. Periodic perturbation test-case with ∆x = 10−2 > λ and ∆t > ω−1,
ε = 10−4, λ = 10−4, ω = 106. Ion velocity (left) and electron velocity (right):
the asymptotic preserving scheme AP-EP (dotted line) is compared to the analyti-
cal solution of the linearized two-fluid Euler-Poisson model (solid line) at the scaled
time t = 0.1.

0 0.2 0.4 0.6 0.8 1
−0.01

−0.005

0

0.005

0.01

AP-EP scheme
Analytical sol.

E
le

ct
ri

c
p
ot

en
ti

al

x

Fig. 13. Periodic perturbation test-case with ∆x = 10−2 > λ and ∆t > ω−1,
ε = 10−4, λ = 10−4, ω = 106. Electric potential: the asymptotic preserving scheme
AP-EP (dotted line) is compared to the analytical solution of the linearized two-fluid
Euler-Poisson model (solid line) at the scaled time t = 0.1.
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Fig. 14. Periodic perturbation test-case with ∆x = 10−2 > λ and ∆t > ω−1,
ε = 10−4, λ = 10−4, ω = 106. Electron density (left) and electron velocity (right):
the asymptotic preserving scheme AP-EP with Lax-Wendroff solver (dotted line),
polynomial solver (dashed line) and modified Lax-Friedrichs solver (dashed-dotted
line) are compared to the analytical solution of the linearized two-fluid Euler-Poisson
model (solid line) at the scaled time t = 0.1. On the left, the curves “Lax-Wendroff”
and “Analytical sol.” are identical. In both figures the curves “Lax-Friedrichs” and
“Polynomial” are identical.
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4.2 One-dimensional plasma expansion test case

The second test case we consider is that of a one-dimensional quasi-neutral
plasma expansion in the vacuum separating two electrodes. At the beginning
of the process, the domain is devoid of plasma. Then we set ni(x, t = 0) =
ne(x, t = 0) = 0 for all x ∈ (0, 1). The plasma is injected at the cathode x = 0,
which is modeled by boundary conditions for two-fluid Euler system given as
follows: ni(x = 0, t) = ne(x = 0, t) = 1 and ui(x = 0, t) = ue(x = 0, t) = 1,
for all t ≥ 0. Furthermore we set the following boundary conditions for the
electric potential: φ(x = 0, t) = 0 and φ(x = 1, t) = φA. We select parameters
issued from plasma arc physics (see e.g. [2], [4], [6]) such that ci = ce = 1,
γ = 5/3, ε = 10−4, λ = 10−4 and φA = 102. We recall that these parameters
yield ω = 106.
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Fig. 15. Plasma expansion test case for λ = 10−4, ε = 10−4, ω = 106 and φA = 100.
Ion density (left) and electron density (right) at the scaled time t = 0.09, in the
case where the plasma frequency and Debye length are resolved (dashed line: C-EP
scheme ; solid line: AP-EP scheme) and under-resolved (dashed-dotted line: C-EP
scheme ; dotted line AP-EP scheme). The curves “C-EP, resolved” and “AP-EP,
resolved” are identical.

On Figs. 15, 16 and 17, the ion and electron densities and velocities as well as
the electric potential are displayed. The results are obtained with the classical
and asymptotic preserving schemes C-EP and AP-EP at the scaled time t =
0.09. We simultaneously present the results obtained when ∆x = λ and ∆t <
ω−1 and when ∆x > λ and ∆t > ω−1.

When ∆x = λ, and ∆t < ω−1, the results obtained with the different schemes
are identical. When ∆x > λ and ∆t > ω−1, the numerical results show clearly
the instability of the classical scheme C-PE whereas the asymptotic preserving
scheme AP-EP remains stable. We note that the AP-EP scheme suffers from
a lack of precision due to the use of a Lax-Friedrichs solver which is known
to be very diffusive. The adaptation of the AP-EP method to Godunov type
solver and (or) second order central solvers appears to be a necessity and is a
work in progress.
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Fig. 16. Plasma expansion test case for λ = 10−4, ε = 10−4, ω = 106 and φA = 100.
Ion velocity (left) and electron velocity (right) at the scaled time t = 0.09, in the
case where the plasma frequency and Debye length are resolved (dashed line: C-EP
scheme ; solid line: AP-EP scheme) and under-resolved (dashed-dotted line: C-EP
scheme ; dotted line AP-EP scheme). The curves “C-EP, resolved” and “AP-EP,
resolved” are identical.”
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Fig. 17. Plasma expansion test case for λ = 10−4, ε = 10−4, ω = 106 and φA = 100.
Electric potential at the scaled time t = 0.09. On the left, the classical (dashed line)
and the asymptotic preserving (solid line) schemes when ∆x = λ and ∆t < ω−1, are
compared to the asymptotic preserving (dotted line) scheme when ∆x = 10−2 > λ
and ∆t > ω−1. The curves “C-EP, resolved” and “AP-EP, resolved” are identical. On
the right the classical scheme when ∆x = 10−2 > λ and ∆t > ω−1 is unstable.

4.3 Two-dimensional results for plasma expansion

We consider a square domain Ω = (0, 1) × (0, 4) and we denote by Γ its
boundary. At the beginning of the simulation the domain is devoid of plasma.
Then,

ni(t = 0) = ne(t = 0) = 0.

We inject a quasi-neutral plasma on a part of Γ, such that:
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(ni)|Γinj
= (ne)|Γinj

= exp

[

−
(

y − 2

0.05

)2
]

, (58)

(ui)|Γinj
= (ue)|Γinj

= 1. (59)

where Γinj = {(x, y) ∈ Γ, x = 0, y ∈ [1.8, 2.2]}.

The boundary conditions for the electric potential are the following:

φ(0, y, t) = 0, φ(1, y, t) = 100 and ∂yφ(x, 0, t) = ∂yφ(x, 4, t) = 0,

for all y ∈ (0, 4), all x ∈ (0, 1) and all t > 0.

Like in the one dimensional test cases the pressure laws are defined by ci =
ce = 1 and γi = γe = 5/3 and the dimensionless parameters are given by
λ = 10−4 and ε = 10−4. This gives a scaled plasma frequency ω = 106.
Finally, the mesh is Cartesian with space steps ∆x = 1/100 and ∆y = 1/100.

The reformulated Poisson equation is implemented using a SPARSE matrix
data structure compressed by row storage in order to minimize the memory
and computation cost. From the open source library SPARSKIT [60], an iter-
ative algorithm PGMRES preconditionned by an ILUT method (incomplete
factorization LU with threshold and fill-in strategy) is used for the resolution
of the system. Using an iterative method reduces the computational cost of
the method as the final iterate of the previous time step can be used as the
initial estimate for the next time step. Moreover it is not necessary to update
the preconditioner at each time step.

The results are given on Figures 18 to 23. Globally, they show that the scheme
performs well in 2D, and confirms its stability for large time and space steps
(compared to the Debye length and the electron plasma period). This kind of
simulation would be extremely difficult to achieve with an explicit scheme, and
would require considerable computer resources. However, we must notice that
the physical validity of the simulation results depends on the accuracy of each
fluid variables and in particular of the electron fluid velocity. We have seen
that in one dimensional simulations (see section 4.1 and Fig. 5 and 7), this
electron fluid velocity is not well described. It is important to note that this
problem is already present in the classical scheme. Then it appears necessary
to develop asymptotically stable schemes in both the quasi-neutral and small
electron to ion mass ratio limits. This is work in progress (see section 4.1 and
Fig. 14).

On Figure 18, we represent the ion and electron densities in log-scale at times
t = 0.005, t = 0.02 and t = 0.04. The times t = 0.005, t = 0.02 are picked dur-
ing the expansion phase of the plasma before it reaches the anode. The time
t = 0.04 is roughly the time at which the plasma connects the two electrodes.
To obtain these results, a two-dimensional version of the (AP) scheme with a
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modified Lax-Friedrichs solver has been used. Until the plasma connects the
two electrodes at time t = 0.04, the gap is divided into a quasi-neutral plasma
region and an electron beam region, like in the one-dimensional case. We re-
mark that the electron beam has a fork shape, as it seems that the privileged
location for electron emission lies on the sides of the plasma/beam interface.
At the connection time t = 0.04, the electron beam does not exist anymore
but the plasma density close to the anode is larger on the sides of the plasma
bubble. These observations are confirmed by Figure 21 where longitudinal and
transversal sections of the density are represented.

On Figure 19, we represent the ion and electron velocities at times t = 0.005,
t = 0.02 and t = 0.04. During the expansion phase, the injected ions move
towards the axis of symmetry of the device. For the electron, we remark an
inversion of the velocity slightly upstream the boundary of the plasma. In-
side the plasma, the x-component of the electron velocity is slightly negative
which shows that the electrons move upstream. Downstream the plasma, in
the electron beam part, the x-component of the electron velocity is of course
positive and large. These observations are confirmed by the sectional views on
Figure 22.

On Figure 20 and 23, we represent the electric potential at times t = 0.005,
t = 0.02 and t = 0.04. During the expansion phase, we can distinguish three
different regions. The first region is a cathode sheath located close to the
cathode, where an important potential fall occurs. This phenomenon has been
observed in 1D results and is due to the existence of a boundary layer of
width equal to a few Debye lengths (see e.g. [15], [20]). In particular, we
notice oscillations of the potential near the cathode which do not disappear
when time goes on. These oscillations, which have also been observed in one-
dimensional simulations, are reduced when the mesh size is smaller. They are
due to the fact that the mesh size is too large to correctly resolve this boundary
layer.

The second region is the plasma region inside which the potential is quite
flat in the x direction and where we can observe negative barriers in the y
direction during the expansion phase. The function of these barriers is to
maintain the electrons inside the plasma and to prevent their leakage through
the lateral boundaries of the plasma (see transversal sections in Figure 23). By
contrast, the lateral potential barriers become positive for times greater than
the connection time. However, the physical relevance of these results after the
connection time is questionable since no external circuit is taken into account.
After the connection time, the plasma makes a highly conducting bridge be-
tween the two electrodes and the electric current consequently reaches very
large values. In practice, the external circuit which produces the potential bias
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will react to this large current by reducing the bias. It is also likely that the
plasma source is connected to the plasma and will stop delivering the plasma
if the applied bias drops. In particular, if the plasma source is an ionization
sheath, the electric field at the cathode may fall below the threshold for ioniza-
tion in which case the plasma source extinguishes. In the present state, none of
these phenomena has been taken into account. So, after the connection time,
the dynamics is so intense that the physical relevance of the numerical results
is questionable.

Finally, the third region concerns the expansion phase and corresponds to the
beam zone where the potential grows from the plasma potential to the anode
potential, as should be expected.

5 Conclusion

In this paper, we proposed an asymptotic preserving scheme in the quasi-
neutral limit for the two-fluid Euler-Poisson system. This scheme has a com-
parable cost to that of an explicit discretization. The stability of the scheme in
the quasi-neutral limit has been confirmed by numerical simulations in three
different configurations. The first test case is the perturbation of a uniform
steady state in one space dimension. The other two test cases concern the
expansion of a plasma between two electrodes respectively in one and two
space dimensions. We perform these simulation results with the modified Lax-
Friedrichs solver in spite of its well-known diffusive behavior because the im-
plementation of the asymptotic preserving strategy is easier in this case. But
extensions to other solvers are being studied. In this paper, we have shown
some preliminary results in the perturbation test case for a Riemann solver
based scheme (the polynomial scheme) and for the Lax-Wendroff scheme.

Following this idea, several works are in progress. First, we note that the
scheme is still constrained by the C.F.L. condition of the Euler systems. This
constraint can be penalizing especially for electrons which have a very small
mass. With the same methodology it is possible to bypass this limitation.
In the same way, this idea can be applied to low Mach number limit of the
compressible Euler equations. Finally extensions to other systems are under
study. The application to the full Euler system including energy equations
is straightforward. Finally, extensions to Drift-Diffusion models and to the
Euler-Maxwell system have been designed and are currently under numerical
development.
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Fig. 18. Plasma expansion between two plane electrodes with ε = 10−4, λ = 10−4

and ω = 106. Ion density (left) and electron density (right) in log-scale at different
times given by a two-dimensional (AP) scheme with the modified Lax-Friedrichs
solver.
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Fig. 19. Plasma expansion between two plane electrodes with ε = 10−4, λ = 10−4

and ω = 106. Ion velocity (left) and electron velocity (right) at different times by a
two-dimensional (AP) scheme with the modified Lax-Friedrichs solver. Vector fields
and field intensity are represented.
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Fig. 20. Plasma expansion between two plane electrodes with ε = 10−4, λ = 10−4

and ω = 106. Electric potential at different times given by a two-dimensional (AP)
scheme with the modified Lax-Friedrichs solver.
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Fig. 21. Left: longitudinal sections of the densities along the symmetry axis y = 2 at
times t = 0.005, t = 0.020 and t = 0.040. Right, transversal sections of the electron
density in the beam at times t = 0.005 and t = 0.020.
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Longitudinal sections of electron velocity at y=2
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Fig. 22. Longitudinal sections of the electron velocity along the device axis y = 2 at
times t = 0.005 and t = 0.020.
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Fig. 23. Left: longitudinal sections of the potential along the symmetry axis y = 2 at
times t = 0.005, t = 0.020 and t = 0.040. Right: transversal sections of the potential
in the beam at times t = 0.005, t = 0.020 and t = 0.040.
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