Models of adaptation to climate change for complex life cycles

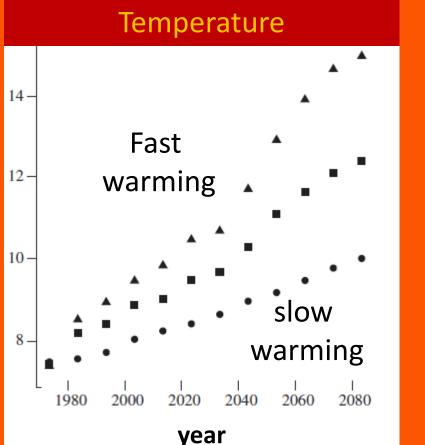
Ophélie Ronce

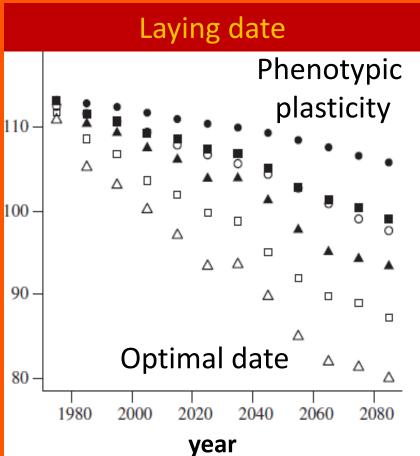
ADAPTIVE CHALLENGES ASSOCIATED WITH CLIMATE CHANGE: ATTEMPTS TO FORMALIZE THEM

Climate warming will favor different phenotypes

Parus major

Gienapp et al. 2013



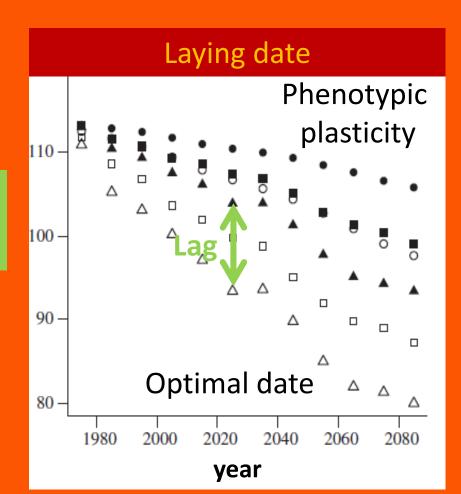


Climate warming will favor different phenotypes

Parus major

Gienapp et al. 2013

Selection for genotypes with earlier laying date

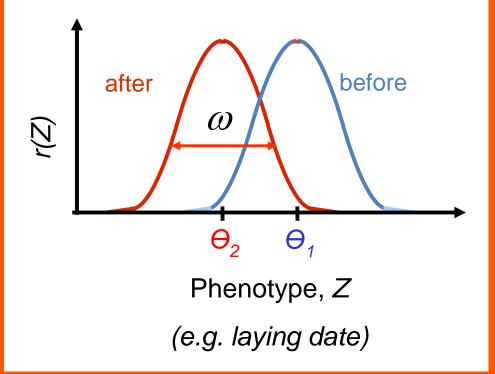


Climate change has already triggered evolutionary change

Franks et al. 2007

Lynch et al. 1991

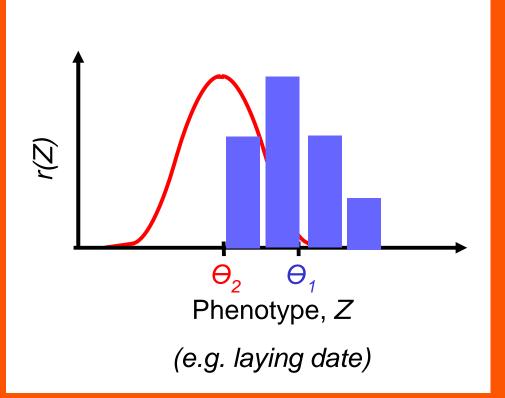
Malthusian fitness *r* of individual with phenotype z



Gaussian selection

Optimal phenotype changes linearily through time with speed k

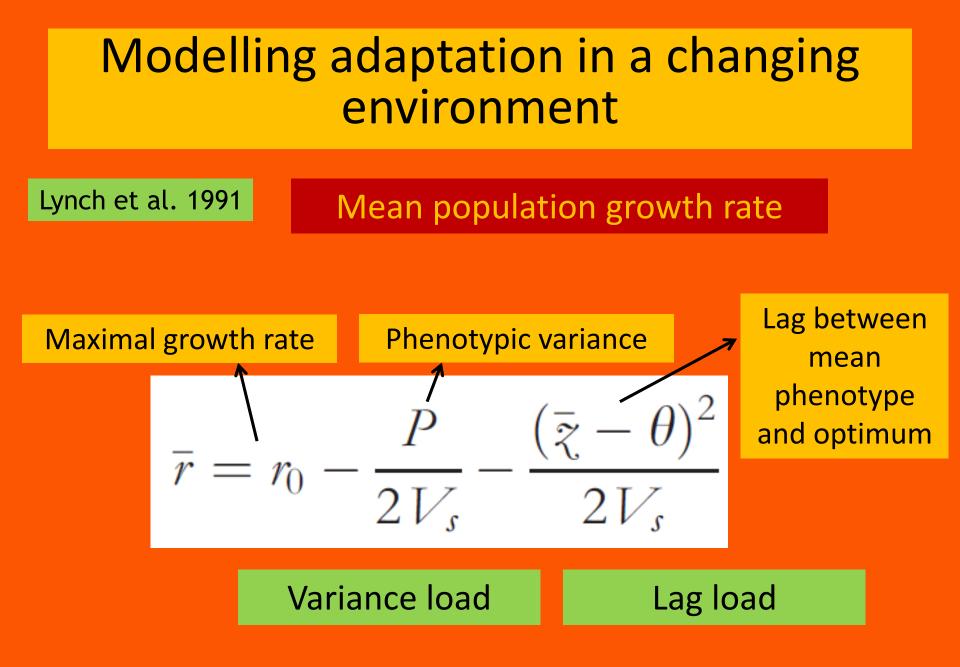
Lynch et al. 1991



Gaussian distribution of phenotypes

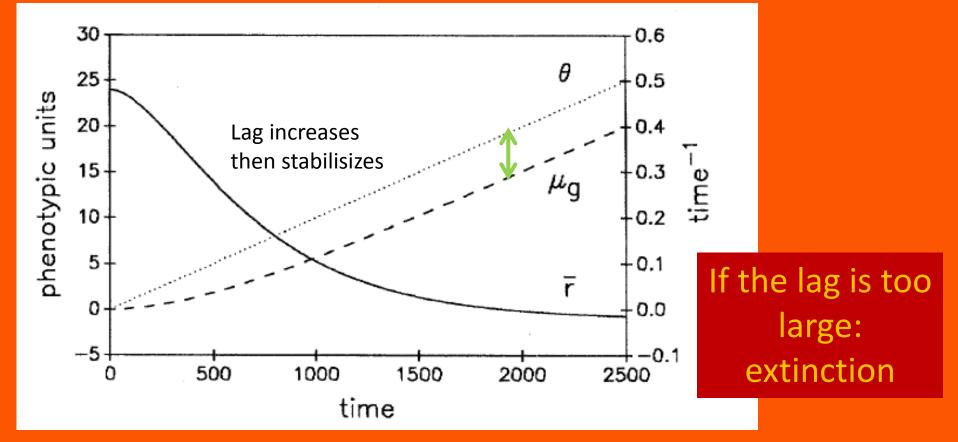
Mean population growth rate

$\overline{\mathcal{V}}$



Lynch et al. 1991

Mean phenotype evolves to track the shifting optimum with a constant lag



Lynch et al. 1991

Mean phenotype evolves to track the shifting optimum with a constant lag

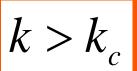
Lag is larger when

$$\frac{\theta(t) - \overline{z}(t)}{V_s} = \frac{k}{G}$$

Speed of climate change is greater

Genetic variance is smaller

Critical speed of climate change



 $\overline{r} < 0$

ADAPTIVE CHALLENGES IN HETEROGENEOUS POPULATIONS: THE TOOL-KIT

Adaptation in structured populations

Heterogeneity in many populations

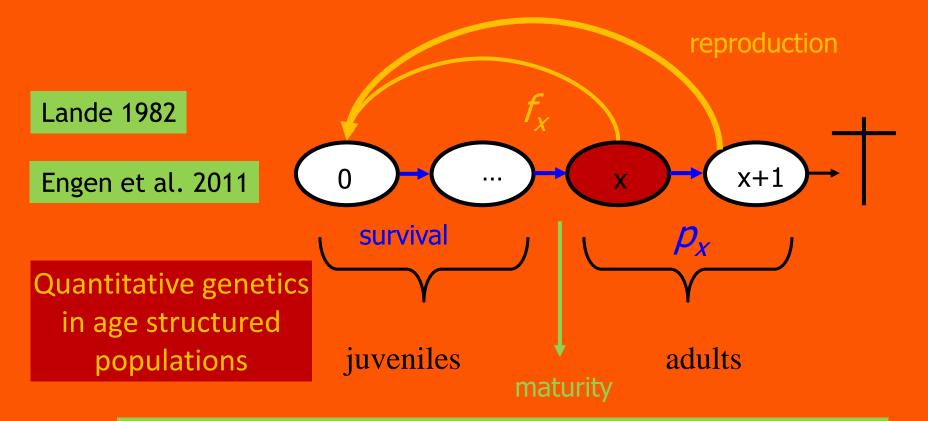
Climate change may have differential effects on individuals in different stages

The same trait may be under different selection pressures in different stages

Marschall et al. 2016

Evolutionary changes in an agestructured population

A sophisticated tool-kit



see also Barfield et al. 2011 for stage-structured populations

Stage-structured demographic model

$$\mathbf{N}[t+1] = \mathbf{A}[t]\mathbf{N}[t]$$

$$a_{ij} = \begin{vmatrix} t_{ij} \\ f_{ij} \end{vmatrix}$$

Change in stage for the same individual: survival, dispersal

Production of new individuals: fecondity

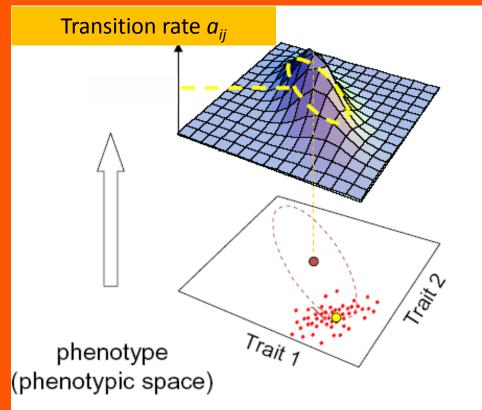
 Connecting demographic rates to phenotypes

$$a_{ij}(\mathbf{z},t) = A_{ij} \exp \left[-\frac{1}{2} \left(\mathbf{z} - \mathbf{\theta}_{ij} \left[t \right] \right)^{\mathrm{T}} \mathbf{W}_{ij}^{-1} \left(\mathbf{z} - \mathbf{\theta}_{ij} \left[t \right] \right) \right]$$

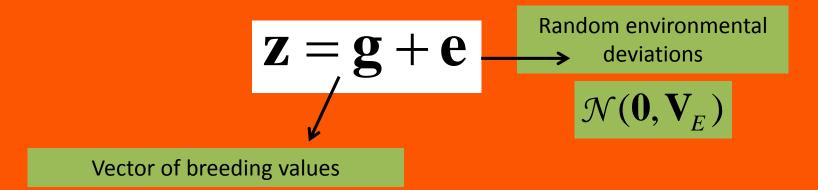
Vector of phenotypic values
Selection matrix measuring
the consequences of
deviating from the optimal
phenotype

 Connecting demographic rates to phenotypes

Optimal phenotypes can vary in time and depending on stage



Change in phenotypic distribution



$$\rho_i(\mathbf{Z},\mathbf{g})$$

Joint distribution of phenotype and breeding value among stage i individuals

Change in phenotypic distribution

Barfield et al. 2011

$$\rho_i^*(\mathbf{z}, \mathbf{g}) = \sum_j \frac{N_j t_{ij}(\mathbf{z}) \rho_j(\mathbf{z}, \mathbf{g})}{N_i^*}$$

individuals changing stage from j to i

Change in phenotypic distribution

New individuals in stage i

$$\rho_i^*(\mathbf{z},\mathbf{g}) = \omega_i(\mathbf{z} | \mathbf{g}) \iint R(\mathbf{g} | \mathbf{g'},\mathbf{g''}) \Phi_i(\mathbf{g'}) \Phi_i(\mathbf{g''}) d\mathbf{g'} d\mathbf{g''}$$

Distribution of breeding value in the offspring knowing that of its parents

Distribution of breeding value among parents of stage i individuals

$$\Phi_i(\mathbf{g}) = \sum_j \frac{N_j \int f_{ij}(\mathbf{z}) \rho_j(\mathbf{z}, \mathbf{g}) d\mathbf{z}}{N_i^*}$$

Distribution of phenotypic value knowing the breeding value

 $\mathcal{N}(\mathbf{g},\mathbf{V}_{F})$

• Assumption 1: Infinitesimal model of trait inheritance

$$R(\mathbf{g} | \mathbf{g', g''}) = \frac{1}{\sqrt{(2\pi)^m \det(\mathbf{V}_{LE})}} \exp\left(-\frac{1}{2} \left(\frac{\mathbf{g'+g''}}{2}\right)^{\mathrm{T}} \mathbf{V}_{LE}\left(\frac{\mathbf{g'+g''}}{2}\right)\right)$$

Breeding value of offspring = mean of its parents + random normal deviate of constant variance

Large number of loci of small effects

 Assumption 2: Joint gaussian distribution of breeding and phenotypic values

Mean breeding (phenotypic) value in stage i

Genetic (phenotypic) variances-covariances in stage i

 \mathbf{G}_{i} **P**.

Assumed constant across time

 Assumption 2: Joint gaussian distribution of breeding and phenotypic values

$$\overline{\mathbf{g}}_{i}[t+1] = \sum_{j} \frac{N_{j}[t]}{N_{i}[t+1]} \overline{a}_{ij}[t] (\overline{\mathbf{g}}_{j}[t] + \mathbf{G}_{j}\nabla \ln \overline{a}_{ij})$$

$$\overline{\mathbf{z}}_{i}[t+1] = \sum_{j} \frac{N_{j}[t]}{N_{i}[t+1]} (\overline{\mathbf{z}}_{j}[t]\overline{t}_{ij} + \overline{\mathbf{g}}_{j}[t]\overline{f}_{ij} + \mathbf{P}_{j}\nabla \overline{t}_{ij} + \mathbf{G}_{j}\nabla \overline{f}_{ij})$$

Selection gradients

$$\nabla = \left\{ \partial / \partial \overline{z}_1, \partial / \partial \overline{z}_2 \dots \partial / \partial \overline{z}_n \right\}$$

 Joint gaussian distribution of breeding and phenotypic values

$$\ln\left(\overline{a}_{ij}\left[t\right]\right) = \ln A_{ij} \qquad \mathbf{V}_{ij} = \mathbf{W}_{ij} + \mathbf{P}_{j}$$
$$+ \frac{1}{2}\ln\left(\left|\mathbf{V}_{ij}^{-1}\mathbf{W}_{ij}\right|\right) \qquad \text{Variance load}$$
$$- \frac{1}{2}\left(\overline{\mathbf{z}}_{j}\left[t\right] - \mathbf{\theta}_{ij}\left[t\right]\right) \mathbf{V}_{ij}^{-1}\left(\overline{\mathbf{z}}_{j}\left[t\right] - \mathbf{\theta}_{ij}\left[t\right]\right)$$

Evolutionary (lag) load

Α

Assumption 3: stable stage distribution

All stages share the same rate of evolution

Weak selection

$$\Delta \overline{\mathbf{z}} = \overline{\mathbf{z}}_{k} [t+1] - \overline{\mathbf{z}}_{k} [t] = \Delta \overline{\mathbf{g}}$$
$$= \sum_{i,j} \mathbf{G}_{j} \frac{\partial \ln(\overline{\lambda})}{\partial \ln(\overline{a}_{ij})} \nabla \ln(\overline{a}_{ij})$$

Largest eigenvalue of

Lande 1982

Assumption 3: stable stage distribution

All stages share the same rate of evolution

$$\Delta \overline{\mathbf{z}} = \sum_{i,j} \mathbf{G}_{j} e_{ij} \nabla \ln(\overline{a}_{ij})$$

Effect of perturbations of the transitions in the life cycle on the exponential population growth rate

Demographic elasticities

$$e_{ij} = \frac{\partial \ln(\overline{\lambda})}{\partial \ln(\overline{a}_{ij})}$$

Assumption 3: stable stage distribution

All stages share the same rate of evolution

$$\Delta \overline{\mathbf{z}} = \sum_{i,j} \mathbf{G}_{j} e_{ij} \mathbf{V}_{ij}^{-1} \left(\mathbf{\theta}_{ij} \left[t \right] - \overline{\mathbf{z}}_{j} \left[t \right] \right)$$

Weak selection

Assumption 3: stable stage distribution

if
$$\forall k \ \overline{\mathbf{z}}_k[t] = \overline{\mathbf{z}}[t]$$

 $\forall k \mathbf{G}_k = \mathbf{G}$

$$\Delta \overline{\mathbf{z}} = \mathbf{G} \mathbf{V}_{\nu}^{-1} \left(\mathbf{\theta}_{\nu} [t] - \overline{\mathbf{z}} [t] \right)$$

Same form as in unstructured population

Engen et al. 2011

Assumption 3: stable stage distribution

$$\boldsymbol{\theta}_{\nu}\left[t\right] = \sum_{i,j} e_{ij} \mathbf{V}_{\nu} \mathbf{V}_{ij}^{-1} \boldsymbol{\theta}_{ij}\left[t\right]$$

Integrative phenotypic optima

$$\mathbf{V}_{v}^{-1} = \sum_{i,j} e_{ij} \mathbf{V}_{ij}^{-1}$$

Overall strength of stabilizing selection

ADAPTIVE CHALLENGES IN HETEROGENEOUS POPULATIONS: COULD CLIMATE CHANGE AFFECT LIFE HISTORY TRADE-OFFS?

Ehrlen & Munzbergova 2009

Increases seed set

Lathyrus vernus

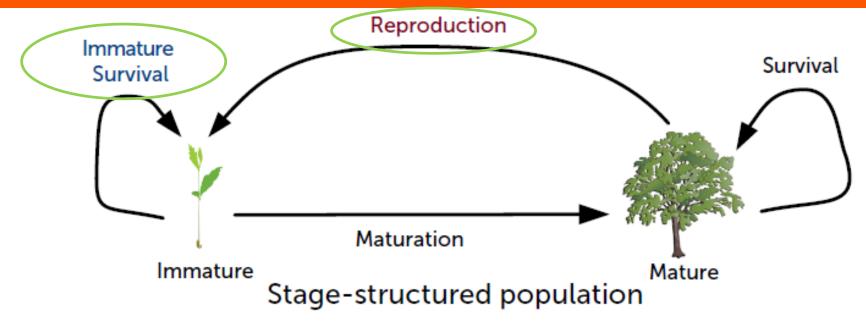
Decreases survival

probability

Earlier flowering favored by climate change

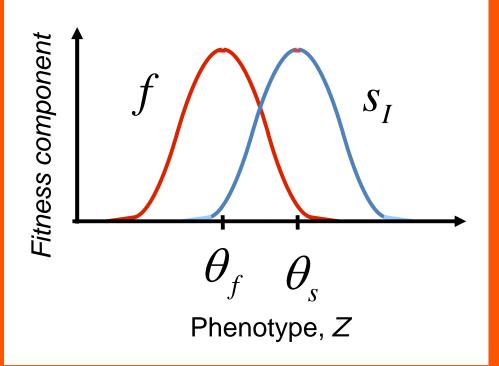
Increases risk of grazing

• Evolution of leafing date in a structured population



Hypotheses

Same leafing date during the whole life



Optimal leafing date maximizing fecundity may differ from the date maximizing immature survival

Both optima change with climate warming

• In a constant environment, at equilibrium the mean phenotype lies between the two optima

$$\overline{z}_{eq} = \theta_v = \frac{\gamma_f \theta_f + \gamma_s \theta_s}{\gamma_f + \gamma_s}$$

Engen et al. 2011

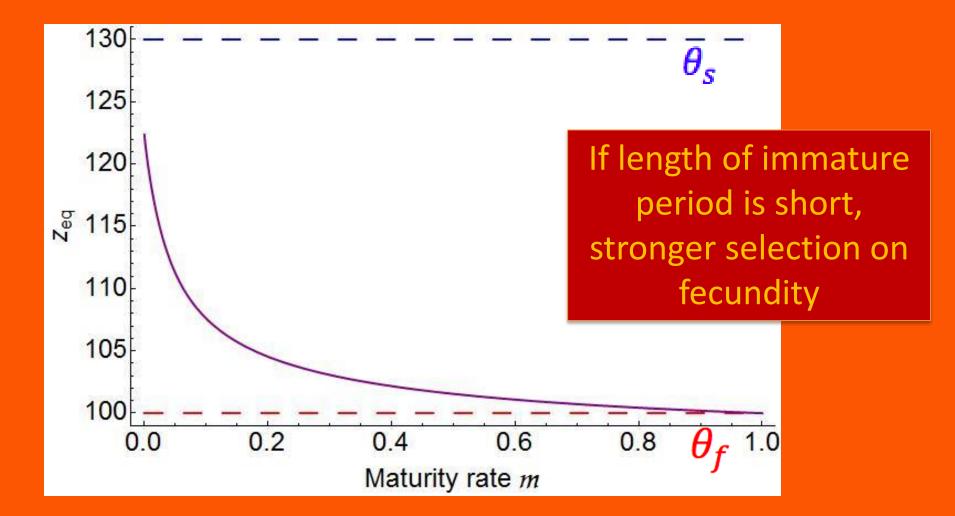
Weights depending on demographic elasticities

Phenotypic mismatch vary among life history traits

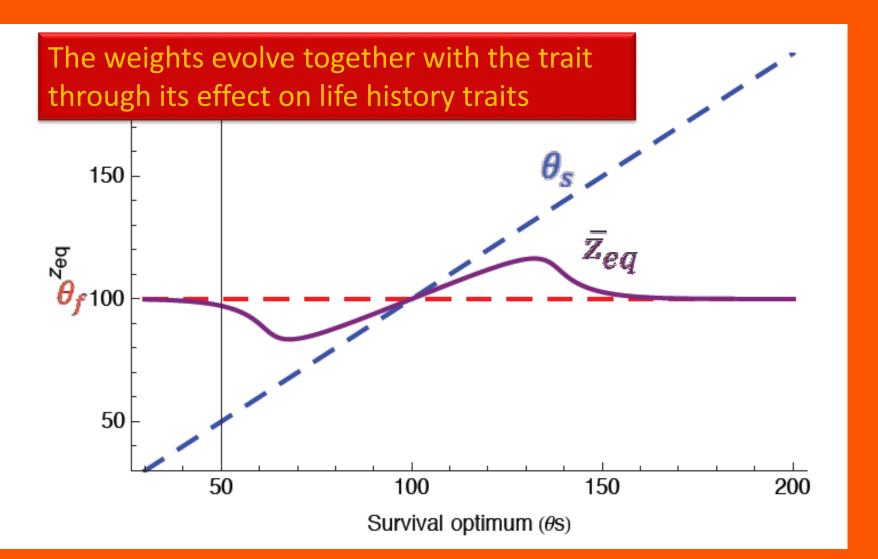
$$\theta_{f} - \overline{z}_{eq} = \theta_{f} - \theta_{v} = \frac{\gamma_{s} \left(\theta_{f} - \theta_{s}\right)}{\gamma_{f} + \gamma_{s}}$$

Weights depending on demographic elasticities

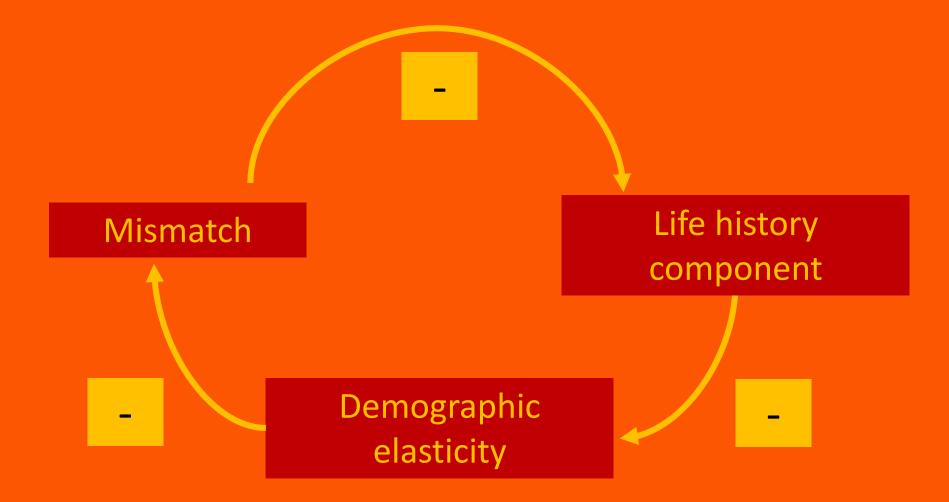
Predictions in a stable climate



Predictions in a stable climate



Meltdown of life history



Optimal date maximizing fecundity

Optimal date maximizing juvenile survival

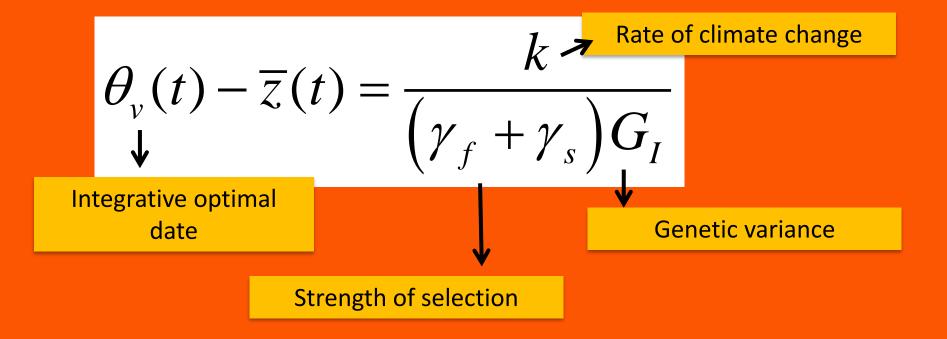
$$\theta_f(t) = \theta_f(0) + k_f t$$

$$\theta_s(t) = \theta_s(0) + k_s t$$

if
$$k_s = k_f = k$$

Conjecture

Lag in adaptation at equilibrium



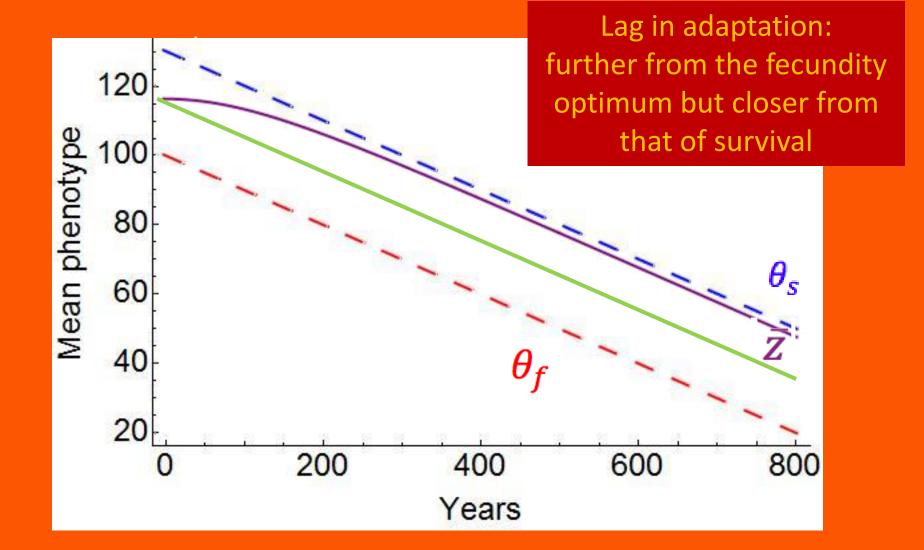
Phenotypic mismatch vary among life history traits

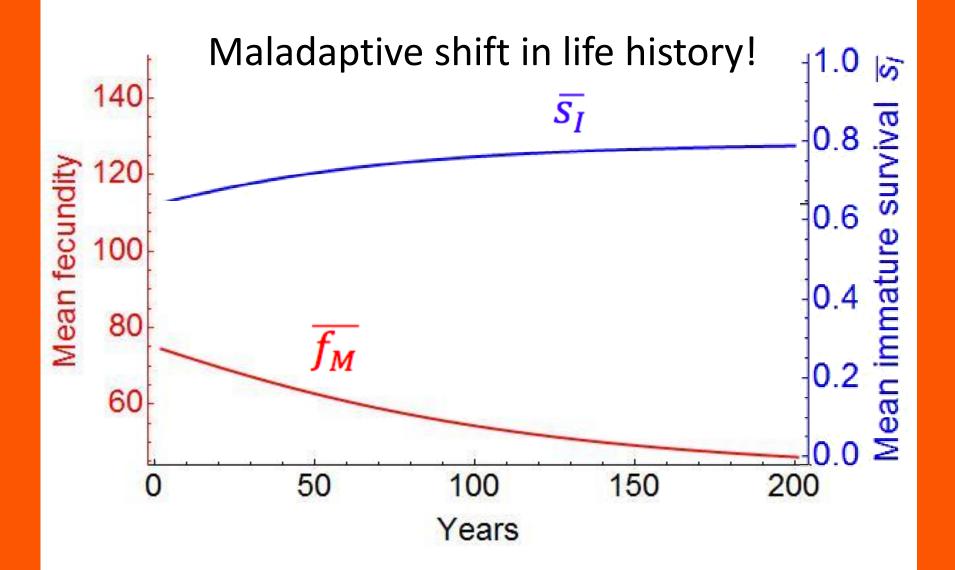
$$\theta_f(t) - \overline{z}(t) = \theta_f(0) - \theta_v(0) + \frac{k}{(\gamma_f + \gamma_s)G}$$

Initial mismatch

Mismatch due to lag in adaptation

Same or opposite sign





- Lag in adaptation results in mean phenotype shifting along the trade-off between survival and fecundity
- Improvement in some fitness component following climate change may actually correspond to maladaptive response, reflecting slow evolution!

$$if \ k_s \neq k_f$$
Conjecture
Lag in adaptation at equilibrium
$$\theta_v(t) - \overline{z}(t) = \frac{k_v}{(\gamma_f + \gamma_s)G_I}$$
Integrative optimal
date
$$k_v = \frac{\gamma_f k_f + \gamma_s k_s}{\gamma_f + \gamma_s}$$

Phenotypic mismatch vary among life history traits

$$\theta_f(t) - \overline{z}(t) = \theta_f(0) - \theta_v(0) + (k_f - k_v)t + \frac{k_v}{(\gamma_f + \gamma_s)G}$$

Initial mismatch

Mismatch diverges!

Mismatch due to lag in adaptation

- Divergence of mismatch-> extinction?
- Stationary lag with respect to the integrative optimum?
- Non linear change in integrative optimum

Thanks

Linnea Sandell

MECC

Luis-Miguel Chevin

Matthias Grenié

A model for adaptation in a stagedstructured population

Assumption 3: stable stage distribution

$$\Delta \overline{\mathbf{z}} = \mathbf{G} \mathbf{V}_{\nu}^{-1} \left(\mathbf{\theta}_{\nu} [t] - \overline{\mathbf{z}} [t] \right)$$

$$if \ \forall k \ \overline{\mathbf{z}}_k[t] = \overline{\mathbf{z}}[t]$$

Integrative

phenotypic

optima

$$\boldsymbol{\theta}_{v}[t] = \sum_{i,j} e_{ij} \mathbf{V}_{v} \mathbf{G}^{-1} \mathbf{G}_{j} \mathbf{V}_{ij}^{-1} \boldsymbol{\theta}_{ij}[t]$$

$$\mathbf{V}_{v}^{-1} = \sum_{i,j} e_{ij} \mathbf{G}^{-1} \mathbf{G}_{j} \mathbf{V}_{ij}^{-1}$$

Overall strength of stabilizing selection