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Abstract In this paper we are interested in two phase flow problems in porous media. We use

a Dual Mesh Method to discretize this problem with finite volume schemes. In a simplified case

(elliptic - hyperbolic system) we prove the convergence of approximate solutions to the exact

solutions. We use the Dual Mesh Method in physically complex problems (heterogeneous cases

with non constant total mobility). We validate numerically the Dual Mesh Method on practical

examples by computing error estimates for different test-cases.

1 Introduction

We are interested in a two phase flow problem in porous media. The capillary pressure
and gravity are neglected. We suppose also that there are a water phase, denoted by w,
and an oil phase, denoted by o. Let Ω be an open bounded polygonal subset of IR 2, then
the goal is to determine the saturation S of the water phase and the pressure P of the
fluid, solutions to the following system :

div
(

K(x) m(S(x, t))∇P (x, t)
)

= 0, x ∈ Ω, t ∈ IR +,(1)

∂S(x, t)

∂t
− div

(

K(x)
Krw(S(x, t))

µw

∇P (x, t)

)

= 0, x ∈ Ω, t ∈ IR +,(2)

with some boundary and initial conditions which yield a well posed problem. In (1), (2)
K is the absolute permeability tensor, Krϕ (respectively µϕ) is the relative permeability
(respectively viscosity) of the phase ϕ, for ϕ = o or w. Furthermore, m is the total
mobility such that :

m(S) =
Krw(S)

µw

+
Kro(S)

µo

.

Petrophysical parameters, we mean absolute permeability and relative permeabilities, are
given by geophysicists as constant functions over each cell of a very high resolution grid
(HR grid), which can be composed of millions cells. However, it is necessary to reduce
the number of cells in order to run fluid flow simulations. In classical methods, these
parameters are homogenized in order to obtain information over a low resolution grid
(LR grid) by performing static upscaling. Indeed, before the fluid flow simulation is
done, the petrophysical parameters must be upscaled. So, in a classical way, the pressure
equation (1) and the saturation equation (2) are solved over the same grid, the LR grid.
But this method is impossible to implement when the upscaling step depends on the
saturation profile (see [6]).
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The Dual Mesh Method, already proposed in [13] and [14], allows us to overcome this
drawback, by solving the pressure equation over the LR grid and the saturation equation
over the HR grid. The main step of the algorithm of the Dual Mesh Method is to
reconstruct the Darcy’s velocity (K∇P ) over the HR grid with the values known over the
LR grid. In this paper two methods of reconstruction are given. The first one, proposed
by T. Gallouët, consists in an interpolation of the flow-rate known over each interface of
the LR grid. The idea of the second method, proposed by D. Guérillot and S. Verdière
(see [13] and [14]), is to solve a local problem over each cell belonging to the LR grid. This
last idea allows us to reconstruct the flow-rate by keeping, when a heterogeneous case is
considered, the information given over the geological grid, i.e. the HR grid. The first part
of this paper deals with results for a simplified problem. An homogeneous case with a
total mobility equal to one is considered, yielding an elliptic - hyperbolic system. Since
the total mobility is constant there is no upscaling step. Finite Volumes schemes are used
to discretize the system with a five point scheme for the pressure equation and an upwind
explicit scheme for the saturation equation. We present the two reconstruction methods
of the flow rate, and then we prove the convergence of the approximate solutions, given
by the numerical schemes, to the exact solutions to the problem. In the second part,
numerical results are presented. To discretize the flow problem, we use the same finite
volume schemes as in the theoretical section with an implicit version for the pressure
equation and with an upscaling step. We use the two previous reconstruction methods for
the simplified problem. The first method is cheaper in computing cost for the simplified
problem, but we have not been able to generalize it yet to more complex problems. Then
a more physical problem with heterogeneity and non constant total mobility is also tested
with the second method (by solving local problems) but not with the first method because
of the previous remarks. These results confirm the validity of the Dual Mesh Method,
even for heterogeneous porous media and non linear problems.

2 Convergence results

The problem in which we are interested in this section is the following. Let Ω denote a
bounded polygonal open subset of IR 2 which is an union of rectangles. We set Γ = ∂Ω
the boundary of Ω. Then let us consider the following elliptic - hyperbolic problem :

∆P (x) = 0, x ∈ Ω,(3)

∂S(x, t)

∂t
− div

(

∇P (x) S(x, t)
)

= 0, x ∈ Ω, t ∈ IR +,(4)

∇P (τ).n(τ) = g(τ), τ ∈ Γ,(5)

S(τ, t) = S(τ, t), (τ, t) ∈ Γ+ × IR +,(6)

S(x, 0) = S0(x), x ∈ Ω,(7)

where Γ+ = {τ ∈ Γ ; g(τ) > 0} and where n is the unit normal vector to Γ outward to Ω.

We assume that S0 ∈ L∞(Ω) and S ∈ L∞(Γ+ × IR +), g ∈ H1/2(Γ) such that P ∈ H2(Ω)
and such that

∫

Γ g(τ) dτ = 0.
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We search P ∈ H2(Ω) solution to (3), (5) in a variational sense, i.e. :
∫

Ω
∇P (x).∇ϕ(x) dx −

∫

Γ
g(τ) ϕ(τ) dτ = 0, ∀ ϕ ∈ H1(Ω),

and S in L∞(Ω × IR +) solution to (4), (6), (7) in a weak sense, i.e. :
∫

Ω

∫

IR +

S(x, t)ϕt(x, t) dx dt −
∫

Ω

∫

IR +

S(x, t)∇P (x).∇ϕ(x, t) dx dt

+
∫

Ω
S0(x) ϕ(x, 0) dx +

∫

Γ

∫

IR +

S(τ, t) ϕ(τ, t) g(τ) dτ dt = 0,(8)

∀ ϕ ∈ C1
c (Ω+ × IR +, IR +) where Ω+ = Ω ∪ Γ+.

2.1 Discretization of the elliptic equation

2.1.1 Assumptions on the low resolution grid

One considers therefore a LR grid (lower resolution grid), denoted by ΩH . It is a family
of rectangles with different sizes and we assume the following hypotheses :



















• The intersection between two cells of ΩH is either a point or a
line segment, and this line segment is an edge of each of both cells.
• There exist α > 0 and H > 0 such that for all edge σ of the grid ΩH

one has α H ≤ l(σ) ≤ H,

(9)

where l(σ) is the length of σ.

Some notation will be useful for the numerical scheme description :
∀ M ∈ ΩH , let denote by N(M) the set of the neighbors of M , i.e. the set of the cells
of ΩH which have a common interface with M , by A∂Ω(M) the set of the edges of M
included in Γ, by xM the center of M and by V (M) the area of M . Furthermore for all
Mv ∈ N(M), let denote by σMMv

the interface between M and Mv, by nMMv
the unit

normal vector to σMMv
outward to M and by dMMv

the distance between xM and xMv
.

2.1.2 Discretized equation for the elliptic problem

One defines the approximate solution on the LR grid by PΩH
(x) = PM for almost every

x ∈ M and all M ∈ ΩH . Then one discretizes (3) on ΩH . For that, a five point finite
volume scheme is used. The principle of finite volume schemes, see [3], is to integrate the
equation on each control volume, here the cells. Then we approximate the pressure flux
through an edge σMMv

by : (PMv
− PM)/dMMv

.
The discretized equation is given by :

∑

Mv∈N(M)

l(σMMv
)

(PMv
− PM)

dMMv

+
∑

σ∈A∂Ω(M)

l(σ) gσ = 0 ∀ M ∈ ΩH ,(10)

where gσ = 1
l(σ)

∫

σ g(τ) dτ . Observe that here we call flux the mean value of the pressure
which is not really the physical flux.

3



2.2 Discretization of the hyperbolic equation

2.2.1 Assumptions on the high resolution grid

We want to discretize (4) on a higher resolution grid than ΩH , so one defines Ωh a high
resolution grid (HR grid) of Ω which is a rectangular grid satisfying the following regularity
hypotheses :































• The intersection between two cells of Ωh is either a point or a
line segment, and this line segment is an edge of each of both cells.
• There exist β > 0 and h > 0 such that for all edge c of the grid Ωh

one has β h ≤ l(c) ≤ h.
• For all m ∈ Ωh, there exists M ∈ ΩH such that m ⊂ M.

(11)

Then we have to reconstruct the pressure flux through each edge of the HR grid Ωh using
the known values on the LR grid ΩH . We present here two methods. The first one,
proposed by T. Gallouët, gives the approximate fluxes through “small” edges, using a
weighted mean value of the approximate fluxes through the edges of ΩH located on each
side of a given edge of Ωh. The second method, proposed by D. Guérillot and S. Verdière
(see [6]), consists in a resolution of local problems in the cells of ΩH .

Some notation will be useful for the description of the reconstruction flux methods as for
the one of the numerical scheme :

∀ m ∈ Ωh, let denote by xm the center of m, by Mm the element of ΩH such that m ⊂ Mm,
by N(m) the set of the neighbors of m, i.e. the set of the cells of ΩH which have a common
interface with m, by Nint(m) the set of the neighbors of m located in the interior of Mm,
by Next(m) the set of the neighbors of m located in the exterior of Mm and by A∂Ω(m)
the set of edges of m included in Γ. Furthermore, ∀ mv ∈ N(m) let denote by dmmv

the
distance between xm and xmv

, by cmmv
the interface between m and mv, by nmmv

the unit
normal vector to cmmv

outward to m, by Qmmv
the approximate pressure flux through the

edge cmmv
from m to mv and by Qmmv

the exact pressure flux through cmmv
from m to

mv, i.e.

Qmmv
=

1

l(cmmv
)

∫

cmmv

∇P (τ).nmmv
(τ) dτ.

Finally ∀ m ∈ Ωh and ∀ c ∈ A∂Ω(m) let denote by σc the edge of Mm which contains c, by
Qc the approximate pressure flux through the edge c outward to Ω and by Qc the exact
pressure flux through c outward to Ω, i.e.

Qc =
1

l(c)

∫

c
g(τ) dτ.

2.2.2 Reconstruction of the approximate pressure flux by interpolation

Let m ∈ Ωh and mv ∈ N(m), then we approximate the pressure flux through the interface
between m and mv by a weighted mean value of the approximate pressure fluxes through
the edges of ΩH located on each side of cmmv

, i.e. :
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Qmmv
=

∑

Mv∈N(Mm)

nmmv
.nMmMv

PMv
− PMm

dMmMv

(

Hmmv
− d(cmmv

, σMmMv
)

Hmmv

)

+
∑

σ∈A∂Ω(Mm)

nmmv
.nσ gσ

(

Hmmv
− d(cmmv

, σ)

Hmmv

)

,(12)

where d(cmmv
, σMmMv

) = inf
{

d(x, y) ; x ∈ cmmv
and y ∈ σMmMv

}

, d(·, ·) is the euclidean
distance, nσ is the unit normal vector to σ outward to Ω and where :

Hmmv
=

{

LMm
if ~σmmv

.~LMm
= 0

lMm
otherwise

, LMm
is the length of Mm and lMm

is its width.

For the edges c ∈ A∂Ω(m) located in the boundary of Ω, we choose the following approx-
imation :

Qc = nσc
.nc gσc

Remark 1 One can observe that the approximate pressure fluxes satisfy the conservativity
principle and a conservation equation, since one has :

Qmmv
= −Qmvm ∀ m ∈ Ωh and ∀ mv ∈ N(m),(13)

∑

mv∈N(m)

l(cmmv
) Qmmv

+
∑

c∈A∂Ω(m)

l(c) Qc = 0 ∀ m ∈ Ωh.(14)

2.2.3 Reconstruction of the approximate pressure fluxes by solving local

problems

This method consists in searching an approximate pressure on the HR grid to reconstruct
the pressure flux. To do it, we solve local problems for each M ∈ ΩH . At first, we need
the pressure flux reconstructions on the edges of the HR grid, included in the edges of
the LR grid ΩH . These reconstructions correspond to the boundary conditions of the
previous problems.
Let m ∈ Ωh and mv ∈ Next(m), we recall that Mm 6= Mmv

. One approximates the
pressure flux Qmmv

through cmmv
by the pressure flux QMmMmv

through σMmMmv
, so :

Qmmv
= QMmMmv

=
PMmv

− PMm

dMmMmv

.

For the edges c included in the boundary of Ω, the exact pressure flux is given by :

Qc = gc =
1

l(c)

∫

c
g(τ) dτ.

Now we can reconstruct the pressure fluxes through the edges of Ωh located in the interior
of a cell of ΩH . For that, we search an approximate pressure in the interior of each “big”
cell, which is supposed to be constant on each cell of Ωh, that is to say pΩh

(x) = pm, for
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almost every x ∈ m and all m ∈ Ωh. We want pΩh
to be a “good” approximation of the

exact solution to problem (3), (5). Besides, we will see in the sequel that PΩH
is a “good

aproximation” of this one. So we construct pΩh
as follows : we consider each M ∈ ΩH as

a subset of Ω, and the set of the elements of Ωh, which are in M , as a grid of M . Then
we discretize (3) on M as we have already done it in the previous section for Ω. First, we
integrate (3), on m ∈ Ωh, m ⊂ M = Mm. Using Green’s formula we obtain :

∑

mv∈Nint(m)

∫

cmmv

∇P (τ) nmmv
dτ +

∑

mv∈Next(m)

∫

cmmv

∇P (τ) nmmv
dτ

∑

c∈A∂Ω(m)

∫

c
g(τ) dτ = 0

We assume the pressure fluxes to be known on the boundary of M , thus on each cmmv
such

that mv ∈ Next(m). One has : Qmmv
= QMmMmv

= (PMmv
− PMm

)/dMmMmv
. For cmmv

such that mv ∈ Nint(m), we use the same discretization as the one used in the previous
section, so one has Qmmv

= (pmv
− pm)/dmmv

.
Thus the (pm)m∈Ωh

are solutions to the following problem :

∑

mv∈Nint(m)

l(cmmv
)

pmv
− pm

dmmv

+
∑

mv∈Next(m)

l(cmmv
)

PMmv
− PMm

dMmMmv

+
∑

c∈A∂Ω(m)

l(c) gc = 0,

∀ m ∈ Ωh.(15)

This equation allows to construct approximate pressure fluxes through each interface
between two neighboring cells m and mv such that Mm = Mmv

; one sets :

Qmmv
=

pmv
− pm

dmmv

.

Remark 2 This reconstruction satisfies the flux conservativity principle (13). It also
satisfies the conservation equation (14).

2.2.4 Discretized equation associated to the hyperbolic equation

Before discretizing (4), one has to define a time step δ. So, let ΩH and Ωh be two
rectangular grids of Ω, satisfying respectively (9) and (11), and let η ∈ (0, 1), then we
choose δ ∈ IR ∗

+ satisfying the following stability condition :

δ

V (m)









∑

mv∈N(m)
Qmmv >0

Qmmv
l(cmmv

) +
∑

c∈A∂Ω(m)

l(c) Q+
c









≤ 1 − η, ∀ m ∈ Ωh.(16)

One sets tn = n δ ∀ n ∈ IN.
First we discretize the initial and boundary conditions ; one defines ∀ m ∈ Ωh :

S0
m =

1

V (m)

∫

m
S0(x) dx,
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and ∀ m ∈ Ωh, ∀ c ∈ A∂Ω(m) and ∀ n ∈ IN :

S
n

c =
1

δ l(c)

∫ tn+1

tn

∫

c
S(τ, t) dτ dt.

To discretize the saturation equation we use an explicit Euler scheme in time and an
upwind finite volume scheme in space . One approximates S by SΩh,δ(x, t) = Sn

m if x ∈ m
and t ∈ [tn, tn+1[. Then the discretized equation is the following :

V (m)
(Sn+1

m − Sn
m)

δ
−

∑

mv∈N(m)

Sn
mmv

l(cmmv
) Qmmv

−
∑

c∈A∂Ω(m)

l(c)
(

S
n
c Q+

c − Sn
m Q−

c

)

= 0,

∀ m ∈ Ωh and ∀ n ∈ IN, where Sn
mmv

=











Sn
mv

if Qmmv
> 0

Sn
m otherwise

and where Q+
c and Q−

c , are

defined by :
- if fluxes are reconstructed by interpolation :

Q+
c = nσc

.nc
1

l(σc)

∫

σc

max(g(τ), 0) dτ and Q−

c = nσc
.nc

1

l(σc)

∫

σc

max(−g(τ), 0) dτ ;

- if fluxes are reconstructed by solving local problems :

Q+
c = g+

c =
1

l(c)

∫

c
max(g(τ), 0) dτ and Q−

c = g−

c =
1

l(c)

∫

c
max(−g(τ), 0) dτ.

Using (14) and (15), this scheme can be rewritten as :

V (m)
(Sn+1

m − Sn
m)

δ
−

∑

mv∈N(m)
Qmmv >0

Qmmv
(Sn

mv
− Sn

m) l(cmmv
)

−
∑

c∈A∂Ω(m)

l(c)
(

S
n
c − Sn

m

)

Q+
c = 0.(17)

2.3 Error estimates for the discretized elliptic problem on the

LR grid

In this section the existence and the uniqueness, up to a constant, of solutions to (10)
is proved. Afterwards, one proves the convergence of approximate solution to the exact
solution of (3), (5) proving error estimates in a discrete H1–norm. This proof generalizes
the results given in [7] and [15]. Indeed in [7], R. Herbin considers a diffusion convection
problem with a Dirichlet boundary condition, and in [15] the elliptic problem is the same as
the one discribed here. But in these two papers the exact solution is assumed to be smooth
(C2), whereas here, one only assumes H2 regularity. Some error estimates in discrete H1–
norm, are also proved in [8] for an exact solution in Hm (3/2 < m ≤ 2) and for a diffusion
convection problem with an homogeneous Dirichlet boundary condition on a square grid.
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Here the results are established on a non regular rectangular grid and can be generalized
to more complex grids (see Remark 3). In [11] the authors prove the convergence of mixed
finite volume schemes for diffusion equations with an homogeneous Dirichlet boundary
condition on a rectangular mesh. They establish error estimates assuming the exact
solution is H2. In [2] the authors are interested in the convergence of a diamond-path
scheme for a diffusion - convection problem. They prove error estimates assuming the
exact solution is H2.

Proposition 1 Let ΩH be a grid of Ω satisfying the regularity hypotheses (9), and g be in
H1/2(Γ), such that

∫

Γ g(τ) dτ = 0. Then, there exists a unique solution up to a constant,
(PM)M∈ΩH

, to problem (10).

We do not give the proof of this classical result close to those, for instance, in [10], [9] or
[15].
Then we show the following :

Theorem 1 Let ΩH be a grid of Ω satisfying the regularity hypotheses (9), and g be in
H1/2(Γ), such that

∫

Γ g(τ) dτ = 0. One denotes by P (.) the exact solution to problem
(3), (5) such that

∫

Ω P (x) dx = 0. One assumes that g is such that P is in H2(Ω). Let
(PM)M∈ΩH

satisfying (10) and
∑

M∈ΩH
V (M) PM =

∑

M∈ΩH
V (M) P (xM). The error on

the cell M , for all M ∈ ΩH , is defined by EM = PM − P (xM).
Then there exist C1 and C2, depending only on Ω, α and on the H2–norm of P , such that
(

∑

M∈ΩH

∑

Mv∈N(M)

(EMv
− EM)2

dMMv

l(σMMv
)

)1/2

≤ C1 H

and

(

∑

M∈ΩH

V (M) |EM |2
)1/2

≤ C2 H

Proof :

At first, let observe that P (xM) is defined ∀ M ∈ ΩH , because H2(Ω) is continuously
imbedded in C(Ω). So let M ∈ ΩH and Mv ∈ N(M). One defines the consistency error
RMMv

(P ) through the interface between M and Mv by :

RMMv
(P ) =

P (xMv
) − P (xM)

dMMv

− 1

l(σMMv
)

∫

σMMv

∇P (τ).nM(τ) dτ.

On the boundary the consistency error equals zero since we know the exact flux g.
One defines, ∀ σMMv

⊂ Ω, VMMv
the quadrangle with xM , xMv

and the two vertices of
σMMv

for vertices (see figure 1).
Then, we can consider the consistency error as a function RH(P )(.) constant on each dual
cell VMMv

, and so :

‖RH(P )‖L2(Ω) =





1

4

∑

M∈ΩH

∑

Mv∈N(M)

dMMv
l(σMMv

)R2
MMv

(P )





1/2

.

We are going to show that the scheme is consistent in a finite volumes sense (see [3]).
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VMMv

xMv

xM

M

σMMv

Mv

V+
MMv

V−

MMv

Figure 1: Dual mesh

Lemma 1 Under assumptions of Theorem 1, one proves the existence of C, depending
only on α, such that :

‖RH(P )‖L2(Ω) ≤ C ‖P‖H2(Ω) H.

Proof of Lemma 1 :

To show this result, we first assume that P ∈ C∞(Ω). Let M ∈ ΩH and Mv ∈ N(M).
We choose for coordinate system (denoted by RMMv) the one with xM for origin and with
(xMxMv

) for axis of abscissae. Let denote by a and b (a < b) the ordinate of the two
vertices of σMMv

, by dM the distance between xM and σMMv
, by dMv

the distance between
xMv

and σMMv
and set :

PMMv
=

1

l(σMMv
)

∫

σMMv

P (τ) dτ and |D2P | =
2
∑

i=1

2
∑

j=1

∣

∣

∣

∣

∣

∂2P

∂xi∂xj

∣

∣

∣

∣

∣

;

then RMMv
(P ) can be rewritten as :

RMMv
(P ) =

1

l(σMMv
)

∫ b

a

∂P

∂x1

(dM , s) ds − P (dMMv
, 0) − PMMv

+ PMMv
− P (0, 0)

dMMv

.

Using Taylor’s expansion and a change of variables, one obtains :

|RMMv
(P )| ≤ H2

l(σMMv
) dMMv

(

1

dM

∫

V
+
MMv

|D2P (z)| dz +
1

dMv

∫

V
−

MMv

|D2P (z)| dz

)

,

where V+
MMv

= VMMv
∩ M and V−

MMv
= VMMv

∩ Mv.

Cauchy Schwarz’ inequality yields :

‖RH(P )‖2
L2(Ω) ≤

8 H2

α2
‖P‖2

H2(Ω)(18)

which ends the proof of Lemma 1 when P ∈ C∞(Ω). So let P ∈ H2(Ω) then there exists
(Pj)j∈IN, Pj ∈ C∞(Ω) ∀ j ∈ IN, such that limj→∞ ‖Pj − P‖H2(Ω) = 0. Furthermore, since
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H2(Ω) is continuously imbedded in C(Ω), there exists CΩ, depending only on Ω, such
that :

‖Pj − P‖L∞(Ω) ≤ CΩ ‖Pj − P‖H2(Ω).(19)

Thanks to (18), one has :

‖RH(Pj)‖L2(Ω) ≤
2
√

2 H

α
‖Pj‖H2(Ω).(20)

We are going to show that RH(Pj) converges to RH(P ) in L2(Ω) when j goes to infinity.
Indeed :

|RMMv
(P ) − RMMv

(Pj)| ≤
1

√

l(σMMv
)

(

∫

σMMv

(

∇P (τ) −∇Pj(τ)
)2
)1/2

+

+
2

dMMv

‖P − Pj‖L∞(Ω).

Then one uses the following lemma :

Lemma 2 Let ΩH be a rectangular grid of Ω satisfying the regularity hypotheses (9). Let
M ∈ ΩH and Mv ∈ N(M). Let u ∈ H1(TMMv

), where TMMv
is defined in figure 2. Then,

the trace of u on σMMv
exists ; it is an element of L2(σMMv

). Moreover :

‖u‖L2(σMMv ) ≤
2√
α H

‖u‖H1(TMMv ).(21)

σMMv

T −

MMv

xMv

Mv

MT +
MMv

xM

TMMv

Figure 2:

Proof of Lemma 2 :

The proof of this lemma is well known on a square of side one. Then, (21) is proved using
a change of variables.

Thus Lemma 2 and inequality (19) give the existence of C, depending only on Ω, such
that :

‖RH(Pj) − RH(P )‖L2(Ω) ≤
(

2

α
+

2 C

α H

)

‖Pj − P‖H2(Ω).
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Passing to the limit in (20), one concludes the proof of Lemma 1. This concludes the
proof of the scheme’s consistency ; let show now the error estimates in Theorem 1. Using
(3), (5) and (10), one proves the following result (for details see [7]) :

∑

M∈ΩH

∑

Mv∈N(M)

l(σMMv
)

(

EMv
− EM

)2

dMMv

=
∑

M∈ΩH

∑

Mv∈N(M)

l(σMMv
) RMMv

(P )
(

EM − EMv

)

;

thanks to Cauchy Schwarz’ inequality and to Lemma 1, there exists C, depending only
on α, such that :







∑

M∈ΩH

∑

Mv∈N(M)

l(σMMv
)

(

EMv
− EM

)2

dMMv







1/2

≤




∑

M∈ΩH

∑

Mv∈N(M)

l(σMMv
) dMMv

R2
MMv

(P )





1/2

≤ C ‖P‖H2(Ω) H.

One concludes the proof of Theorem 1, using a discrete Poincaré-Wirtinger’s inequality
(see [15]).

Remark 3 This proof can be generalized to more complex grids, which satisfy (9), and
such that the orthogonal bisectors of a cell are concurrent. For all cell M , xM is the
intersection between the orthogonal bisectors of M , one assumes the distances between
xM and the edges of M to be minorized by α1 H (α1 > 0). In the case of a triangular grid
this property is satisfied if all the angles of the grid are majorized by π/2 − η, η > 0.

Furthermore, one can prove error estimate in the Lq–norm for all q < +∞ of order h
and an error estimate in the L∞–norm, of order h ln(h).

2.4 Error estimates for reconstructed pressure fluxes

To show the convergence of the approximate saturation one needs error estimates on
the approximate pressure fluxes reconstructed on the edges of the HR grid Ωh. Further-
more, when fluxes are reconstructed by solving local problems, we must prove that the
reconstruction always exists.

Proposition 2 Let ΩH and Ωh be two rectangular grids of Ω satisfying, respectively,
(9) and (11), and g in H1/2(Γ) such that

∫

Γ g(τ) dτ = 0. Let denote by P (.) the exact
solution to problem (3), (5), such that

∫

Ω P (x) dx = 0. Let (PM)M∈ΩH
satisfying (10) and

∑

M∈ΩH
V (M) PM =

∑

M∈ΩH
V (M) P (xM).

Then there exists a solution to (15). Furthermore let (p(1)
m )m∈Ωh

and (p(2)
m )m∈Ωh

be two
solutions to this problem ; then ∀ M ∈ ΩH , ∃ CM , depending only on M , such that :

p(2)
m = p(1)

m + CM ∀ m ∈ Ωh, m ⊂ M

Proof :

11



We observe that (15) defines nH linearly independant problems, where nH is the number
of elements in ΩH . Then let M ∈ ΩH ; we are going to prove that there exists a solution
(pm)m∈Ωh

m⊂M

to problem (15) unique up to a constant. This proof is close to the one given

in [15] ; one shows that : if, ∀ m ∈ Ωh, m ⊂ M ,

∑

mv∈Next(m)

l(cmmv
)

PMmv
− PMm

dMmMmv

+
∑

c∈A∂Ω(m)

∫

c
g(τ) dτ = 0,

then pm = pmv
∀ m ∈ Ωh, m ⊂ M and ∀ mv ∈ Nint(m). So the dimension of the kernel,

of the linear system defined by (15) for m ∈ M , is 1.
It remains to establish the existence of solutions. So, we assume that there exist solutions
and we sum the equations (15), one obtains :

∑

Mv∈N(M)

PMv
− PM

dMMv

l(σMMv
) +

∑

σ∈A∂Ω(M)

∫

σ
g(τ) dτ = 0.

Let denote by LM the number of elements of Ωh included in M . Then the image, of the
linear system defined by (15) for m ∈ M , is included in

BLM
=
{

b =t (b1, · · · , bLM
) ∈ IR LM such that

LM
∑

i=1

bi = 0
}

Since the dimension of the kernel is 1 the image is exactly BLM
.

Since (PM)M∈ΩH
satisfies (10), there exist solutions to (15).

Then one proves the following result which gives estimates on reconstructed fluxes.

Proposition 3 Let ΩH and Ωh be two rectangular grids of Ω satisfying respectively (9)
and (11), and g in H1/2(Γ) such that

∫

Γ g(τ) dτ = 0. One denotes by P (.) the exact
solution to problem (3), (5) such that

∫

Ω P (x) dx = 0. Let (PM)M∈ΩH
satisfying (10) and

∑

M∈ΩH
V (M) PM =

∑

M∈ΩH
V (M) P (xM). Furthermore one assumes that g is such that

P is in H2(Ω).
Let (pm)m∈Ωh

satisfying (15) and such that
∑

m∈Ωh
m⊂M

V (m) pm =
∑

m∈Ωh
m⊂M

V (m) P (xm) for

all M ∈ ΩH . One sets

Ah =





∑

m∈Ωh

∑

mv∈N(m)

l(cmmv
) dmmv

(

Qmmv
− Qmmv

)2





1/2

.

Then there exist C1 and C2, depending only on Ω, β, α and P , such that

Ah ≤ C1 H, if fluxes are reconstructed by interpolation ;

Ah ≤ C2

√
H if fluxes are reconstructed by solving local problems.

12



Proof :

Fluxes reconstructed by interpolation :

Thanks to the interpolated fluxes definition, one has :

Ah ≤ A1h + A2h,

A1h ≤


4 h
∑

M∈ΩH

∑

Mv∈N(M)

∑

c∈Ah(M)

l(c)

∣

∣

∣

∣

∣

nc.nMMv

PMv
− PM

dMMv

− |nc.nMMv
|Qc

∣

∣

∣

∣

∣

2




1/2

,

A2h ≤


4 h
∑

M∈ΩH

∑

σ∈A∂Ω(M)

∑

c∈Ah(M)

|nc.nσ| l(c)
∣

∣

∣Qσ − Qc

(

nc.nσ

)∣

∣

∣

2





1/2

.

First we focus on A1h. One denotes by c⊥MMv
the orthogonal projection of c on σMMv

∀ M ∈ ΩH , Mv ∈ N(M) and c ∈ Ah(M), then :

A1h ≤


12 h
∑

M∈ΩH

∑

Mv∈N(M)

∑

c∈Ah(M)

l(c)



|nc.nMMv
|
∣

∣

∣

∣

∣

EMv
− EM

dMMv

∣

∣

∣

∣

∣

2

+

+ |nc.nMMv
|
∣

∣

∣

∣

∣

P (xMv
) − P (xM)

dMMv

− 1

l(c⊥MMv
)

∫

c⊥
MMv

∇P (τ).nMMv
dτ

∣

∣

∣

∣

∣

2

+

+ |nc.nMMv
|
∣

∣

∣nc.nc⊥
MMv

Qc⊥
MMv

− Qc

∣

∣

∣

2
)]1/2

.

Thus :

A1h ≤




12 H

β

∑

M∈ΩH

∑

Mv∈N(M)

∑

c⊂σMMv

l(c)





∣

∣

∣

∣

∣

EMv
− EM

dMMv

∣

∣

∣

∣

∣

2

+
∣

∣

∣nc.ncM
⊥

QcM
⊥
− Qc

∣

∣

∣

2
+

+

∣

∣

∣

∣

∣

P (xMv
) − P (xM)

dMMv

− 1

l(c)

∫

c
∇P (τ).nMMv

dτ

∣

∣

∣

∣

∣

2








1/2

,

where ∀ c ⊂ σMMv
(M ∈ ΩH , Mv ∈ N(M)) cM

⊥ is the orthogonal projection of c on
the edge of M which is the opposite edge to σMMv

(i.e. the edge σ of M such that
|nσ.nσMMv

| = 1). So :

A1h ≤
√

12

β α





∑

M∈ΩH

∑

Mv∈N(M)

l(σMMv
)
|EMv

− EM |2
dMMv

+
∑

m∈Ωh

∑

mv∈Next(m)

l(cmmv
) dMMv

|Bmmv
|2+

+H
∑

M∈ΩH

∑

Mv∈N(M)

∑

c⊂σMMv

l(c)
∣

∣

∣nc.ncM
⊥

QcM
⊥
− Qc

∣

∣

∣

2





1/2

.
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One uses for coordinate system the one which has one of the two vertices of c for origin
and such that its axis of ordinate is parallel to c. Then denoting by lM the distance
between c and cM , using Taylor’s expansion and Cauchy Schwarz’ inequality, one has :

∣

∣

∣nc.ncM
⊥

QcM
⊥
− Qc

∣

∣

∣ ≤
√

lM
√

l(c)





∫ l(c)

0

∫ lM

0

∣

∣

∣

∣

∣

∂2P

∂x1
2 (r, s)

∣

∣

∣

∣

∣

2

dr ds





1/2

.(22)

Thus, the previous inequality, Theorem 1 and Lemma 5 yield :

A1h ≤ C H,

where C depends only on P , β, α and on Ω.
Now, we focus on A2h. Let denote by σM the edge of M which is the opposite edge to
σ (i.e the edge σM of M such that |nσ.nσM

| = 1) ∀ σ which is an edge of M located in
the boundary of Ω ; one denotes by Mσ the neighbor of M such that σM = ∂M ∩ ∂Mσ.
Then as previously, one denotes by c⊥MMσ

the orthogonal projection of c on σM . So one
can write :

A2h ≤


16 h
∑

M∈ΩH

∑

σ∈A∂Ω(M)

∑

c∈Ah(M)

l(c)
∣

∣

∣nc.nσ

∣

∣

∣

(

∣

∣

∣

∣

Qσ − QσM
(nσ.nσM

)
∣

∣

∣

∣

2

+

+
∣

∣

∣

∣

QσM
(nσ.nσM

) − P (xMσ
) − P (xMσ

)

dMMσ

∣

∣

∣

∣

2

+
∣

∣

∣

∣

P (xMσ
) − P (xMσ

)

dMMσ

− Qc⊥
MMσ

(nσ.nc⊥
MMσ

)
∣

∣

∣

∣

2

+

+
∣

∣

∣

∣

Qc⊥
MMσ

(nσ.nc⊥
MMσ

) − Qc (nσ.nc)
∣

∣

∣

∣

2
)]1/2

.

Using a method close to the one used for proving (22), and Lemmas 1 and 5, one obtains :

A2h ≤ C H,

where C depends only on α, β, Ω and on the H2–norm of P .

Fluxes reconstructed by solving local problems :

First we show the following lemma which gives an estimate on the approximate fluxes
through edges of Ωh which are located in the interior of the cells of ΩH . It is an estimate
in a discrete H1

0–norm, that is to say an estimate in the L2–norm of the discrete gradient
of the error.

Lemma 3 We assume that the assumptions of Proposition 3 hold. The error on the cell
m, ∀ m ∈ Ωh, is defined by em = pm − P (xm).
Then ∃ C, depending only on Ω, β, α and P , such that :





∑

m∈Ωh

∑

mv∈Nint(m)

(emv
− em)2

dmmv

l(cmmv
)





1/2

≤ C
√

H.(23)
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Proof of Lemma 3 :

At first one proves the consistency of approximate fluxes on edges of Ωh located in the
interior of “coarse” cells (those of ΩH).

Lemma 4 Under the hypotheses of the Proposition 3, ∃ C, depending only on β, such
that :





∑

m∈Ωh

∑

mv∈Nint(m)

l(cmmv
) dmmv

R2
mmv

(P )





1/2

≤ C ‖P‖H2(Ω) h,

where

Rmmv
(P ) =

P (xmv
) − P (xm)

dmmv

− Qmmv
.(24)

The proof of this lemma is close to the one of Lemma 1. In particular, one shows the
following inequality ∀ m ∈ Ωh and ∀ mv ∈ N(M) :

‖∇P‖L2(cmmv ) ≤
2√
β h

‖P‖H2(Tmmv ),(25)

where Tmmv
is defined as for the LR grid (see figure 2).

Now, one can prove Lemma 3. Let m ∈ Ωh ; (15), (3) and (5) yield :

∑

mv∈Nint(m)

(

pmv
− pm

dmmv

− Qmmv

)

l(cmmv
)+

∑

mv∈Next(m)

(

PMmv
− PMm

dMmMmv

− Qmmv

)

l(cmmv
) = 0.

We multiply this equation by em and we sum over m ∈ Ωh. Using (24), as for the
conservativity of the exact and approximate fluxes, we obtain :

∑

m∈Ωh

∑

mv∈Nint(m)

l(cmmv
)

(emv
− em)2

dmmv

=
∑

m∈Ωh

∑

mv∈Nint(m)

Rmmv
(P ) l(cmmv

) (em − emv
) + 2 B1,

where

B1 =
∑

m∈Ωh

∑

mv∈Next(m)

(

PMmv
− PMm

dMmMmv

− Qmmv

)

l(cmmv
) em.

Thanks to Cauchy Schwarz’ inequality and to Lemma 4, there exists C, depending only
on β, such that :

∑

m∈Ωh

∑

mv∈Nint(m)

l(cmmv
)

(emv
− em)2

dmmv

≤ 2 B1+

C ‖P‖H2(Ω) h





∑

m∈Ωh

∑

mv∈Nint(m)

l(cmmv
)

(emv
− em)2

dmmv





1/2

.(26)

Now, we remark that B1 can be rewritten as :

B1 =
∑

m∈Ωh

∑

mv∈Next(m)

(

EMmv
− EMm

dMmMmv

+
P (xMmv

) − P (xMm
)

dMmMmv

− Qmmv

)

l(cmmv
) em.
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Using, one more time, Cauchy Schwarz’ inequality, one has :

B1 ≤
1√
α H





∑

m∈Ωh

∑

mv∈Next(m)

l(cmmv
) |em|2





1/2

×

×











∑

m∈Ωh

∑

mv∈Next(m)

dMmMmv
l(cmmv

)

(

P (xMmv
) − P (xMm

)

dMmMmv

− Qmmv

)2




1/2

+

+





∑

M∈ΩH

∑

Mv∈N(M)

(EMv
− EM)2

dMMv

l(σMMv
)





1/2




 .

Then we show the following result :

Lemma 5 Under the assumptions of Proposition 3, ∃ C, depending only on α, such that :





∑

m∈Ωh

∑

mv∈Next(m)

dMmMmv
l(cmmv

) B2
mmv





1/2

≤ C H,

where :

Bmmv
=

P (xMmv
) − P (xMm

)

dMmMmv

− Qmmv
.

Proof of Lemma 5 :

First one assumes P ∈ C∞(Ω). The notation of the figure 3 is used.

xMmv

dMmv
dMm

xMm

mvm

D−
mmv

D+
mmv

Mmv
Mm

Figure 3:

One sets Pmmv
= 1

l(cmmv )

∫

cmmv
P (τ) dτ and one uses for coordinate system the one with

xMm
for origin and (xMm

xMmv
) for axis of abscissae. We denote by a and b (a < b) the

ordinate of the vertices of cmmv
. Then :

Bmmv
=

P (dMmMmv
, 0) − Pmmv

+ Pmmv
− P (0, 0)

dMmMmv

− 1

l(cmmv
)

∫ b

a

∂P

∂x1

(dMm
, s) ds.
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Using Taylor’s expansion, a change of variables and Cauchy Schwarz’ inequality, one
obtains :





∑

m∈Ωh

∑

mv∈Next(m)

dMmMmv
l(cmmv

) B2
mmv





1/2

≤ ‖P‖H2(Ω)

α2 β
H.

To conclude, we use, as in the proof of Lemma 1, the density of C∞(Ω) in H2(Ω). This
ends the proof of Lemma 5. Then this result and Theorem 1 give :

B1 ≤ C
√

H









∑

M∈ΩH

∑

m∈Ωh
m⊂M

l(∂m ∩ ∂M) |em|2








1/2

,

where C depends only on Ω, α, β and on the H2–norm of P .
Furthermore, as in [15] (see Section 4.2), one can prove the existence of C, depending
only on β, such that ∀ M ∈ ΩH :

∑

m∈Ωh
m⊂M

l(∂m ∩ ∂M) |em|2 ≤ C









∑

m∈Ωh
m⊂M

∑

mv∈Nint(m)

l(cmmv
)

(emv
− em)2

dmmv

+
∑

m∈Ωh
m⊂M

V (m)|em|2








.

Using this result and the discrete Poincaré-Wirtinger’s inequality (see [3] or [15]), one
shows the existence of C, depending only on Ω, α, β and on the H2–norm of P , such
that :

B1 ≤ C
√

H





∑

m∈Ωh

∑

mv∈Nint(m)

l(cmmv
)

(emv
− em)2

dmmv





1/2

.

This result and (26) lead to (23).

Remark 4 Using the discrete Poincaré-Wirtinger’s inequality, one can prove, as in The-
orem 1 (see Section 2.3), that the L2–norm of the error is in O(

√
H).

One ends the proof of Proposition 3 for reconstructed fluxes by solving local problems.
First we remark that :

Ah ≤ A3h + A4h(27)

A3h =





∑

m∈Ωh

∑

mv∈Next(m)

dmmv
l(cmmv

)

∣

∣

∣

∣

∣

PMmv
− PMm

dMmMmv

− Qmmv

∣

∣

∣

∣

∣

2




1/2

A4h =





∑

m∈Ωh

∑

mv∈Nint(m)

dmmv
l(cmmv

)

∣

∣

∣

∣

∣

pmv
− pm

dmmv

− Qmmv

∣

∣

∣

∣

∣

2




1/2
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so one has :

A3h ≤


2
∑

m∈Ωh

∑

mv∈Next(m)

l(cmmv
) dmmv

∣

∣

∣

∣

∣

P (xMmv
) − P (xMm

)

dMmMmv

− Qmmv

∣

∣

∣

∣

∣

2

+2
∑

M∈ΩH

∑

Mv∈N(M)





∑

c⊂σMMv

l(c) dc





∣

∣

∣

∣

∣

EMv
− EM

dMMv

∣

∣

∣

∣

∣

2




1/2

.

Then Theorem 1 and Lemma 5 give the existence of C, depending only on α, Ω and on
the H2–norm of P , such that :

A3h ≤ C H.(28)

In a same way, one has :

A4h ≤


2
∑

m∈Ωh

∑

mv∈Nint(m)

l(cmmv
)dmmv

Rmmv
(P )2





1/2

+

+



2
∑

m∈Ωh

∑

mv∈Nint(m)

l(cmmv
)
(emv

− em)2

dmmv





1/2

.

Thus, thanks to Lemmas 3 and 4, one has :

A4h ≤ C
√

H,(29)

where C depends only on α, β, Ω and on the H2–norm of P . Using (28) and (29) in (27),
one obtains the result.

2.5 Convergence of the approximate saturation to the weak so-

lution to hyperbolic problem

The aim of this section is to establish the convergence of the approximate saturation to
the weak solution to (4), (6) and (7). We use a technique introduced by R. Eymard and
T. Gallouët in [4] for the same problem as the one considered here, but in their paper
the authors of [4] use a coupled finite element – finite volume scheme. These results have
been extended to a finite volume scheme in [15]. In this section, one proves the following
result :

Theorem 2 Let ΩH and Ωh be two rectangular grids of Ω satisfying respectively (9) and
(11), and g in H1/2(Γ) such that

∫

Γ g(τ) dτ = 0. Let (PM)M∈ΩH
verifying (10) and

∑

M∈ΩH
V (M) PM =

∑

M∈ΩH
V (M) P (xM). One denotes by P (.) the exact solution to

(3), (5) such that
∫

Ω P (x) dx = 0. One assumes that g is such that P is in H2(Ω). Let
(pm)m∈Ωh

satisfying (15) and such that for all M ∈ ΩH :

∑

m∈Ωh
m⊂M

V (m) pm =
∑

m∈Ωh
m⊂M

V (m) P (xm).
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Let δ ∈ IR ∗

+ satisfying the stability condition (16). One denotes by SΩh,δ the approximate
solution to (17).
Then :

lim
h→0

SΩhδ = S

in L∞(Ω × IR +), for the weak ⋆ topology, where S ∈ L∞(Ω × IR +) is the weak solution
to problem (4), (6), (7), i.e. S verifies (8).

Remark 5 Since the hyperbolic equation is linear, the weak solution is unique so we do
not need to use the notion of entropy solution.

To prove this theorem, one first proves the two following lemmas. The first one gives an
L∞ estimate on the approximate solution, and the second one gives a weak estimate on
the variations of SΩh,δ.

Lemma 6 Under the assumptions of Theorem 2, one has :

‖SΩh,δ‖∞ ≤ U = max
(

‖S0‖∞, ‖S‖∞
)

.

Proof :

One uses (17) and the stability condition (16) to show that Sn+1
m is a convex combination

of Sn
m, Sn

mv
(mv ∈ N(m)), and S

n

c (c ∈ A∂Ω(m)). So by induction, one obtains :

|Sn+1
m | ≤ max

(

‖S0‖∞, ‖S‖∞
)

∀ m ∈ Ωh (for more details see [4] or [15]).

Lemma 7 Suppose that the assumptions of Theorem 2 still hold. Let T ∈ (0, +∞) ; one

sets NT = max
{

n ∈ IN ; (n − 1)δ ≤ T
}

, and one defines EF1h and EF2h by :

EF1h =
NT
∑

n=0

∑

m∈Ωh

δ









∑

mv∈N(m)
Qmmv >0

h Qmmv
|Sn

mv
− Sn

m| l(cmmv
) +

∑

c∈A∂Ω(m)

H
∣

∣

∣S
n
c − Sn

m

∣

∣

∣ l(c) Q+
c









,

EF2h =
NT
∑

n=0

∑

m∈Ωh

δ









∑

mv∈N(m)
Qmmv >0

h Qmmv
|Sn

mv
− Sn

m| l(cmmv
) +

∑

c∈A∂Ω(m)

h
∣

∣

∣S
n
c − Sn

m

∣

∣

∣ l(c) Q+
c









.

Then there exist C1 and C2, depending only on S0, S, Ω, α, β, g, T , η and on the
H2–norm of P , such that :

EF1h ≤ C2

(√
h+H

)

if fluxes are reconstructed with interpolation,(30)

EF2h ≤ C1

√
h if fluxes are reconstructed by solving local problems.(31)
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Proof :

As in [4] or [15], one proves the following result :

NT
∑

n=0

∑

m∈Ωh

δ









∑

mv∈N(m)
Qmmv >0

Qmmv
|Sn

mv
− Sn

m|2 l(cmmv
) +

∑

c∈A∂Ω(m)

∣

∣

∣S
n
c − Sn

m

∣

∣

∣

2
l(c) Q+

c









≤ CB,

where CB =
1

η

(

‖S0‖2
∞ V (Ω) + T ‖g‖L2(Γ) ‖S‖2

∞ l(Γ)1/2
)

.

It yields :

EF1h ≤
√

2 CB T
(

h BV
1/2
1 + H

√

‖g‖L2(Γ) l(Γ)1/2

)

,(32)

where :
BV1 =

∑

m∈Ωh

∑

mv∈N(m)

|Qmmv
| l(cmmv

);

similarly :

EF2h ≤
√

2 CB T h
(

BV
1/2
1 +

√

‖g‖L2(Γ) l(Γ)1/2

)

.(33)

Then it is sufficient to show that BV1 ≤ C/h. One can observe that :

BV1 ≤
√

V (Ω)

β h
Ah +

√

V (Ω)
√

β h





∑

m∈Ωh

∑

mv∈N(m)

∫

cmmv

|∇P (τ)|2 dτ





1/2

.

Thus using inequality (25), Proposition 3 and inequalities (33) and (32), one has :

EF1h ≤ C
(√

h + H
)

,

EF2h ≤ C
√

h,

where C depends only on Ω, β, α, on the H2–norm of P and on the L2–norm of g.

Proof of Theorem 2 :

Since SΩh,δ is bounded in L∞(Ω× IR +), there exist a subsequence, still denoted by SΩh,δ,
and S ∈ L∞(Ω × IR +), such that limh→0 SΩhδ = S in L∞(Ω × IR +) for the weak ⋆
topology. Then, we are going to prove that S is the weak solution of (4), (6) and (7).
Let ϕ ∈ C∞

c (Ω+ × IR +, IR +), and T ∈ IR ⋆
+ such that ∀ x ∈ Ω+, supp (ϕ(x, ·)) ⊂ [0, T ].

One sets NT = max {n ∈ IN ; (n − 1) δ ≤ T}.
Then one multiplies (17) by δ

V (m)

∫

m ϕ(x, tn) dx and one sums over n ∈ IN and m ∈ Ωh ;
one obtains :

E1h + E2h = 0,

with :

E1h =
NT
∑

n=0

∑

m∈Ωh

(Sn+1
m − Sn

m)
∫

m
ϕ(x, tn) dx,
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E2h = −
NT
∑

n=0

δ
∑

m∈Ωh









∑

mv∈N(m)
Qmmv >0

Qmmv
(Sn

mv
− Sn

m) l(cmmv
)

1

V (m)

∫

m
ϕ(x, tn) dx

+
∑

c∈A∂Ω(m)

(

S
n
c − Sn

m

)

l(c) Q+
c

1

V (m)

∫

m
ϕ(x, tn) dx



 .

By transfering the differences on ϕ and passing to the limit, one proves :

lim
h→0

E1h = −
∫ ∫

Ω×IR +

S(x, t) ϕt(x, t) dx dt −
∫

Ω
S0(x) ϕ(x, 0) dx.

So it just remains to show that :

lim
h→0

E2h = E2 =
∫

Ω

∫

IR +

S(x, t)∇P (x).∇ϕ(x, t) dx dt−
∫

Γ

∫

IR +

S(τ, t) ϕ(τ, t) g+(τ) dτ dt.

We begin to establish this result when fluxes are reconstructed by solving local problems.

Approximate pressure fluxes reconstructed by solving local problems :

We define E3h by :

E3h = −
NT
∑

n=0

δ
∑

m∈Ωh









∑

mv∈N(m)
Qmmv >0

Qmmv
(Sn

mv
− Sn

m)
∫

cmmv

ϕ(τ, tn) dτ

+
∑

c∈A∂Ω(m)

(

S
n

c − Sn
m

)

∫

c
g+(τ) ϕ(τ, tn) dτ



 .

First we show that the difference between E2h and E3h tends to 0 when h goes to 0.
Indeed :

|E2h−E3h| ≤
NT
∑

n=0

δ
∑

m∈Ωh





∑

c∈A∂Ω(m)

∣

∣

∣

∣

∣

∫

c
g+(τ)

(

ϕ(τ, tn) − 1

V (m)

∫

m
ϕ(x, tn) dx

)

dτ

∣

∣

∣

∣

∣

(

S
n
c − Sn

m

)

+
∑

mv∈N(m)
Qmmv >0

Qmmv
|Sn

mv
− Sn

m|
∣

∣

∣

∣

∣

∫

cmmv

(

ϕ(τ, tn) − 1

V (m)

∫

m
ϕ(x, tn) dx

)

dτ

∣

∣

∣

∣

∣









.

Thanks to the regularity of ϕ and to Lemma 7, one obtains :

|E2h − E3h| ≤ C1 EF2h ≤ C
√

h,

where C1 depends only on the first order derivatives of ϕ and C depends only on ϕ, Ω,
β, α, S0, S, T , η, on the H2–norm of P and on the L2–norm of g.
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To determine the limit of E3h, one defines E4h by :

E4h =
NT
∑

n=0

δ

(

∫

Ω
SΩh,δ(x, tn)∇P (x).∇ϕ(x, tn) dx −

∫

Γ

∫

IR +

SΩh
(τ, tn) ϕ(τ, tn) g+(τ) dτ

)

,

where SΩh
(τ, t) = S

n
a if τ ∈ a and t ∈ [tn, tn+1[.

Thanks to the sequential weak ⋆ compactness of ST ,δ in L∞, the limit of E4h is E2 when
h goes to 0. Then we prove that the difference between E3h and E4h goes to 0 when h
goes to 0.
Thanks to the conservativity of exact fluxes and since P ∈ H2(Ω) is solution to (3), (5),
one has :

|E3h − E4h| ≤
∣

∣

∣

∣

∣

∣

NT
∑

n=0

δ
∑

m∈Ωh

∑

mv∈N(m)

Sn
m

∫

cmmv

(Qmmv
−∇P (τ).nm(τ)) ϕ(τ, tn) dτ

∣

∣

∣

∣

∣

∣

;

which, combined with (3), (5) and (15), implies :

|E3h − E4h| ≤
∣

∣

∣

∣

∣

NT
∑

n=0

δ
∑

m∈Ωh

∑

mv∈N(m)

Sn
m

∫

cmmv

(

Qmmv
−∇P (τ).nm(τ)

)

×

×
(

ϕ(τ, tn) − ϕ(xm, tn)
)

dτ

∣

∣

∣

∣

∣

,

then

|E3h − E4h| ≤ Mϕ h U T
∑

m∈Ωh

∑

mv∈N(m)

l(cmmv
)
∣

∣

∣Qmmv
− Qmmv

∣

∣

∣ ≤
Mϕ U T

√

V (Ω)

β
Ah,(34)

where Mϕ = sup
(x,t)∈Ω×[0,T ]

|∇ϕ(x, t)| and where we recall that U = max(‖S‖∞, ‖S0‖∞).

Using Proposition 3, one gets :

|E3h − E4h| ≤ C
√

H,

where C depends only on α, β, Ω, T , ϕ, S0, S and on the H2–norm of P . This ends the
proof of Theorem 2 when fluxes are reconstructed by solving local problems.

Fluxes reconstructed by interpolation

We define E ′
3h by :

E ′

3h = −
NT
∑

n=0

δ
∑

m∈Ωh









∑

mv∈N(m)
Qmmv >0

Qmmv
(Sn

mv
− Sn

m)
∫

cmmv

ϕ(τ, tn) dτ

+
∑

c∈A∂Ω(m)

(

S
n

c − Sn
m

) l(c)

l(σc)

∫

σc

g+(τ) ϕ(τ, tn) dτ



 .
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Then, as for the difference between E2h and E3h in the previous section, using the regu-
larity of ϕ and Lemma 7, one gets :

|E2h − E ′

3h| ≤ Cϕ EF1h ≤ C (
√

h + H),

where Cϕ depends only on the first derivatives of ϕ and C depends only on ϕ, Ω, β, α,
S0, S, T, η, on the H2–norm of P and on the L2–norm of g.

We are going to prove that the difference between E4h and E ′
3h converges to zero when h

goes to 0. Fisrt, as in the previous section, using the conservativity of exact fluxes and
since P ∈ H2(Ω) is solution of (3), (5), one has :

|E4h − E ′

3h| ≤
∣

∣

∣

∣

∣

∣

NT
∑

n=0

δ
∑

m∈Ωh

∑

mv∈N(m)

Sn
m

∫

cmmv

(

Qmmv
−∇P (τ).nm(τ)

)

ϕ(τ, tn) dτ

∣

∣

∣

∣

∣

∣

+
NT
∑

n=0

δ
∑

m∈Ωh

∑

c∈A∂Ω(m)

∣

∣

∣S
n
c − Sn

m

∣

∣

∣

1

l(σc)

∣

∣

∣

∣

∫

c

∫

σc

g(τ) ϕ(τ, tn) − g(γ) ϕ(γ, tn) dγ dτ
∣

∣

∣

∣

.

Let E8h be defined by :

E8h =
NT
∑

n=0

δ
∑

m∈Ωh

∑

c∈A∂Ω(m)

∣

∣

∣S
n

c − Sn
m

∣

∣

∣

1

l(σc)

∣

∣

∣

∣

∫

c

∫

σc

g(τ) ϕ(τ, tn) − g(γ) ϕ(γ, tn) dγ dτ

∣

∣

∣

∣

;

then thanks to the regularity of ϕ, there exists C, depending only on ϕ, such that :

|E8h| ≤ 2 U
√

T l(Γ)
[

C
√

T ‖g‖L2(Γ)

√
H + E9h

]

,

where

E9h =





NT
∑

n=0

δ
∑

m∈Ωh

∑

c∈A∂Ω(m)

1

l(c) l(σc)2

(∫

c

∫

σc

(

g(τ) ϕ(γ, tn) − g(γ) ϕ(τ, tn)
)

dγ dτ
)2




1/2

.

Using g(τ) = ∇P (τ).n(τ) for a.e. τ ∈ ∂Ω, this can be written in the following way :

E9h =





NT
∑

n=0

δ
∑

M∈ΩH

∑

σ∈A∂Ω(M)

∑

c⊂σ

l(c)

∣

∣

∣

∣

∣

1

l(c)

∫

c
∇P (τ).n(τ) dτ × 1

l(σ)

∫

σ
ϕ(γ, tn) dγ−

1

l(c)

∫

c
ϕ(τ, tn) dτ × 1

l(σ)

∫

σ
∇P (γ).n(γ) dγ

∣

∣

∣

∣

∣

2




1/2

.

Then as in proof of Proposition 3 for fluxes reconstructed with interpolation (see (22)),
one denotes by σM the edge of M which is the opposite edge to σ (i.e. the edge of M such
that |nσ.nσM

| = 1) and Mσ the neighbor of M such that ∂Mσ ∩ ∂M = σM (see figure 4).
One has :

E9h =



5
NT
∑

n=0

δ
∑

M∈ΩH

∑

σ∈A∂Ω(M)

∑

c⊂σ

l(c)
(

E1,σ,c
2 + E2,σ,c

2 + E3,σ,c
2 + E4,σ,c

2 + E5,σ,c
2
)





1/2

,
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σM

c

σ

Mσ

M

xMσxM

c⊥MMσ

Figure 4:

where :

E1,σ,c =

∣

∣

∣

∣

∣

1

l(σ)

∫

σ
ϕ(γ, tn) dγ

(

1

l(c)

∫

c
∇P (τ).n(τ) dτ − 1

l(c⊥MMσ
)

∫

c⊥
MMσ

∇P (τ).n(τ) dτ

)∣

∣

∣

∣

∣

,

E2,σ,c =

∣

∣

∣

∣

∣

1

l(σ)

∫

σ
ϕ(γ, tn) dγ

(

1

l(c⊥MMσ
)

∫

c⊥
MMσ

∇P (τ).n(τ) dτ − P (xMσ
) − P (xM)

dMMσ

)∣

∣

∣

∣

∣

,

E3,σ,c =

∣

∣

∣

∣

∣

P (xMσ
) − P (xM)

dMMσ

(

1

l(σ)

∫

σ
ϕ(γ, tn) dγ − 1

l(c)

∫

c
ϕ(τ, tn) dτ

)∣

∣

∣

∣

∣

,

E4,σ,c =

∣

∣

∣

∣

∣

1

l(c)

∫

c
ϕ(τ, tn) dτ

(

P (xMσ
) − P (xM)

dMMσ

− 1

l(σM)

∫

σM

∇P (γ).n(γ) dγ

)∣

∣

∣

∣

∣

,

E5,σ,c =

∣

∣

∣

∣

∣

1

l(c)

∫

c
ϕ(τ, tn) dτ

(

1

l(σM)

∫

σM

∇P (γ).n(γ) dγ − 1

l(σ)

∫

σ
∇P (γ).n(γ) dγ

)∣

∣

∣

∣

∣

.

Then using the regularity of P , Lemma 5, the regularity of ϕ, and Lemma 1, one proves :

E8h ≤ C1

(√
H + E9h

)

≤ C2

√
H,

where C1 depends only on α, β, T , ϕ and on the H2–norm of P and C2 depends only on
α, β, T , U , ϕ, Γ, on the H2–norm of P and on the L2–norm of g.
So one obtains :

|E4h − E ′

3h| ≤
∣

∣

∣

∣

∣

∣

NT
∑

n=0

δ
∑

m∈Ωh

∑

mv∈N(m)

Sn
m

∫

cmmv

(

Qmmv
−∇P (τ).nm(τ)

)

ϕ(τ, tn) dτ

∣

∣

∣

∣

∣

∣

+ C
√

H.

But thanks to (14), (3) and (5), one has :

|E4h − E ′

3h| ≤ C
√

H +
∑

c∈A∂Ω(m)

|Sn
m|ϕ(xm, tn)

l(σc)

∣

∣

∣

∣

∫

c

∫

σc

(

g(τ) − g(γ)
)

dγ dτ
∣

∣

∣

∣

+
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+

∣

∣

∣

∣

∣

∣

NT
∑

n=0

δ
∑

m∈Ωh

∑

mv∈N(m)

Sn
m

∫

cmmv

(

Qmmv
−∇P (τ).nm(τ)

)(

ϕ(τ, tn) − ϕ(xm, tn)
)

dτ

∣

∣

∣

∣

∣

∣

.

Using the regularity of ϕ and an argument similar to the one used for E8h, one shows
that :

|E4h − E ′

3h| ≤ C
√

H + T U Cϕ h
∑

m∈Ωh

∑

mv∈N(m)

l(cmmv
)
∣

∣

∣Qmmv
− Qmmv

∣

∣

∣,(35)

where C depends only on α, β, T , U , ϕ, Γ, P and on g and where Cϕ depends only on ϕ.
Using Cauchy Schwarz’ inequality and proposition 3, one gets :

|E4h − E ′

3h| ≤ C
(

H +
√

H
)

≤ C
√

H,

where C depends only on α, β, T , U , S, ϕ, Γ, Ω, P and on g.
This ends the proof of Theorem 2.

3 Numerical results

Two simulators (for a 1 grid resolution and for the Dual Mesh Method) have been built
allowing to solve a 2 phase flow problem in heterogeneous porous media corresponding to
the coupled problem (1), (2). For both simulators, we have used the same Finite Volume
schemes, those described in Section 2. They are based on an IMPES scheme (implicit in
pressure and explicit in saturation). The algorithm of the simulator of the Dual Mesh
Method is as follows :

Step 1 - Calculation of the parameters necessary to solve the pressure equation
thanks to an adaptive homogenization from the HR to the LR grid.

Step 2 - Calculation of the pressure over the LR grid.

Step 3 - Reconstruction of the flow-rate over the HR grid by using the pressure over
the LR grid.

Step 4 - Resolution of the saturation equation over the HR grid.

The Darcy’s velocity (K ∇P ) is reconstructed over each interface of the mesh. The flow-
rate is defined by the product of the Darcy’s velocity and the length of the considered
interface.
It is possible and even adviced to have also different time steps. For more details, see
[14]. The upscaling step (step 1) is integrated in the Dual Mesh Method simulator to
homogenize the product of the absolute permeability and the total mobility (see [6]).
Indeed, as the parameters are given over the HR grid, this step allows to determine the
discrete coefficients of the pressure equation when the medium is heterogeneous (see Test-
Cases 2 and 3) and the total mobility depends on the saturation (see Test-Case 3). In the
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homogeneous case with constant total mobility (see Test-Case 1), there is no upscaling
step. This test corresponds to the theoretical case. Neumann and Dirichlet boundary
conditions are used.
Let us now describe the different test cases used. From a physical point of view, each one
corresponds to a secondary recovery process of oil by injection of water in the field.

3.1 Description of the test cases

A classical test in petroleum engineering is considered : the so called quarter of five
spot geometry. The figure 5 represents the LR grid. This one is drawn in 3D to justify
the m3, but numerical tests are done in 2D. Over Γ1, respectively over Γ2, we impose the
pressure, respectively the flow-rate (see figure 5). Over Γ3 = Γ/(Γ1∪Γ2), an homogeneous
Neumann condition is used. In order to avoid difference between numerical results due to
Productivity Indices (PI) problems, source terms are in the boundary conditions rather
than in wells.
Several grids have been taken which are all rectangular and regular. These ones are
different according to the simulations. The number of cells in x equals the number of

1 meter

76 Bars

Γ1

300 Meters

Γ2

100 m3/ Day

Figure 5: Geometrical Characteristics of the Test-Cases

cells in y. Thus, we introduce the notation (nH , nh) which corresponds to the numerical
solution of the problem with a nH × nH cells for the pressure equation and nh × nh cells
for the saturation equation. When nH 6= nh, the Dual Mesh Method is used. So, we
denote by mi (resp. mlpb) the reconstruction by interpolation (resp. by solving local
problems). When the medium is heterogeneous, the method mlpb described in Section
2 becomes widespread by sharing each discrete flow-rate at the interface of the LR Grid
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in proportion to the value of the absolute permeability and the total mobility of the LR
Grid (for more details, see [14]).
For each test-case, the solution over the finest grid is considered as the reference.
For a given time, an error estimate on the saturation in L1–norm and an error estimate on
the flow-rate in L2–norm are calculated for each simulation by considering the finest grid
as the reference. So, one defines : ‖e(S)‖L1 (resp. ‖e(Q)‖L2), the L1 (resp. L2) norm of
the difference between the reference case and the considered resolution for the saturation
(resp. flow-rate).
For every test case, and every simulation, these error estimates are calculated at the time
t = 2000 days.

3.2 Validation over the Simplified Case - Test Case 1

Let us consider a simulation over an homogeneous case (K = 100mD) and with a constant
total mobility (m = 1). This is the case studied in the theoretical approach.
Three differents grids are chosen, giving 8 simulations: (16, 16), (16, 48)mi, (16, 48)mlpb,
(16, 144)mi, (16, 144)mlpb, (48, 144)mi, (48, 144)mlpb and (144, 144). The last one is the
reference. For the first five simulations, we fix the grid (nH × nH) where the pressure
equation is solved, and we try to determine the influence of nh (i.e. h) on the flow-rate
(see Table 1) and on the saturation (see figure 6 page 28). For the last four simulations, the
grid (nh×nh) where the saturation equation is solved is fixed, and we try to determine the
influence of nH (i.e. H) on the flow-rate (see Table 1) and on the saturation (see figure
6 page 28). Unfortunately, the number of simulations did not allow us to determine

Simulations Reconstruction Method ‖e(Q)‖L2

(16,16) 3, 19 10−1

(16,48) mi 2, 12 10−2

(16,48) mlpb 1, 94 10−2

(16,144) mi 2, 80 10−4

(16,144) mlpb 2, 67 10−4

(48,144) mi 4, 82 10−5

(48,144) mlpb 4, 70 10−5

Table 1: Influence of nH and nh over ‖e(Q)‖L2 - Test-Case 1

the influence of nH and nh. We could not make more simulations because between two
different simulations, we must multiply nh at least by 3; then, the difference between errors
are too important to conclude on the influence of nh. Furthermore, it is not possible to
have a very high nh and nh must be a multiple of nH . Having said that, numerical results
show the convergence of the approximate solutions as in the theoretical approach.
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L1 norm of the saturation error

(16, 16) (16, 48) (16, 48) (16, 144) (16, 144)

1

(48, 144) (48, 144)
mlpbmimlpbmimlpbmi

1, 11 10−2

7, 44 10−3
7, 14 10−3

10−3

7, 02 10−4 6, 16 10−4
8, 37 10−51, 14 10−4

×
11
10
9
8
7
6
5
4
3
2

Figure 6: Influence of nH and nh over ‖e(S)‖L1 - Test-Case 1

3.3 An heterogeneous Case with Constant Total Mobility - Test

Case 2

The simulator is now applied over an heterogeneous case with total mobility equal to 1
everywhere. The absolute permeability map is generated by a lognormal distribution with
a correlation length equal to 3 meters in the x and y directions (see figure 7 page 29).
With these choices, an algebraic estimator (see [5]) is used to generate permeability maps
over lower grids. The method mi based on interpolation is not used anymore. Indeed,
the interpolator doesn’t take into account the heterogeneity of the porous media over the
HR Grid.
As in the Test-Case 1, Table 2 and figure 8 page 30 give error estimates.
The observed results for the method mlpb are of the same order as the results of the
Test-Case 1. However, the errors are a little bit more important in this case, due to the
presence of the heterogeneities. So, even if the reconstruction of the flow-rate is more
delicate, the accuracy of the results is reasonable.

Simulations ‖e(Q)‖L2

(16, 16) 3, 94 10−1

(16, 48)mlpb 2, 69 10−2

(16, 144)mlpb 5, 58 10−4

Table 2: Influence of nh over ‖e(Q)‖L2 - Test-Case 2
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Figure 7: Permeability Map (in MD) of the Test-Case 2

3.4 An heterogeneous Case with no Constant Total Mobility -

Test Case 3

Let us show the extension of the Dual Mesh Method with a non constant total mobility ;
it means that the total mobility depends on the saturation. In this test-case, we have
extended the Dual Mesh Method to a real coupled system. So, the pressure equation must
be solved for each time step and this test shows the interest of the Dual Mesh Method in
term of efficiency and CPU time in comparison with the resolutions over a single grid.
An heterogeneous porous medium is generated by a lognormal distribution with a corre-
lation length equal to 25 meters in the x and y directions (see figure 9 page 31).
The law of relative permeabilities used are of the Corey type (see [1]), i.e.

krw(S) = kwm S∗nw and kro(S) = kom (1 − S∗)no with S∗ =
S − Swi

1 − Swi − Sor

An unfavourable mobility ratio is chosen for the Test-Case 3 (M =
krw

µw

/

kro

µo

= 2).

The Table 3 summarizes the different fluid properties of this Test-Case.
Six simulations are considered: (10, 10), (10, 30)mlpb, (30, 30), (10, 90)mlpb, (30, 90)mlpb and
(90, 90).
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Figure 8: Influence of nh over ‖e(S)‖L1 - Test-Case 2

Mobility Swi Sor nw no kwm kom µw (c P) muo (c P)
Ratio

2 0.2 0.2 2 1.5 0.4 1 1 0.8

Table 3: Fluid Properties of the Test-Case 3

The error estimates on the flow-rate and on the saturation are shown in the Table 4 and
figure 10 page 32. This last one reveals that the convergence of the approximate solutions
is again obtained although the problem is complex because of the heterogeneities and the
non linearity.
The watercut curves (see figure 11 page 33) are very interesting for the reservoir engineer-
ing. It corresponds to the ratio between the water flow-rate and the total flow-rate at the
producer well (on Γ1). It is very important to have a good evaluation of the breakthrough
of the water in the productor. The comparison of watercut (see figure 11 page 33) for
each simulation shows that the results obtained with a fully fine simulation are similar to
those obtained with the Dual Mesh Method (mplb). We have considered the solution of
the pressure equation over the 10 × 10 grid and the solution of the saturation equation
over the finer grid (30 × 30 or 90 × 90 depending on the case considered). Table 5 shows
the CPU times for the different simulations. We notice again that the Dual Mesh Method
used here has also two different time-steps. Indeed, the time-step in pressure is calculated
as if the pressure and saturation equations were both calculated over the LR Grid. So,
the pressure time-step is calculated thanks to a ratio between the CFL Conditions for the
saturation equation over the HR and LR Grid (see [6]). Computing cost using (nH , nh)
Dual Mesh Methods by using this two different time-steps is quite of the same order as the
(nH , nH) simulation, while the (nh, nh) simulation requires a very long CPU time. These
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Figure 9: Permeability Map (in MD) of the Test Case 3

Simulations ‖e(Q)‖L2

(10, 10) 2, 15 10−1

(10, 30)mlpb 1, 27 10−2

(30, 30) 1, 27 10−2

(10, 90)mlpb 2, 18 10−4

(30, 90)mlpb 3, 38 10−5

Table 4: Comparison of ‖e(Q)‖L2 - Test-Case 3

results are obvious to the extent that instead of solving the linear system over nh × nh

cells as in the HR Grid resolution, the (nH , nh) Dual Mesh Method requires only to solve
the pressure equation over nH × nH cells for each time-step in pressure and to solve nh

local problems. A parallel calculation could be a very good way to solve the saturation
equation, using an explicit scheme in order to improve the CPU time.

Conclusion :

In this paper, in the homogeneous case with constant total mobility, we have proved the
convergence of the Dual Mesh Method with two different reconstruction methods of fluxes.
The first one has a cheaper computing cost but the second can be extended to more com-
plex problems (heterogeneous cases with non constant total mobility). For both methods,
we gave for the reconstructed fluxes an error estimate, in H for the interpolation method
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1, 52 10−2
1, 47 10−2
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7, 92 10−4

× 10−2
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Figure 10: Influence of nh over ‖e(S)‖L1 - Test-Case 2

Pressure Grid → 10 × 10 30 × 30 90 × 90
Saturation Grid

↓
10 × 10 11 XXXX XXXX
30 × 30 52 293 XXXX
90 × 90 797 1350 18052

Table 5: Comparison of the CPU-Time (s) - Test-Case 3

and in h +
√

H for the local problems method. We think that the second result is not
optimal.
These results are sufficient to pass to the limit in the discretized equation associated to the
saturation equation and thus we proved the convergence of the approximate saturation
to the exact saturation with the Dual Mesh Method.
We used the Dual Mesh Method with local problem reconstruction in heterogeneous cases
with non constant total mobility. The calculation of the error estimates for different
test-cases showed the numerical convergence of the Dual Mesh Method algorithm.
Eventually the Dual Mesh Method was validated by its efficiency and its computing cost
in comparison with classical methods (only one grid).
So, it is possible to apply the Dual Mesh Method to full field simulations.
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dérivées partielles, Masson, Paris.

[10] Raviart P.-A., Thomas J.-M., 1983, Introduction à l’analyse des équations aux
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