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Abstract. In this article, we propose a model describing the transport of trapped particles in
a surface potential. The potential confines particles close to the surface increasing the number of
surface collisions. First, we consider the case of non charged particles. From a kinetic description,
we rigorously derive a two dimensional Boltzmann equation. In the case of charged particles we
introduce the coupling with the Poisson equation. We perform a formal asymptotic analysis which
leads to a two dimensional Boltzmann equation coupled with a three dimensional Poisson equation.
We illustrate the charged particle model with some numerical simulations of a gas discharge on a
satellite solar array. We use a Particle In Cell (P.I.C.) scheme that is a particle discretization for the
Boltzmann equation and a Fourier approximation for the Poisson equation.
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1. Introduction. In this article, we are interested in particles subject to a given
external potential in a half space. We propose a mathematical model to describe their
transport and we perform numerical simulations. The starting point of our model is a
kinetic model constituted of the Vlasov equation set in the half space. It is completed
by some boundary conditions for the description of the surface collisions.

In order to reduce the cost of the numerical simulations, it is classical to de-
rive some asymptotic models with a smaller number of variables than the kinetic
description. It is possible when the physical conditions allow to do it, for example
when particles are subject to many collisions. The resulting model depends on the
considered physical process (see [5] and the references given there).

Here, we want to establish an asymptotic model when the applied potential con-
fines the particles close to the surface increasing the number of collisions with it.
Furthermore, we assume that the dominant surface collisions process is specular; the
other collisions are supposed to be only a perturbation. Although it is not true in
practical situations we assume that the error is of the same order as the error we make
with the asymptotic limit.

This work is a continuation of [15] in which the considered problem is the same as
here but the dominant surface collisions are supposed diffusive. In [15], the resulting
model is a diffusive model in two space dimensions; its variables are the time, the
position on the surface and the total energy of the particles. These kinds of mod-
els are called in the literature Fokker-Planck models or “SHE model” (for Spherical
Harmonics Expansion) because of its earlier derivation in [26]. The diffusive limits
have been extensively studied, see for example [3], [6], [4] or [21] in different contexts:
radiative transfer, semi-conductors, neutron transport.

Here, the resulting model is a Boltzmann model in two space dimensions; its
variables are the time, the position on the surface, the parallel velocity to the surface
and the total energy in the transverse direction. Furthermore the collision operator
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31062 TOULOUSE cedex 4, FRANCE (degond@mip.ups-tlse.fr, parzani@mip.ups-tlse.fr,
mhvignal@mip.ups-tlse.fr).

1



2 P. DEGOND, C. PARZANI, M-H. VIGNAL

of this equation describes the non specular surface collisions. This is an intermediate
model between the kinetic description and the SHE model.

We begin with the rigorous derivation of the asymptotic model in the case of a
purely specular surface collision process. Then we consider the case of charged par-
ticles. A coupling with the Poisson equation is introduced and the problem becomes
non linear. We derive the asymptotic model considering a general surface collision
process with a dominant specular collisions process. A similar work with a rigorous
derivation has been done for quantum transport and in the case of the whole space
in [7]. Here, the results obtained for the coupled model with the Poisson equation are
formal. We defer the rigorous proof of the limit to a future work [27].

In order to illustrate the charged particle model, we perform some numerical simu-
lations of gas discharge on a satellite solar array. High voltage solar arrays are subject
to strong interactions with the plasma environment. According to the literature, see
[11], [12], the scenario can be decomposed essentially into two phases. First a large
density plasma is created by a primary discharge. In some cases this plasma triggers
an electric arc called the secondary arc. Here we are concerned with the modeling of
the primary discharge. We propose a simplified model for the electron motion during
the primary discharge, based on the previously derived asymptotic model. According
to M. Cho and D.E. Hasting [12], the primary discharge is due to a combination of
three phenomena: an enhanced field emission at a particular point called the triple
point where metallic parts, dielectrics and vacuum meet, electron secondary emission
on the lateral side of the dielectric and an electron stimulated desorption of the neutral
gas adsorbed by the surface. So we complete our model by some boundary conditions
which describe the enhanced field emission at the triple point. Furthermore we pro-
pose a mathematical modeling for surface collisions describing the electron secondary
emission process. We discretize this model using a P.I.C. (for Particle In Cell) scheme
(see [13], [16], [23]), based on a particle discretization of the Boltzmann equation
and a Fourier approximation of the the Poisson equation. The simulation of electron
secondary emission operator involves a branching process (where numerical particles
multiply) followed by a collapsing process. We conclude with the presentation of the
numerical results.

2. The kinetic model. We are interested in the kinetic modeling of particles
trapped in a surface potential and subject to specular collisions with this surface, see
Fig. 2.1. We consider the domain Ω = R

2 × (−∞, 0) and we suppose that a solid wall
is located on the boundary of Ω: ∂Ω = R

2×{0}. We denote by x = (x, z) ∈ R
2×R

−,
v = (v, vz) ∈ R

2×R the position and velocity vectors. Due to their geometric relation
with the surface, x and v are called the parallel components of the position and
velocity vectors and z and vz are called the transverse components of these vectors.

Let f be the particle distribution function. It satisfies the Vlasov equation

∂tf + v · ∇xf +
E

m
· ∇vf = 0, (2.1)

for all (x, v, t) ∈ Ω×R
3 × R

+, where m is the particle mass and where E is the force
field. In Section 3, non charged particles are considered. In this case, E stands for
a potential force given by E = −∇xφ where φ is a given potential. In Section 4,
the case of charged particles is discussed. Then, E is an electrostatic force given by
E = −q∇x(φ + φs) where q is the charge of the particles, φ is the external applied
electric potential and φs is the self-consistent potential given by (4.1).
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Fig. 2.1. The domain is defined by Ω = R
2 × R

−. The position, x ∈ Ω, and the velocity,
v ∈ R

3, are split in (x, z) ∈ R
2 × R

− and (v, vz) ∈ R
2 × R. Due to their geometric relation with the

surface ∂Ω = R
2 × {0}, x and v are called parallel components of the position and the velocity and

z and vz are called transverse components of the same vectors.

We complete the problem with some initial and boundary conditions. We consider
that, in Ω × R

3

f(t = 0) = f0, (2.2)

where f0 is a L∞ given function with a compact support in Ω̄× R
3 = R

2 × R
− × R

3.
In order to discuss the boundary conditions, we introduce the outgoing and incoming
traces of f on the surface ∂Ω, respectively denoted by γ−(f)(x, v, t) (or γ−(f)(vz)) for
vz < 0 and by γ+(f)(x, v, t) (or γ+(f)(vz)) for vz > 0, for all (x, v, t) ∈ R

2×R
3×R

+.
Then, we consider the boundary condition given by

γ−(f)(vz) = β Sγ+(f)(vz) + (1 − β)Kγ+(f)(vz), (2.3)

for all vz < 0 and where β is the probability for an incoming particle on the surface
∂Ω to be re-emitted specularly. The operator S is the specular reflection operator
and K is a general collision operator on ∂Ω. For all vz < 0, we write

Sγ+(f)(vz) = γ+(f)(−vz), (2.4)

and

Kγ+(f)(vz) =

∫

{v′=(v′,v′z)∈R2×R+}

K(v′, v) γ+(f)(v′z) v
′
z dv

′, (2.5)

whereK(v′, v) |vz| dv is the number of re-emitted particles in [v, v+dv] for an incoming
particle on the surface ∂Ω, with a velocity given by v′.

The aim of this article is to obtain an asymptotic model in a situation where
the potential φ confines the particles close to the surface. We denote by L‖ and
L⊥ the characteristic lengths respectively in the parallel and transverse directions.
We assume α = L⊥/L‖ is a small dimensionless parameter. We denote by Ec ≥ 0,

vc =
√

L‖Ec/m, tc = L‖/vc and fc the characteristic force field magnitude, velocity,
time and distribution function. And, we introduce a re-scaling for the problem (2.1)-
(2.3) denoted by x̂ = (x̂, ẑ), v̂ and t̂ being defined by

x = L‖ x̂, z = L⊥ẑ = αL‖ ẑ, v = vc v̂ and t = tc t̂. (2.6)
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We suppose that there exists φ̂ and f̂0, independent of α and such that φ(x, t) =

L‖Ec φ̂(x̂, t̂), for (x, t) ∈ Ω × R
+ and f0(x, v) = fc f̂0(x̂, v̂), for (x, v) ∈ Ω × R

3.

Finally we set f(x, v, t) = fc f
α(x̂, v̂, t̂) for (x, v, t) ∈ Ω×R

3 ×R
+. Inserting this new

scale in (2.1) and omitting the “hats”, we obtain:

∂tf
α + v ·∇xf

α −∇xφ · ∇vf
α +

1

α

(

vz ∂zf
α − ∂zφ∂vz

fα
)

= 0,

in Ω × R
3 × R

+.
We denote by ψ the transverse component of the potential φ and by φ0 its parallel

component, that is the functions such that for all (x, z, t) ∈ Ω̄ × R
+

φ0(x, t) = φ(x, 0, t) and ψ(x, z, t) = φ(x, z, t) − φ0(x, t). (2.7)

In order to model the case of an attractive potential for the particles, we make the
following hypotheses:

Assumption 1. For all (x, t) ∈ R
2 × R

+, the function z ∈ R
− 7→ ψ(x, z, t) ∈ R

is decreasing, continuous and satisfies limz→−∞ ψ(x, z, t) = +∞.

Then remarking that ∂zφ = ∂zψ, we obtain the re-scaled Vlasov equation.

∂tf
α + v ·∇xf

α −∇x(φ0 + ψ) · ∇vf
α +

1

α

(

vz ∂zf
α − ∂zψ ∂vz

fα
)

= 0, (2.8)

in Ω × R
3 × R

+, where φ0 and ψ are the parallel and transverse components of the
given potential φ defined by (2.7).
The initial condition is given by

fα(t = 0) = f0, (2.9)

in Ω × R
3. Finally, the boundary condition, on the surface ∂Ω, is:

γ−(fα)(vz) = β Sγ+(fα)(vz) + (1 − β)Kγ+(fα)(vz) for all vz < 0, (2.10)

where S and K are given by (2.4) and (2.5).

3. A rigorous asymptotic limit for specular collisions. In this section, we
are interested in the rigorous limit α→ 0 of system (2.8)-(2.10) when the collisions on
the surface ∂Ω are only specular reflections. Then, in all this section, we will consider
β = 1 in (2.10) and the boundary condition on ∂Ω for Eq. (2.8) is rewritten

γ−(fα)(vz) = γ+(fα)(−vz) for all vz < 0. (3.1)

For all α > 0, we have the following result (see for instance [2], [9, 10], [20] or [24])

Theorem 3.1. We suppose f0 ∈ L∞(Ω × R
3) with a compact support in Ω̄ × R

3

and we assume φ ∈ C2(Ω̄). Let φ0 and ψ be the parallel and transverse components
of the potential φ defined by (2.7). Let α > 0, then there exists a unique fα ∈
L∞(Ω×R

3 × [0, T ])∩C([0, T ];L1(Ω×R
3)) for all T > 0, the weak solution to (2.8),

(2.7), (2.9) and (3.1), i.e. satisfying:

∫

Ω×R3×R+

fα(x, v, t)
(

∂t + v · ∇x −∇x(φ0(x, t) + ψ(x, t)) · ∇v
)

ϕ(x, v, t) dx dv dt
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+
1

α

∫

Ω×R3×R+

fα(x, v, t)
(

vz ∂z − ∂zψ(x, t) ∂vz

)

ϕ(x, v, t) dx dv dt (3.2)

+

∫

Ω×R3

f0(x, v)ϕ(x, v, 0) dx dv = 0

for all ϕ ∈ C1
c (Ω × R

3 × R
+) and such that ϕ(x, 0, v, vz, t) = ϕ(x, 0, v,−vz, t) for all

vz < 0.
Furthermore, for all T > 0, there exists CT > 0, depending only on T and f0,

such that for all α > 0

‖fα‖L∞(Ω×R3×[0,T ]) ≤ CT . (3.3)

The aim of this section is the proof of the following result

Theorem 3.2. . Let α > 0, f0 ∈ L∞(Ω×R
3) with a compact support in Ω̄×R

3

and φ ∈ C2(Ω̄). We denote by φ0 and ψ the parallel and transverse components
of φ defined by (2.7). We suppose that ψ satisfies Assumption (1). Let fα be the
weak solution to (2.8), (2.7), (2.9) and (3.1), i.e. satisfying (3.2). Then there exists
f ∈ L∞(Ω × R

3 × [0, T ]) for all T > 0 such that

lim
α→0

fα = f in L∞(Ω × R
3 × [0, T ]) for the weak- ⋆ topology (3.4)

and all T > 0.
Furthermore there exists F ∈ L∞(R2 × R

2 × R
+ × [0, T ]) for all T > 0 such that

f(x, z, v, vz, t) = F (x, v, εz, t) (3.5)

for almost all (x, z, v, vz, t) ∈ R
2 × R

− × R
3 × R

+, where

εz = |vz|2/2 + ψ(x, z, t). (3.6)

The function F satisfies:

[

∂t + v · ∇x −
(

∇xφ0+ < ∇xψ >
)

·∇v

]

(Nz F )

+∂εz

[(

< ∂tψ > +v· < ∇xψ >
)

(Nz F )
]

= 0

(3.7)
in D′(R2×R

2×(0,+∞)×(0,+∞)), where for all function g from R
− into R

n (n ≥ 1),
< g > is the mean value of g in the transverse direction and is given by

< g >=
2

Nz(x, εz, t)

∫ 0

Z(x,εz,t)

g(z)

vz(x, z, εz, t)
dz, (3.8)

where

vz(x, z, εz, t) =
√

2(εz − ψ(x, z, t)), (3.9)

and εz 7→ Z(x, εz, t) is the inverse function of the one to one function z 7→ ψ(x, z, t)
from R

− onto R
+, then

z = Z(x, εz, t), for all εz ∈ R
+ ⇔ εz = ψ(x, z, t), for all z ∈ R

−. (3.10)
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The density of states, Nz, is the bounce time between two successive collisions of the
particle with the surface and is given by

Nz(x, εz, t) = 2

∫ 0

Z(x,εz,t)

1

vz(x, z, εz, t)
dz. (3.11)

Furthermore

F (x, v, εz, 0) = F0(x, v, εz), (3.12)

for almost all (x, v, εz) ∈ R
2 × R

2 × R
+ where F0 is the initial condition of the

asymptotic model, given by

F0(x, v, εz) =
1

Nz(x, εz, 0)

∫ 0

Z(x,εz,0)

f0(x, v, vz(x, z, εz, 0)) + f0(x, v,−vz(x, z, εz, 0))

vz(x, z, εz, 0)
dz,

(3.13)
where vz is given by (3.9).

Remark 1. First, remark that εz(vz, z) = |vz|2/2 + ψ(z) is the transverse total
energy. Let us introduce the changes of variables (z, vz) ∈ R

− × R
+ 7→ (z, εz) and

(z, vz) ∈ R
− × R

− 7→ (z, εz). We have dvz dz = dεz dz/
√

2(εz − ψ(z)). Let ε0 be a
given positive real number. We have

∫

R×R−

δ(εz − ε0) dz dvz = 2

∫

R−

∫ +∞

ψ(z)

δ(εz − ε0)
dεz

√

2(εz − ψ(z))
dz.

Thanks to (2.7) and Assumption 1, for all x ∈ R
2 and t ≥ 0, the function z 7→

ψ(x, z, t) is one to one from R
− onto R

+. Denoting by εz 7→ Z(x, εz, t) its inverse
function and using Fubini’s Theorem, we obtain

∫

R×R−

δ(εz − ε0) dz dvz =

∫

R+

δ(εz − ε0)

∫ 0

Z(εz)

2
√

2(εz − ψ(z))
dz dεz = Nz(x, ε0, t).

Thus Nz(ε0) =
∫

R×R− δ(εz − ε0) dz dvz and Nz(x, εz, t)F (x, v, εz, t) dx dv dεz is the
number of particles with a parallel position in [x, x+dx], a parallel velocity in [v, v+dv],
a total transverse energy in [εz, εz + dεz] and a transverse position in [Z(x, εz, t), 0].

Remark 2. Several extensions of this work can be considered
1. First, we could keep the general boundary condition (2.10). In this case it

is necessary to introduce the trace of the distribution function on the surface
(see [2], [9, 10], [20] or [24]) and the proof becomes more technical.

2. The next generalizations are related to Assumption 1. First, it is possible
to relax the decay hypothesis on the transverse potential. Moreover, we can
consider a transverse potential with a finite limit l for z → −∞. In this case
the asymptotic model holds only for the total transverse energies εz in [0, l].

3. There is no more difficulty if volume collisions are considered, for exam-
ple collisions between the considered particles and neutral particles supposed
present in the domain. In this case the right hand side of the rescaled Vlasov
equation (2.8) is no more 0 but Q(fα) where Q is a collision operator given
by

Q(fα)(v) =

∫

R3

[s(v′, v) fα(v′) − s(v, v′) fα(v)] dv′,
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for all v ∈ R
3 and where s(v′, v) dv is the probability per unit time for a given

particle with velocity v′ to be scattered into the volume dv around v by the
collision.

4. Finally, the rigorous proof when the potential is no more given but is calcu-
lated by the Poisson equation is a work in progress, see [27]. In this case the
Vlasov equation becomes non linear since the potential depends on the parti-
cle distribution function. In section 4, the formal limit is performed and in
Remark 3 we point out important difficulties which remain to be treated for
the rigorous proof.

Proof of Theorem 3.2:
Let α > 0 and fα be the weak solution to (2.8), (2.9) and (3.1), i.e. satisfying

(3.2). Thanks to (3.3), there exists f ∈ L∞(Ω × R
3 × [0, T ]) for all T > 0 such that

fα tends to f in L∞(Ω × R
3 × [0, T ]) for the weak-⋆ topology for all T > 0.

We begin this paragraph with the proof of (3.5). First, we use a change of
variables in order to express the velocity in term of the total transverse energy εz. In
this new set of coordinates, it is proved that the distribution function does not depend
on the transverse position variable z. Furthermore, still in this coordinate system,
the distribution function is even. Then, in the original coordinates the distribution
function depends on the transverse position and velocity variables, z and vz, only
through the total transverse energy εz.

Finally taking into account these informations in the weak formulation (3.2), we
prove (3.7).

Proof of (3.5):
Multiplying (3.2) by α and letting α go to zero, we obtain

∫

Ω×R3×R+

f (vz ∂zϕ− ∂zψ ∂vz
ϕ) dx dv dt = 0,

for all ϕ ∈ C1
c (Ω × R

3 × R
+) and such that ϕ(x, 0, v, vz, t) = ϕ(x, 0, v,−vz, t) for all

vz < 0. Choosing ϕ(x, z, v, vz, t) = χ(x, v, t) ϕ̃(z, vz) where χ ∈ C1
c (R

2 × R
2 × R

+)
and ϕ̃ ∈ C1

c ((−∞, 0] × R) such that ϕ̃(0, vz) = ϕ̃(0,−vz) for all vz < 0, we obtain

∫ +∞

−∞

∫ 0

−∞

f(x, z, v, vz, t) (vz ∂zϕ̃(z, vz) − ∂zψ(x, t) ∂vz
ϕ̃(z, vz)) dz dvz = 0 (3.14)

for almost all (x, v, t) ∈ R
2 × R

2 × R
+.

Let x ∈ R
2, t ≥ 0 and z ≤ 0 be fixed, we consider the changes of variables

{

R
− → (−∞,−

√

2ψ(x, z, t)]

vz 7→ u−z (z, vz) = −
√

|vz|2 + 2ψ(x, z, t),
{

R
+ → [

√

2ψ(x, z, t),+∞),

vz 7→ u+
z (z, vz) =

√

|vz|2 + 2ψ(x, z, t).

(3.15)

First, let us remark that u+
z and u−z are the velocities associated to the total transverse

energy |vz|2/2 +ψ(x, z, t). Then, these change of variables allow to take into account
effect of the confining potential on the particle velocity. Note that when the kinetic
energy is vanishing, that is when vz = 0, then due to the non zero potential energy,
we have, for all z < 0 u−z (z, 0) = −u+

z (z, 0) 6= 0. Then in the transformation (z, vz) 7→
(z, u±z ) the line vz = 0 has two different images (see Figure 3.1).



8 P. DEGOND, C. PARZANI, M-H. VIGNAL

vz

z

vz = 0

(z, vz) 7→ (z, u−
z )

u+
z , u

−
z

|u−
z |2

2
− ψ(z) = 0

(z, vz) 7→ (z, u+
z )

z

Du

u+
z

u−
z

|u+
z |

2

2
− ψ(z) = 0

Fig. 3.1. Changes of variables defined by (z, vz) 7→ (z, u±z (z, vz)). The functions u±z are defined
by sign(vz) =sign(u±z ) and |u±z |2/2 = |vz |2/2 + ψ(x, z, t).

Using these changes of variables in (3.14), we obtain

∫ 0

−∞

∫ −
√

2ψ(z)

−∞

f(z, vz(z, u
−
z ))

(

u−z ∂zϕ̃(z, vz(z, u
−
z ))

−∂zψ ∂vz
ϕ̃(z, vz(z, u

−
z ))

u−z
vz(z, u

−
z )

)

du−z dz

+

∫ 0

−∞

∫ +∞

√
2ψ(z)

f(z, vz(z, u
+
z ))

(

u+
z ∂zϕ̃(z, vz(z, u

+
z ))

−∂zψ ∂vz
ϕ̃(z, vz(z, u

+
z ))

u+
z

vz(z, u
+
z )

)

du+
z dz = 0,

where vz(z, u
±
z ) = sign(u±z )

√

|u±z |2 − 2ψ(z).

Now, we express the test function as well as the distribution function in terms of
the new variables. We define Du = {(z, uz) ∈ R

− ×R ; |uz|2/2−ψ(x, z, t) ≥ 0}, then
let ϕ ∈ C1

c (Du) such that

{

ϕ(0, uz) = ϕ(0,−uz), ∀ uz ∈ R,

ϕ(z,−
√

2ψ(z)) = ϕ(z,
√

2ψ(z)), ∀ (x, z, t).
(3.16)

Since u±z (0, vz) = vz and u+
z (z, 0) =

√

2ψ(z) and u−z (z, 0) = −
√

2ψ(z), we can
choose ϕ̃(z, vz) = ϕ(z, uz(z, vz)) where uz(z, vz) = u+(z, vz) if vz ≥ 0 and u−(z, vz)
otherwise. Remarking that ∂zϕ̃ = ∂zϕ+ (∂zψ/uz) ∂uz

ϕ and ∂vz
ϕ̃ = (vz/uz) ∂uz

ϕ, we
obtain:

∫

Du

f(x, v, z, uz, t)uz ∂zϕ(z, uz) duz dz = 0, (3.17)

for all ϕ ∈ C∞
c (Du) such that ϕ(0, uz) = ϕ(0,−uz) for all uz and ϕ(z,−

√

2ψ(z)) =

ϕ(z,
√

2ψ(z)) for all z and where f is given by f(x, v, z, uz, t) = f(x, z, v, vz, t).
This gives

∂zf = 0,

for almost all (z, uz) ∈ Du and almost all (x, v, t) ∈ R
2 ×R

2 ×R
+ since in Du, uz 6= 0

almost everywhere. So f does not depend on z almost everywhere in R
2×R

2×Du×R
+.
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Now let us prove that f is even with respect to the variable uz. We recall that
thanks to Assumption 1, for all x ∈ R

2 and t ≥ 0, the function z 7→ ψ(x, z, t) is one
to one from R

− onto R
+. Then, using Fubini’s Theorem, Eq. (3.17) can be rewritten

∫

R

f(x, v, uz, t)uz

∫ 0

Z(x,|uz|2/2,t)

∂zϕ(z, uz) dz duz

=

∫

R

f(x, v, uz, t)uz

(

ϕ(0, uz) − ϕ(Z(x, |uz|2/2, t), uz)
)

duz = 0,

where Z is defined by (3.10).
Now, we choose ϕ(z, uz) = z ϕ(uz) with ϕ ∈ C1

c (R) and ϕ even. We note that
this function is admissible since it satisfies (3.16). Then we have

∫

R

f(x, v, uz, t)uz Z(x, |uz|2/2, t)ϕ(uz) duz = 0.

Using the change of variables uz 7→ −uz from R
+ onto R

−, we obtain

∫ 0

−∞

Z(x, |uz|2/2, t)uz
(

f(x, v, uz, t) − f(x, v,−uz, t)
)

ϕ(uz) duz = 0

for all ϕ ∈ C1
c (R

−). This means that uz 7→ f(x, v, uz, t) is almost everywhere even.
So, there exists F ∈ L∞(R2 × R

2 × R
+ × [0, T ]) for all T > 0 such that

f(x, z, v, vz, t) = f(x, v, uz, t) = F (x, v, |uz|2/2, t)

for almost all (x, v, t) ∈ Ω × R
3 × R

+. This concludes the proof of (3.5).

Proof of (3.7):
In (3.2) we choose an even test function with respect to the variable vz and we use
the change of variables vz 7→ −vz from R

− onto R
+, this gives

∫

Ω×R2×R+×R+

(

fα(vz)+f
α(−vz)

)(

∂t+v ·∇x−∇x(φ0+ψ)·∇v

)

ϕdx dv dvz dt (3.18)

+
1

α

∫

Ω×R2×R+×R+

(

fα(vz) − fα(−vz)
)(

vz ∂z − ∂zψ ∂vz

)

ϕ dx dv dvz dt

+

∫

Ω×R2×R+

(

f0(vz) + f0(−vz)
)

ϕ(x, v, vz, 0) dx dv dvz = 0

for all ϕ ∈ C1
c (Ω̄ × R

2 × R
+ × R

+),
We introduce the total transverse energy εz defined by (3.6). It defines a change

of variables:

R
+ → [ψ(x, z, t),+∞)
vz 7→ εz = |vz|2/2 + ψ(x, z, t).

(3.19)

In (3.18) we choose test functions depending on vz only through the transverse total
energy, that is ϕ(x, z, v, vz, t) = ϕ̃(x, v, z, εz, t) for all (x, z, v, vz, t) ∈ Ω̄×R

2×R
+×R

+.
Note that ϕ ∈ C1

c (Ω × R
2 × R

+ × R
+) is equivalent to ϕ̃ ∈ C1

c (R
2 × R

2 × Dε × R
+)

where Dε = {(z, εz) ∈ R
− × R

+ ; εz − ψ(x, z, t) ≥ 0}.
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Using the change of variables (3.19), Eq. (3.18) becomes

∫

R2×R2×Dε×R+

(

fα(vz) + fα(−vz)
)

×

×
(

∂t + v · ∇x −∇x(φ0 + ψ) · ∇v +
(

∂tψ + v · ∇xψ
)

∂εz

)

ϕ̃ dx dv dz
dεz
vz

dt

+
1

α

∫

R2×R2×Dε×R+

(

fα(vz) + fα(−vz)
)

∂zϕ̃ dx dv dz dεz dt

+

∫

R2×R2×Dε

(

f0(vz(x, z, εz, 0)) + f0(−vz(x, z, εz, 0))
)

ϕ̃ dx dv dz
dεz

vz(x, z, εz, 0)
dt = 0,

with vz = vz(x, z, εz, t) =
√

2 (εz − ψ(x, z, t)).
We recall that Z(x, εz, t) is defined by (3.10). Then using Fubini’s Theorem,

choosing as a test function ϕ̃(x, z, v, εz, t) = ϕ̄(x, v, εz, t) where ϕ̄ ∈ C1
c (R

2 × R
2 ×

R
+ × R

+), we obtain

∫

R2×R2×R+×R+

(

∫ 0

Z(x,εz,t)

fα(vz) + fα(−vz)
√

2(εz − ψ(x, z, t))
dz

)

(

∂t+v·∇x−∇xφ0·∇v

)

ϕ̄ dx dv dεzdt

+

∫

R2×R2×R+×R+

[

−
(

∫ 0

Z(x,εz,t)

fα(vz) + fα(−vz)
√

2(εz − ψ(x, z, t))
∇xψ(x, z, t) dz

)

· ∇vϕ̄

+

(

∫ 0

Z(x,εz,t)

fα(vz) + fα(−vz)
√

2(εz − ψ(x, z, t))

(

∂tψ + v · ∇xψ
)

dz

)

∂εz
ϕ̄

]

dx dv dεz dt

+

∫

R2×R2×R+

(

∫ 0

Z(x,εz,0)

f0(vz(x, z, εz, 0)) + f0(−vz(x, z, εz, 0))
√

2(εz − ψ(x, z, 0))
dz

)

ϕ̄ dx dv dεz = 0.

We pass to the limit α tends to zero in the previous equality, using (3.4) and (3.5).
This gives, for all ϕ̄ ∈ C1

c (R
2 × R

2 × R
+ × R

+):

∫

R2×R2×R+×R+

F Nz

(

∂t + v · ∇x −∇xφ0 · ∇v

)

ϕ̄ dx dv dεz dt+

∫

R2×R2×R+×R+

F Nz

(

− < ∇xψ > ·∇vϕ+
(

< ∂tψ > +v· < ∇xψ >
)

∂εz
ϕ̄
)

dt dεz dv dx

+

∫

R2×R2×R+

Nz(x, εz, 0)F0(x, v, εz) ϕ̄(x, v, εz, 0) dx dv dεz = 0,

where Nz is the density of states and is given by (3.11), and where < ∇xψ > and
< ∂tψ > are defined by (3.8), finally F0 is the function given by (3.13).

This is the weak form of (3.7) and (3.12) and concludes the proof of Theorem 3.2.

4. The formal asymptotic limit for charged particles. In this section, we
are interested in the formal limit of problem (2.8), (2.7), (2.9) and (2.10) for charged
particles. In this case the potential is no longer given but has to be calculated using the
Poisson equation. The problem becomes non linear with respect to the distribution
function, since the potential depends linearly on the particle distribution function.
This section is organized as follows. In Section 4.1, we present the Vlasov-Poisson
model in dimensionless variables. In Section 4.2 we formally pass to the limit in the
re-scaled problem and then we derive the asymptotic model in the non linear case.
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4.1. The Vlasov-Poisson model in physical and re-scaled variables. We
are interested in the motion of trapped charged particles in a surface potential and
subject to collisions with this surface. We are interested in the asymptotic model
obtained when the specular collisions are the dominant collision process on the surface
and when the applied potential confines the particles close to the surface.

Then we consider the Vlasov equation for the particle distribution function in
physical variables

∂tf + v · ∇xf − q

m
∇x(φ+ φs) · ∇vf = 0,

for all x = (x, z) ∈ Ω = R
2×(−∞, 0), all v = (v, vz) ∈ R

3, all t ∈ R
+ and where q and

m are respectively the charge and the mass of the particles and φ is a given external
potential. It is coupled to the Poisson equation for the self-consistent potential

−ε0∆xφs = q

∫

R3

f(v) dv, (4.1)

for (x, t) ∈ Ω × R
+ and where ε0 is the vacuum permittivity.

We add to this system some boundary and initial conditions for the Vlasov equa-
tion

f(t = 0) = f0, in Ω × R
3

γ−(f)(vz) = β Sγ+(f)(vz) + (1 − β)Kγ+(f)(vz), for vz < 0,

where f0 is a given function and where we recall that γ+(f) and γ−(f) are the
incoming and outgoing traces of f on ∂Ω = R

2 × {0}. Furthermore S and K are the
surface collisions operators given by (2.4) and (2.5) and β is the probability for an
incoming particle on the surface ∂Ω to be re-emitted specularly.

Finally, we must specify the boundary conditions for the Poisson equation. Several
choices are possible, they depend on the considered physical problem. Here we choose
an homogeneous Neumann boundary condition on the surface ∂Ω for which we have
an analytic solution, then we set:

{

∂zφs(x, 0, t) = 0 for (x, t) ∈ R
2 × R

+,
lim

|x|→+∞
φs(x, t) = 0 for t ∈ R

+.

We recall that in the regime we are interested in, the external potential φ confines the
particles close to the surface ∂Ω. Then as in the linear case (see Section 3) we denote
by L‖ and L⊥ the characteristic lengths respectively in the parallel and transverse
directions and we assume α = L⊥/L‖ is a small dimensionless parameter. We assume
the specular collisions dominant on the surface. Then we set β = 1 − α. We denote
by φc, vc =

√

|q φc|/m, tc = L‖/vc and fc the characteristic potential, velocity, time
and distribution function. We introduce a re-scaling for the Vlasov-Poisson system
denoted by x̂ = (x̂, ẑ), v̂ and t̂ being defined by (2.6). We suppose that there exist f̂0
and φ̂, independent of α such that:

φ(x, t) = φc φ̂(x̂, t̂), for (x, t) ∈ Ω × R
+,

f0(x, v) = fc f̂0(x̂, v̂), for (x, v) ∈ Ω × R
3.

Finally following [7], we remark that the Poisson equation is a non local operator.
Thus the support of the self-consistent potential is not necessarily of the same order
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as the support of the distribution function. Then we define fα and φαs by

f(x, v, t) = fc f
α(x̂, v̂, t̂) for (x, v, t) ∈ Ω × R

3 × R
+,

φs(x, t) = φc φ
α
s (x̂, αẑ, t̂) for (x, t) ∈ Ω × R

+.

This new scale leads to a dimensionless parameter λ. It is the ratio of two densities
and is defined by

λ = fc v
3
c

q |L‖|2
ε0 φc

Since, the particles are confined close to the surface, all the mass is localized in a
small volume near ∂Ω. Then, the number of particles is very large in the domain
and we assume that α fc v

3
c = ε0 φc

q |L‖|2
, that is λ = 1/α. Inserting this new scale in

the Vlasov-Poisson system and omitting the “hats”, we obtain the re-scaled Vlasov
equation for the particle distribution function

∂tf
α(z) + v ·∇xf

α(z)−
(

∇xφ(z) +∇xφ
α
s (α z)

)

·∇vf
α(z)− ∂zφ

α
s (α z) ∂vz

fα(z)(4.2)

+
1

α

(

vz ∂zf
α(z) − ∂zψ(z) ∂vz

fα(z)
)

= 0,

where φ is a given external potential and ψ is its transverse component defined
by (2.7). It is coupled to the re-scaled Poisson equation

−∆xφ
α
s (x, α z, t) − ∂2

zzφ
α
s (x, α z, t) =

1

α

∫

R3

fα(x, z, v, t) dv, (4.3)

for (x, z) ∈ Ω and all t ≥ 0.
The boundary and initial conditions are given by

γ−(fα)(vz) = (1 − α)Sγ+(fα)(vz) + αKγ+(fα)(vz), for vz < 0, (4.4)

∂zφ
α
s (z = 0) = 0 on ∂Ω × R

+, (4.5)

lim
|x|→+∞

φαs (x, ·) = 0 in R
+, (4.6)

fα(t = 0) = f0, in Ω × R
3, (4.7)

where S is given by (2.4) and K by (2.5).

4.2. The formal non linear asymptotic limit. In this section we present the
asymptotic model obtained by formally passing to the limit α→ 0 in (4.2)-(4.7).

Theorem 4.1 (Formal). Let α > 0, f0 and φ be given functions, we denote by φ0

and ψ the parallel and transverse components of φ defined by (2.7). We suppose that
ψ satisfies Assumption 1. Let fα, φαs be the solutions to the re-scaled Vlasov-Poisson
model (4.2)-(4.7). Then, the formal limit α→ 0 gives fα → f and φαs → φs where

f(x, v, t) = F (x, v, εz, t), (4.8)

with εz defined by (3.6) and where F satisfies, for (x, v, εz, t) ∈ R
2 × R

2 × R
+ × R

+,

∂t(NzF ) + v · ∇x(NzF ) −
(

∇xφ̃s + ∇xφ0+ < ∇xψ >
)

·∇v(NzF ) (4.9)

+∂εz

((

< ∂tψ > +v· < ∇xψ >
)

Nz F
)

= K(F ) − F,
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where Nz is the density of states given by (3.11), the function φ̃s is the trace of the
self consistent potential φs on the surface ∂Ω, that is for all t ≥ 0 we have



























φ̃s(x, t) = φs(x, 0, t), for all x ∈ R
2,

−∆x,zφs = 0, in R
2 × (−∞, 0),

∂zφs(x, 0, t) = ρ(x, t), for all x ∈ R
2,

lim
|(x,z)|→+∞

φs(x, z, t) = 0,

(4.10)

where the density of particles is given by

ρ(x, t) =

∫

R2×R+

Nz(x, εz, t)F (x, v, εz, t) dεz dv.

For all functions g from R
− into R

n (n ≥ 1), < g > is the mean value of g in the
transverse direction and is given by (3.8).
Finally the operator K is a collision operator which takes into account the non specular
part of surface collisions. It is such that:

K(F )(x, v, εz, t) =

∫

R2

∫ +∞

0

K
(

(v′,
√

2 ε′z), (v,−
√

2 εz)
)

F (x, v′, ε′z, t) dε
′
z dv

′,

(4.11)
for all (x, v, εz, t) ∈ R

2 × R
2 × R

+ × R
+.

Remark 3. Let us assume that x 7→ ρ(x, t) =
∫

Nz F dεz dv is in L1(R2) for all

t ≥ 0. We introduce, for all t ≥ 0 the function V ∈W 1,1
loc (R2 × R) defined by

V (x, z) =
2

4π

∫

R3

δ(z′) ρ(x′, t)
√

|x− x′|2 + |z − z′|2
dz′ dx′ =

1

2π

∫

R2

ρ(x′, t)
√

|x− x′|2 + |z|2
dx′,

(4.12)
for all (x, z) ∈ R

3 and where δ is the Dirac delta distribution. This function satisfies
the following elliptic problem:

{

−∆x,zV = 2 δ(z) ρ(x, t), for (x, z) ∈ R
2 × R,

lim
|(x,z)|→+∞

V = 0.

Now, remark that V is symmetric that is V (x, z) = V (x,−z) for all (x, z) ∈ R
3. Then,

choosing a symmetric test function in the weak formulation of the previous problem,
we obtain

∫

R2×R−

∇x,zV (x, z) · ∇x,zϕ(x, z) dx, dz −
∫

R2

ρ(x, t)ϕ(x, 0) dx = 0,

for all ϕ ∈ C∞
c (R2 × R

−). This is the weak formulation of (4.10) and then

φs = V|R2×R− . (4.13)

Remark that φs ∈ W 1,1
loc (R2 × R

−) for all t ≥ 0 and then the trace of φs exists in

L1(∂Ω) that is φs(x, 0, t) = φ̃s(x, t) exists for almost all (x, t) ∈ R
2 × R

+.
It is important to note that this L1 regularity is not sufficient to ensure the exis-

tence of a weak solution to the system (4.9), (4.10). This existence result is the first
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step of the rigorous proof. Then, like in [14] for the case of the whole space, some
additional estimates are needed.

Proof of Theorem 4.1: (formal)
Let α > 0 and fα, φαs be the solutions to (4.2)-(4.7). We assume that φαs tends to φs
and fα tends to f when α tends to 0.

The proof of (4.8) is similar to that of (3.2), (3.5) in Theorem 3.2. Then we do
not detail it. Let us prove (4.9). For all x ∈ R

2, z ∈ R
−, vz ∈ R, and t ≥ 0 we define

εz by (3.6). Let ε′z ∈ [0,+∞), we multiply (4.2) by δ(εz − ε′z) and we integrate the
result on R

− × R with respect to z and vz, we obtain

Bα1 +Bα2 = 0, (4.14)

where

Bα1 =

∫

R−×R

[

∂t + v ·∇x +
(

∇xφ(z) + ∇xφ
α
s (α z)

)

·∇v + ∂zφ
α
s (α z) ∂vz

]

×

×fα(z) δ(εz − ε′z) dvz dz,

and

Bα2 =
1

α

∫

R−×R

(

vz ∂zf
α(z) + ∂zψ(z) ∂vz

fα(z)
)

δ(εz − ε′z) dvz dz.

Now, using the same arguments as in Remark 3, we can prove that φαs (x, z, t) =
V α(x, z, t) where for all t ≥ 0, V α(·, ·, t) is the solution to







−∆x,zV
α(x, z, t) =

1

α
ρα(x, z/α, t), for (x, z) ∈ R

3,

lim
|(x,z)|→+∞

V α = 0,

with ρα(x, z, t) =
∫

R3 f
α(x, z, v, t) dv if z ≤ 0 and ρα(x, z, t) =

∫

R3 f
α(x,−z, v, t) dv

otherwise.
An easy calculation gives

∂zφ
α
s (x, α z, t) =

α

4π

∫

R2×R−

(∫

R3

fα(x, z, v, t) dv

)

×






z − z′
(

|x− x′|2 + |αz − αz′|2
)3/2

+
z + z′

(

|x− x′|2 + |αz + αz′|2
)3/2






dx′ dz′,

and then, we remark that

lim
α→0

∂zφ
α
s (α z) = 0.

Passing to the limit α → 0 in Bα1 , using Remark 1 as well as definitions (3.8)
and (3.11), we obtain (see the proof of (3.7) for more details)

lim
α→0

Bα1 =
[

∂t + v · ∇x −
(

∇xφs(x, 0, t)+ < ∇xφ > (x, t)
)

·∇v

]

(Nz F )(x, v, ε′z, t)

+∂εz

((

< ∂tψ > (x, t) + v· < ∇xψ > (x, t)
)

Nz F
)

(x, v, ε′z, t).
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It remains to pass to the limit in Bα2 . We denote by f̄α the function defined by
fα(x, z, v, vz, t) = f̄α(x, z, v, uz, t) for all (x, z) ∈ Ω, all v ∈ R

3 and all t ≥ 0. We
begin by transforming Bα2 with the changes of variables (3.15) and we use Fubini’s
Theorem. We obtain

Bα2 =
1

α

∫

R

[

∫ 0

Z(x,|uz|2/2,t)

∂z f̄α(z, uz) dz

]

δ(|uz|2/2 − ε′z)uz duz.

This can be rewritten, using the change of variables uz 7→ −uz,

Bα2 =
1

α

∫ +∞

0

[

γ+(f̄α)(uz)−f̄α(Z(|uz|2/2), uz)−γ−(f̄α)(−uz)+f̄α(Z(|uz|2/2),−uz)
]

δ(|uz|2/2 − ε′z)uz duz.

Let us remark that z = Z(|uz|2/2) ⇔ ψ(z) = |uz|2/2 ⇔ vz = 0. Then

f̄α(Z(|uz|2/2), uz) = fα(Z(|uz|2/2), 0) = f̄α(Z(|uz|2/2),−uz).

Furthermore, if z = 0, we have ψ(0) = 0 and then uz = vz. So γ+(f̄α)(uz) =
γ+(fα)(uz) and γ−(f̄α)(−uz) = γ−(fα)(−uz) for all uz > 0. Using boundary condi-
tion (4.4) and definition (2.4), we deduce

Bα2 =

∫ +∞

0

(

K(γ+(fα))(−uz) − γ+(fα)(uz)
)

δ(|uz|2/2 − ε′z)uz duz.

Letting α tend to zero, using (4.8) and the change of variables uz 7→ εz = |uz|2/2
from R

+ to R
+, we get

lim
α→0

Bα2 =

∫ +∞

0

(

K(F )(−
√

2 εz) − F (εz)
)

δ(εz − ε′z) dεz = K(F )(−
√

2 ε′z) − F (ε′z),

where K(F ) is given by (4.11). We conclude the proof of (4.9) by passing to the limit
in (4.14).

Now, we turn to the proof of (4.10). Let φαs be the solution to the re-scaled
Poisson equation (4.3), (4.5), (4.6). It satisfies the weak formulation
∫

R2×R−

∇xφ
α
s (x, α z, t) · ∇xϕ(x, z) dx dz +

1

α

∫

R2×R−

∂zφ
α
s (x, α z, t) ∂zϕ(x, z) dx dz

=
1

α

∫

R2×R−

ρα(x, z, t)ϕ(x, z) dx dz,

for all ϕ ∈ C∞
c (R2 × (−∞, 0]) and where ρα =

∫

R3 f
α dv.

Let ϕ̄ ∈ C∞
c (R2 × (−∞, 0]). In the weak formulation, we choose ϕ(x, z, t) =

ϕ̄(x, α z) for all (x, z) ∈ R
2 × R

−. In the left hand side term, we use the change of
variables z 7→ z̄ = α z. Omitting the “overhead bars”, we obtain
∫

R2×R−

∇(x,z)φ
α
s (x, z, t) · ∇(x,z)ϕ(x, z) dx dz =

∫

R2×R−

ρα(x, z, t)ϕ(x, α z) dx dz.

Passing to the limit α→ 0 yields
∫

R2×R−

∇(x,z)φs(x, z, t) · ∇(x,z)ϕ(x, z) dx dz =

∫

R2

∫

R−×R3

f(x, z, v, t) dv dz ϕ(x, 0) dx.
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Now, using (4.8) and change of variables (3.19), we remark that

∫

R−

∫

R3

f(x, z, v, vz, t) dv dz =

∫

R2

∫

R−×R

F (x, v, |vz|2/2 + ψ(z), t) dvz dz dv

=

∫

R2×R+

Nz F (x, v, εz, t) dεz dv = ρ(x, t).

Then for all ϕ ∈ C∞
c (R2 × (−∞, 0]), φs satisfies

∫

R2×R−

∇(x,z)φs(x, z, t) · ∇(x,z)ϕ(x, z) dx dz −
∫

R2

ρ(x, t)ϕ(x, 0) dx = 0.

This means that φs is the weak solution to (4.10) and this concludes the proof of
Proposition 4.1.

5. Numerical simulations of a surface discharge. In this section, we are
interested in a physical application for which we can use the previous asymptotic
model and perform numerical simulations. The physical application concerns surface
discharges. These phenomena occur during the triggering of electrical arcs on high
voltage satellite solar generators.

This section is organized as follows: we begin with the presentation of the physical
scenario and of the model. Then we describe the numerical discretization. We finish
with the presentation of the numerical results.

5.1. The physical scenario of the discharge. Satellite solar arrays are con-
stituted of strings of photoelectric cells. Each string contains several tens of cells
and deliver about 50 volts. In order to respond to high power demands, constructors
increase the number of cells and so the voltage. When this voltage exceeds 50 volts
some electrical arcs may occur and damage the satellite. According to the literature
(see [11, 12]), there are two main steps in the physical process. First, a primary
discharge occurs and creates a high density plasma in the gap separating two solar
cells. When the potential difference between the two solar cells is sufficient and when
the plasma has filled the gap, an electrical arc appears. Here, we want to describe
the beginning of the process that is the primary discharge. We consider the model
geometry, in two space dimensions, drawn in Figure 5.1. Following [11], we assume

����������������
����������������
����������������
���������������� z

V = 0
Conductor

L

x = Parallel direction

Conductor

Triple point

V = 1000 volts
+ + + + +Electrons

trajectory

=Transverse
direction

Dielectric

Insulating substrate (kapton)

Dielectric

Fig. 5.1. Side view of the three dimensional model geometry of the device

that the primary discharge is due to a differential charging of the dielectric surface
and of the conducting media (semiconductor or metallic interconnectors). Indeed
the plasma environment of the satellite contributes to positively charging the dielec-
tric surface compared with the conductor with potential difference ranging up to 1000
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volts. This large electric field triggers an enhanced field electron emission at the triple
point. This local increase of the electric field has two origins: the contact between
metallic parts, dielectric and vacuum and the presence of micro-dielectric impurities
at the triple point. Due to the electric field parallel to the dielectric boundary, the
emitted electrons reach the top of the dielectric. On their way, they are attracted
by the positive potential of the surface and collide with it. These collisions generate
secondary electrons from the dielectric surface as well as desorbed neutral particles.
Furthermore, during their way to the top of the dielectric, the electrons collide with
the neutral particles and create some ions. Due to the increase of the electron density
by secondary emission, an avalanche breakdown occurs and generates a high density
plasma.

5.2. The mathematical model. The above described physical situation is an
ideal example to apply our transport theory of trapped particles in a surface potential
as presented in Section 4. However, additionally we must describe models for the
enhanced field electron emission and the secondary emission process. This is a first
step towards a description of the whole primary discharge. In Section 5.2.1, we scale
Eqs (4.9), (4.10) back to physical dimensions . We make several assumptions in order
to obtain a simplified one dimensional model (phenomenon independent of one parallel
component, external transverse potential only depending on transverse components).
We precise the non-specular surface collision operator in Section 5.2.2 by describing
electron secondary emission at the surface. Finally, in Section 5.2.3 we complete the
model by specifying the initial and boundary conditions.

5.2.1. The electron transport equation. We begin with the presentation of
the asymptotic model in physical variables.

Let L > 0 be the height of the dielectric lateral surface (see Figure 5.1), in this
section, we denote by x = (x, z) = ((x1, x2), z) ∈ [0, L] × [0, L] × R

− the position and
by v = (v, vz) = ((v1, v2), vz) ∈ R

2×R the velocity (see Figure 5.2). Let φ be the given

���������
���������
���������
���������

���������
���������
���������
���������

x2

x1
z

Insulating substrate (kapton)

DielectricDielectric

Fig. 5.2. Above view of the three dimensional model geometry of the device

external potential. We denote by φ0 and ψ its parallel and transverse components
defined by (2.7). On account of the negative electron charge, Assumption (1) becomes

Assumption 2. For all (x, t) ∈ R
2 ×R

+, the function z ∈ R
− 7→ ψ(x, z, t) ∈ R

−

is increasing, continuous and satisfies limz→−∞ ψ(x, z, t) = −∞.

Note that thanks to (2.7), Assumption 2 implies that ψ(z) ≤ 0 for all z ≤ 0.

Let f be the distribution function of electrons , we set

Nz(x, εz, t)F (x, v, εz, t) =

∫

R×R−

f(x, z, v, vz, t) δ(m |vz|2/2 − eψ(x, z, t) − εz) dvz dz,

where e > 0 is the elementary charge, m is the electron mass and where the density
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of states in physical variables Nz is given by (see Remark 1 for details)

Nz(εz) =

∫

R×R−

δ(m |vz|2/2 − eψ(x, z, t) − εz) dvz dz

=
2

m

∫ 0

Z(εz)

1
√

(2/m)(εz + eψ(z))
dz,

(5.1)
with Z defined by (3.10). Note that Nz F dx dv dεz is the number of electrons with
a parallel position in [x, x+ dx], a parallel velocity in [v, v + dv] and total transverse
energy in [εz, εz + dεz].
Using (4.9) and re-scaling the problem in order to express it in physical variables, F
satisfies:

∂t(NzF ) + v · ∇x(NzF ) +
e

m

(

∇xφ̃s + ∇xφ0+ < ∇xψ >
)

·∇v(NzF )

+
(

< ∂tψ > +v· < ∇xψ >
)

∂εz
(NzF ) =

1

m
(K(F ) − F ).

Operator K models electron secondary emission and is given by (4.11) where K is
precised in Section 5.2.2. The function φ̃s is the trace of the self consistent potential
on the dielectric surface and is given later.

In order to simplify the model, we make the following assumptions:

Assumption 3.
1. The functions F , φ0, ψ and φs are independent of the variable x2.
2. For an incident electron on the surface with the velocity (v′,

√

2 εz/m), the
number of secondary electrons re-emitted with a parallel velocity in [v, v+ dv]
and a transverse energy in [εz, εz+dεz] is given by K((v′,

√

2 ε′z), (v,−
√

2 εz))
dv dεz. We assume this number is independent of v2.

3. The transverse component of the external potential ψ is independent of the
variables x and t.

Note that the third assumption implies that the density of states Nz is indepen-
dent on x and t. Then, using Assumptions 3, setting x = x1, v = v1 and still denoting
by F the moment

∫

R
F (v2) dv2, we obtain

∂t(NzF ) + v ∂x(NzF ) +
e

m
∂x

(

φ0 + φ̃s

)

∂v(NzF ) =
1

m
(K(F ) − F ), (5.2)

for all x ∈ [0, L], v ∈ R, εz ∈ R
+ and t ≥ 0 and where the density of states Nz is

given by (5.1).
Now we remark that the variable εz is only a parameter in Eq. (5.2). The particles

have a constant transverse energy during their way to the top of the dielectric. Then
the integral of F in the transverse direction: G(x, v, t) =

∫

R
Nz(εz)F (x, v, εz, t) dεz

appears as a natural unknown. After integration with respect to εz of (5.2) the left
hand side becomes an equation for G. In order to close the problem, we need to
express the right hand side in terms of this new unknown. Then, we assume that, due
to a large number of collisions, the transverse energy can be approximated by half the
temperature of the parallel motion, that is:

Assumption 4. We assume that F satisfies

F (x, v, εz, t) =
δ (εz − kBT (x, t)/2)

Nz(kBT (x, t)/2)
G(x, v, t),
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where kB is the Boltzmann constant and T is the temperature of the parallel motion
given by

kBT =
1

ρ

∫

R

m |v − u|2Gdv, (5.3)

with the electron density, ρ, and mean velocity, u, given by

ρ =

∫

R

Gdv and u =
1

ρ

∫

R

v Gdv. (5.4)

Under this assumption we obtain the following model for the moment G:

(

∂t + v∂x +
e

m
∂x(φ0 + φ̃s) ∂v

)

G = Q(x, v, t), (5.5)

for all (x, v, t) ∈ [0, L] × R × R
+ and where the collision operator Q is given by

Q(x, v, t) =
1

m

∫

R+

(

K(F )(v, εz) − F (v, εz)
)

dεz. (5.6)

The function φ̃s is the trace on the dielectric surface of the self-consistent poten-
tial φs. For all t ≥ 0, we have:































φ̃s(x, t) = φs(x, 0, t), for all x ∈ [0, L],

−∆x,zφs = 0, in [0, L] × (−∞, 0),

∂zφs(x, 0, t) =
e

εD
ρ+(x, t) − e

ε0
ρ(x, t) for all x ∈ [0, L],

lim
|(x,z)|→+∞

φs(x, z, t) = 0,

(5.7)

where ε0 and εD are respectively the vacuum and the dielectric permittivities. The
electron density ρ is given by (5.4). Finally ρ+ is the density of the positive charges
created on the surface when a secondary electron is emitted. It is given by

∂ρ+

∂t
=

∫

R

Q(x, v, t) dv. (5.8)

For the closure of the model, we have to specify the collision operator which
describes electron secondary emission and the initial and boundary conditions for the
transport equation (5.2). We discuss these points in the following sections.

5.2.2. The electron secondary emission operator. In this section, we pre-
cise the collision operator Q given by (5.6) where K is given by (4.11). This operator
models electron secondary emission on the surface ∂Ω = [0, L] × {0}. We have to
express the number of re-emitted secondary electrons, K, in terms of the unknown G.

Let us first consider an incident electron arriving on the surface with the parallel
velocity (v, v2) ∈ R

2 and the transverse energy εz ∈ R
+. In [11] the mean yield, Nm,

that is the mean number of re-emitted electrons after a collision with the surface for
an incident electron, is fitted to the following formula

Nm(v, εz) = Nmax
εcin
εmax

exp

(

2 − 2

√

εcin
εmax

)

exp (2 (1 − cos θ)) (5.9)
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where Nmax and εmax are given real number. Nmax is the mean yield for an in-
coming electron with a normal trajectory (θ = 0) and an energy εmax, and cos θ =
√

2 εz/m/
√

|v|2 + 2 εz/m is the cosine of the angle between the normal vector of the
surface and the electron velocity. Finally εcin = m |v|2/2+m |v2|2/2+εz is the kinetic
energy of the incident electron.

Since in our model, we have removed the v2 component of the velocity, we need
to make a certain number of assumptions in order to construct a collision operator K
from model (5.9). First, we approximate the velocity v2 by the thermal velocity:

m |v2|2 = kBT (x, t), (5.10)

where kBT is given by (5.3).
Then, we make the following assumptions

Assumption 5.
1. A fraction χ ∈]0, 1[ of the incident electron energy is transferred to the sec-

ondary emission.
2. The number of re-emitted electrons per incident electron equals the mean yield

Nm.
3. For an incoming electron of parallel velocity v and transverse energy εz, if

Nm ≥ χ then we assume that χ/2 electrons are re-emitted with the same par-
allel velocity v and the same transverse energy εz, χ/2 electrons are re-emitted
with parallel velocity −v and transverse energy εz and Nm − χ electrons are
re-emitted with a parallel velocity (0, 0) and zero transverse energy. If Nm < χ
then we suppose that Nm/2 electrons are re-emitted with the same parallel ve-
locity v and the same transverse energy εz and Nm/2 electrons are re-emitted
with parallel velocity −v and transverse energy εz.

This yields to

K
(

(v′,
√

2 ε′z), (v,−
√

2 εz)
)

= 1l(N ′
m,+∞)(χ)

N ′
m

2

(

δ(v′ − v) + δ(v′ + v)
)

⊗δ(ε′z − εz)

+1l[0,N ′
m](χ)

[χ

2

(

δ(v′ − v) + δ(v′ + v)
)

⊗δ(ε′z − εz) +
(

N ′
m − χ

)

δ(v) ⊗ δ(εz)
]

,

where N ′
m = Nm(v′, ε′z) and where 1lA is the indicator function of the set A ⊂ R.

Using (4.11), Assumption 4 and (5.6), we obtain the following collision operator:

Q(x, v, t) = ν

(

γ(v, kB T )
(

G(v) +G(−v)
)

−G(v) + δ(v)

∫

R

γ0(v
′, kB T )G(v′) dv′

)

,

(5.11)
where the collision frequency, ν, is defined by

ν =
1

mNz(kBT/2)
,

and

γ0(v
′, kB T ) = 1l[0,N ′

m](χ) (N ′
m−χ), γ(v, kB T ) = 1l(Nm,+∞)(χ)

Nm

2
+1l[0,Nm](χ)

χ

2
,

with the following definitions for the mean yields Nm = Nm(v, kBT ) and N ′
m =

Nm(v′, kBT ):

Nm(v, kBT ) = Nmax
mv2/2 + kBT

εmax
exp



2 − 2

√

mv2/2 + kBT

εmax



 exp (2 (1 − cos θ)) ,
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changing v into v′ for the definition of N ′
m, and where cos θ =

√
kBT/

√

m|v|2 + kBT
is the cosine of the angle between the normal vector to the surface and the electron
velocity.

5.2.3. The initial and boundary conditions for the transport equation.
At the beginning of the process there is no electron in the gap and no positive charge
created on the surface, so the initial conditions are given by

G(t = 0) = 0 and ρ+(t = 0) = 0. (5.12)

At the point x = L we assume that no particle enters the domain. Then for all t ≥ 0

G(L, v, t) = 0, for all v < 0. (5.13)

Now, we want to precise the incoming electron flux in the domain at the triple point
that is the electron distribution function at point x = 0 for v > 0. Following [11], we
suppose that there is an enhanced field electron emission at the triple point x = 0
due to the presence of dielectric impurities or due to the microscopic structure of the
conductor surface. Then the electron current intensity follows a Fowler-Nordheim law
(see [11]) given by

J(t) = A
(

β max(−E(0, t), 0)
)2

exp

(

B

β E(0, t)

)

(A/m2), (5.14)

with E(0, t) = −∂x(φ0 + φ̃s)(0, t), and where A and B are given constants. Finally
β is the field enhancement factor. It is fixed empirically and varies between 500 and
1000.

In order to close the model, we assume a Maxwellian distribution, then we set for
all v > 0:

F (0, v, εz, t) =

√

2m

π kB Tinj
ρinj(t) exp

(

−mv
2/2 + εz
kB Tinj

)

.

Using the relation G =
∫

R+ Nz(εz)F (εz) dεz, this gives for all v > 0, and all t ≥ 0,

G(0, v, t) = Glim(v, t) =

√

2m

π kB Tinj
ρinj(t) exp

(

−mv2/2

kB Tinj

)

, (5.15)

where kB is the Boltzmann constant, Tinj is the injection temperature. We suppose
a cold injection that is the injection temperature is chosen such that Tinj = 1 eV.
Finally ρinj is the injected density given by the formula

∫

R+

v Glim(v, t) dv =
J(t)

e
. (5.16)

5.3. The numerical method. In this section, we discretize the model given
in Section 5.2 using a Particle In Cell method (P.I.C.) (see [8], [13], [16], [19], [23]).
That is, we use a deterministic particle discretization for the Boltzmann equation (5.5)
and the Poisson equation (5.7) is solved using a Fourier series approximation. The
coupling of these discretizations is done through a fixed grid in order to introduce
some smoothing and decrease numerical oscillations.
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5.3.1. Principle of the scheme. Let 0 < t1 < · · · < tn < tn+1, · · · a sequence
of positive real points. For all n ≥ 0, we denote by ∆tn the difference between tn+1

and tn and we set tn+1/2 = tn+∆tn/2. A particle method (see [13], [16], [19]) for (5.5)
consists in approximating the distribution function G by a linear combination of Dirac
delta distributions centered on the numerical particles. During each time step ∆tn,
we have a finite given number In of numerical particles. They move in the phase
space along the characteristic curves of Eq. (5.5). We set

G(x, v, t) ≈ Gapp(x, v, t) =
∑

n≥0

In
∑

i=1

wiG
n
i 1l[tn,tn+1)(t) δ(x− xni ) ⊗ δ(v − v

n+1/2
i ),

where for all n ≥ 0 and all i ∈ {1, · · · , In}, wi is the control volume, in the phase

space (x, v), associated with the ith particle. The quantities xni , v
n+1/2
i and Gni are

the approximate position, velocity and weight of ith particle on the interval [tn, tn+1).
The calculation of Gin will be presented in Section 5.3.3. In our model, see Section 5.2,
the initial condition equals zero. Then all electrons come either from injection at the
triple point x = 0 or from collisions with the surface, through the electron secondary
emission process. For the ith particle, let us denote by tsi ∈ (tn)n≥0 the time of entry in
the domain [0, L] if the particle comes from injection and by tsi ∈ (tn)n≥0 its creation
time if it results from secondary emission. For both situations, we denote by xsi , v

s
i

and Gsi the position, velocity and weight of this particle at the time tsi . They will be
precised in Sections 5.3.2 and 5.3.3. We use a leapfrog scheme (see [19]) then we have

xn+1
i = xni + ∆tn v

n+1/2
i , v

n+1/2
i = v

n−1/2
i − ∆tn + ∆tn−1

2

e

m
Eni , (5.17)

for all n ≥ 0 such that tn ≥ tsi and all i ∈ {1, · · · , In} and where v
s−1/2
i = vsi and

∆ts−1 = 0. We denote by Eni the approximate electric field (E = −∂x(φ0 + φ̃s)) at
time tn and at position xni . We recall that φ0 is the parallel component of the given
external potential defined by (2.7) and φ̃s is given by (5.7).

We introduce a fixed grid in order to present the calculation of Eni . We consider
a uniform fixed grid of size ∆x on the spatial domain [0, L] with K cells Mk =
[Xk−1/2,Xk+1/2) = [(k − 1)∆x, k∆x) and we denote by Xk = (k − 1/2)∆x the
center of Mk for k = 1, · · · ,K. We use a C.I.C. scheme (Cloud in Cell) and a Fourier
approximation to solve (5.7) (see [8], [16], [19]). Thus we set for all n ≥ 0 and all
k = 1, · · · ,K

ρnk =

In
∑

i=1

wiG
n
i

∆x
W

(

xni −Xk

∆x

)

,

Enk = −∂xφ0(Xk, t
n) −

N
∑

p=0

e

(

ρn+,p
εD

− ρnp
ε0

)

cos

(

p πXk

L

)

,

where W (x) = 1 + x if −1 ≤ x ≤ 0, W (x) = 1 − x if 0 ≤ x ≤ 1 and W (x) = 0
otherwise. N ∈ N

⋆ is given and

ρnp =
K
∑

k=1

2ρnk
p π

[

cos(pπXk−1/2/L) − cos(pπXk+1/2/L)
]

.
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The same formula holds for the positive density ρn+,p with ρn+,k given by (5.19). We
interpolate the electric field on each particle position, by setting

Eni =

K
∑

k=1

Enk W

(

xni −Xk

∆x

)

.

It remains to discretize the boundary condition and the collision operator on the
surface. We do it in the next sections.

5.3.2. The boundary condition. For the discretization of the boundary con-
dition (5.15) at the point x = 0, we inject Ninj particles at each time tn+1/2. Then
we set

Glim(v, t) ≈ Glim,app(v, t) =
∑

n≥0

Ninj
∑

i=1

w̄ni G
n+1/2
lim,i δ(t− tn+1/2) ⊗ δ(v − v̄i),

where w̄ni is the control volume of the ith particle at time tn+1/2 in the space (v, t),

G
n+1/2
lim,i is an approximation of Glim(v̄i, t

n+1/2) and v̄i is the velocity of the ith injected
particle.

We choose uniformly distributed velocities with respect to the normalized Maxwel-
lian distribution. That is, we set

v̄i = g−1

(

i− 1/2

Ninj

)

, for all i = 1, · · · , Ninj ,

with g−1 the inverse function of the one to one function g from R
+ onto [0, 1[ defined

by g(v) =
√

2m
π kB Tinj

∫ v

0
exp(−mw2/(2 kB Tinj)) dw for all v ∈ R

+. Similarly, we

define v̄i+1/2 = 0 if i = 0, v̄i+1/2 = g−1(i/Ninj) if 1 ≤ i ≤ Ninj − 1 and v̄i+1/2 = +∞
if i = Ninj . Note that

∫ vi+1/2

vi−1/2
g′(v) dv = 1/Ninj and vi−1/2 ≤ v̄i ≤ vi+1/2.

Then, discretizing (5.15), we have

∫ tn+1

tn

∫ vi+1/2

vi−1/2

Glim,app(v, t) dt dv = w̄ni G
n+1/2
lim,i ≈

∫ tn+1

tn
ρinj(t

n+1/2) dt

∫ vi+1/2

vi−1/2

g′(v) dv =
∆tn ρinj(t

n+1/2)

Ninj
.

Combining this relation with a similar discretization of (5.16) yields to

w̄ni G
n+1/2
lim,i =

∆tn Jn

e
∑Ninj

j=1 v
n+1/2
j

,

where the approximate current flux, Jn, at the triple point x = 0 is given by discretiz-
ing (5.14), that is changing E(0, t) in En1/2.

We assume that the injected particles are not subject to collisions with the surface
between the time tn+1/2 and tn+1. Then using the leapfrog scheme, we obtain the

position and the velocity of the ith particle at time tn+1: v
n+1/2
i = v̄i, x

n+1
i =

∆tn v
n+1/2
i /2. Finally the product of its control volume and its weight at time tn+1

is given by wiG
n+1
i = v

n+1/2
i w̄ni G

n+1/2
lim,i .
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5.3.3. Surface collisions and positive charges. The surface collisions are de-
scribed by the electron secondary emission operator given by (5.11), then the particle
weights satisfy

dGi(t)

dt
=







ν (γi − 1)Gi(t) + ν γiGisym
(t) if vi(t) 6= 0,

ν (γi − 1)Gi(t) + ν γiGisym
(t) + ν

∑

j∈Ii(t)

γ0,j Gj(t) if vi(t) = 0,

(5.18)
where Gisym

is the weight of the symmetric particle that is the particle such that
visym

= −vi(t) and where Ii(t) is the set of particles with position xi(t) at time t.
Furthermore γi = γ(vi(t), kB Ti(t)) where Ti(t) is the temperature at time t and at
position xi(t). Finally γ0,j = γ0(vj(t), kB Ti(t)).

Let us remark that usually, in numerical simulations, the particle isym does not
exist in {1, · · · , In} (n ≥ 0 fixed). The same remark holds for the particles of Ii(t).
Then, we proceed as follows:

For all n ≥ 0 and all particles i ∈ {1, · · · , In}, we create at time tn: one particle

isym with position, velocity, control volume and weight given by xnisym
= xni , v

n−1/2
isym

=

−vn−1/2
i , wisym

= wi and Gnisym
= 0 at time tn and one particle i0 ∈ Ii(t

n) with

position, velocity, control volume and weight given by xni0 = xni , v
n−1/2
i0

= 0, wi0 = wi
and Gni0 = 0. These particles, i, isym and i0, move in the phase space during ∆tn,

then their positions at time tn+1 and their velocities at time tn+1/2 are given using
the leapfrog scheme (5.17). Using (5.18) and the property wi = wisym

= wi0 , their
weight will be given by



















wiG
n+1
i = wiG

n
i + ∆tn ν(Tni ) (γni − 1) wiG

n
i ,

wiG
n+1
isym

= ∆tn ν(Tni ) γni wiG
n
i ,

wiG
n+1
i0

= ∆tn ν(Tni ) γn0,i wiG
n
i ,

where Tni is defined by

Tni =

K
∑

k=1

Tnk W

(

Xk − xni
∆x

)

,

where the temperature and the mean velocity on the cell k are defined by

(

unk

Tnk

)

=
1

ρnk

In
∑

i=1





v
n+1/2
i

|vn+1/2
i − unk |2





wiG
n
i

∆x
W

(

Xk − xni
∆x

)

.

Furthermore if Nm(v
n+1/2
i , Tni ) > χ, γni = χ/2 and γn0,i = Nm(v

n+1/2
i , Tni ) − χ,

otherwise γni = Nm(v
n+1/2
i , Tni )/2 and γn0,i = 0.

Remark 4.
1. It is clear that wiG

n+1
isym

≥ 0 and wiG
n+1
i0

≥ 0 but it is possible that wiG
n+1
i <

0. In this case, we assume that the incident electron has been attached on the
surface and then the numerical particle i is eliminated.

2. This method generates too many particles, we solve this problem using a col-
lapsing process at each time step. We describe it in section 5.3.4.
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Now, let us describe the discretization of the positive charges equation (5.8). Like
for the electron density, at each time tn, we approximate the density ρ+ by a piece-wise
constant function on the uniform fixed grid, with ρ0

k = 0 and

(ρ+)n+1
k = (ρ+)nk+

∑

i∈In

W
(

Xk−x
n
i

∆x

)

∆x

[

1lR+(wiG
n+1
i )∆tn ν(Tni )

(

2 γni + γn0,i − 1
)

wiG
n
i

+1lR−(wiG
n+1
i )

(

−wiGni + ∆tn ν(Tni )
(

γni + γn0,i
)

wiG
n
i

) ]

.

(5.19)

5.3.4. The collapsing process. The discretization of the secondary electron
emission operator creates too many numerical particles. Then, in this section, follow-
ing [1] we propose a collapsing process in order to decrease the number of numerical
particles.

We define a dual mesh, that is for k = 1, · · · ,K, we set D1 = [0,X1], Dk =
[Xk−1,Xk] if 2 ≤ k ≤ K − 1 and DK = [XK , L]. We decide to apply the collapsing
process on each dual cell Dk if the number of particles in Dk exceeds the given
threshold value Ntol.

We decide to keep Nmin numerical particles in each dual cell, where Nmin is a
fixed positive integer for all dual cells and all discrete time. In order to choose the
remaining particles, first let us remark that the collision process on the surface is such
that the secondary electrons are emitted with a very small weight compared with the
incident electron weight (see Section 5.3.2). It is classical that particle methods are
characterized by some noise in the numerical results when the variations of the parti-
cle weights are too important, see [8] or [19]. But we want a random process for the
choice of the remaining particles so that we do not keep all the biggest particles. Since
we want to minimize the variations of the weights we do not use a completely ran-
dom process. We propose a random algorithm which prevents important differences
between the weights.

Let n ≥ 0 and k ∈ {1, · · · ,K} be fixed, we denote by i1, i2, · · · , iNn
k
∈ {1, · · · , In}

the indices of the particles in the dual cell Dk at time tn. We define the local mass,
momentum and total energy in Dk at time tn by:

mk =

Nn
k
∑

j=1

wij G
n
ij , qnk =

Nn
k
∑

j=1

v
n+1/2
ij

wij G
n
ij , enk =

Nn
k
∑

j=1

∣

∣

∣
v
n+1/2
ij

∣

∣

∣

2

wij G
n
ij .

We introduce for all l ∈ {1, · · · , Nn
k }, βl =

∑l
j=1

wij
Gn

ij

mk
∈]0, 1]. Then we take a

random number R ∈]0, 1[ and we keep the first particle ij0 such that βij0 ≥ R. Note
that the probability to keep a particle ij is given by wij G

n
ij
/mn

k and so the bigger the
particle, the larger the probability to keep it. We repeat this process Nmin times.

Now, following [1] we calculate new positions, velocities and weights for the Nmin
remaining particles, preserving the mass, momentum and total energy in Dk and the
masses in the cells Mk and Mk+1 of the fixed grid.

Let us denote by l1, · · · , lNmin
∈ {1, · · · , In} the indices of the particles kept in

the dual cell Dk at time tn. For i ∈ {l1, · · · , lNmin
}, we denote by x̃ni , ṽ

n+1/2
i , w̃i and

G̃ni the new position, velocity, control volume and weight of the particle i.

Let i ∈ {l1, · · · , lNmin
}, first, we assign the lost mass uniformly to the remaining
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particles

w̃i G̃
n
i = wiG

n
i +

mn
k −∑Nmin

j=1 wlj G
n
lj

Nmin
.

We conserve the momentum qnk and the energy enk using a translation and a homothety,
we set

ṽ
n+1/2
i = Av

n+1/2
i +B,

where A and B are calculated such that

Nmin
∑

j=1

ṽ
n+1/2
lj

w̃lj G̃
n
lj = qnk and

Nmin
∑

j=1

∣

∣

∣ṽ
n+1/2
lj

∣

∣

∣

2

w̃lj G̃
n
lj = enk .

Now, we determine the new positions x̃ni for i ∈ {l1, · · · , lNmin
} in order to conserve

the mass contributions to the cells Mk and Mk−1. We denote by ρnk−1,r and by ρnk,l
the mass contributions, of the particles initially in Dk, respectively to ρnk−1 (the mass
in the cell Mk−1) and ρnk (the mass in the cell Mk). Thanks to Section 5.3.1, we have

ρnk−1,r =

Nn
k
∑

j=1

wij G
n
ij

∆x

(

xnij −Xk

∆x

)

and ∆x ρnk−1,r + ∆x ρnk,l = mk.

We want to choose the positions (x̃nl1 , · · · , x̃nlNmin
) of the Nmin remaining particles, in

the dual cell Dk and such that the mass contributions ρnk−1,r and ρnk,l do not change.
Since mk is already conserved, we just have to conserve the value of ρnk−1,r (or ρnk,l).
To do this, we first look at the old positions, then we introduce

ρ̄nk−1,r =

Nmin
∑

j=1

w̃lj G̃
n
lj

∆x

(

xnij −Xk

∆x

)

.

If ρ̄nk−1,r > ρnk−1,r this means that the particles are too far from Xk, then we choose
for x̃ni (i = l1, · · · , lNmin

) a linear interpolation between the old position xni and Xk.
We set x̃ni = θ xni + (1 − θ)Xk with θ ∈]0, 1[. Similarly, if ρ̄nk−1,r < ρnk−1,r this means
that the particles are too far from Xk−1, then we set x̃ni = θ xni + (1 − θ)Xk−1. In
both cases, θ is calculated such that

Nmin
∑

j=1

w̃lj G̃
n
lj

∆x

(

x̃nlj −Xk

∆x

)

= ρnk−1,r.

This concludes the Section 5.3.4 and the description of the numerical scheme.

5.4. The numerical results. For the numerical results, we use linear applied
potentials in parallel and transverse directions. We set ψ(z) = E⊥ z and φ0(x) =
U (x − L)/L, where the magnitude of the transverse field, E⊥ = 5 × 107 V/m, the
size of the dielectric surface L = 10−4 m and the difference of potential in the parallel
direction U = 500 V. This choice gives an explicit density of states:

Nz(εz) =
2
√

2 εz
eE⊥

√
m
.
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Following [11], we choose values for Silicon in the mean yield formula (5.9), that is
Nmax = 2.9 and εmax = 420 eV and we set χ = 100%.

In Eq. (5.7) the dielectric permittivity is given by εD = 5, 5 ε0. Furthermore, for
the boundary condition, we choose the field enhancement factor such that β = 500 in
the electron current intensity (5.14). The real numbers A and B determined by the
work function of the conductor surface (see [11]) are given by B = 6, 2 1010 V/m, A =
SfnA

′/Sreal where A′ = 4, 6 10−5A/V 2 and Sfn/Sreal is a ratio of emission surfaces
which expresses the diffusion of electrons when they cross the dielectric impurity
from the conductor to the vacuum. They are chosen such that Sfn = 10−15m2 and
Sreal = 1011m2.

All the results are given at three different times t = 5 × 10−11s , t = 15 × 10−11s
and t = 20 × 10−11s . Figure 5.3 on the left shows the surface electron density along
the dielectric in logarithm scale and on the right their temperature measured in eV .
We clearly see the avalanche phenomenon and the creation of a very dense electronic
cloud. On Figure 5.4 we can see the density of positive charges created on the surface
by the secondary electron process (left figure) and the electric potential in the domain
(right figure). We remark that many positive charges are created on the surface and
so many secondary electrons in the domain. This confirms the important role of
this collision process in the creation of the high density plasma. Figure 5.5 on the
left shows the mean velocity and on the right the mean collision frequency. Finally
Figure 5.6 shows the injected electron current intensity at x = 0. Note that at the
end of the simulation, it becomes very small. Then no more (or few) electron are
injected in the domain at the triple point. The increase of electrons in the domain
results from secondary electron emission.
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Fig. 5.3. Surface electron density in log. scale (left fig.) and electron temperature measured
in eV (right fig.) at times t = 5 × 10−11s (solid line), t = 15 × 10−11s (dashed-dotted line) and
t = 20 × 10−11s (dashed line).
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