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Goals of Population Genetics

Build models that help us understand the main evolutionary events
that gave rise to the observed patterns of genetic variation.
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Population size changes
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Reconstructing demographic history from DNA J

DNA sequences

Inferred demographic history
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Wright-Fisher model (1930-1931)

@ Non-overlapping generations.
e Constant population size (2N genes, 1 indiv. = one gene).

e Random mating (panmixia).

4 generations before the present (t:4)O

3 generations before the present (t=3)

awip

2 generations before the present (t=2) C

1 generation before the present (t=1) C

present (t=0) O




MRCA
4gemmsmmnemempa@ Q f) 9]
3 generations before the present (=3) (7 O D C)
\G Q\Q

o *f*) >
oK oK)

)
13 15

2 generations before the present (1=2)

1 generaion before the present (=1) (

aun

present (=0) (1)

Key concepts

o Coalescence events: Individuals /3 and /5 coalesce (have a
common ancestor) 4 generations before the present.

@ Probability that two individuals coalesce in the previous
generatlon W Probability that they do not coalesce:
A

@ Gp: Number of generations to reach the ancestor of 2 genes.
P(G > €)= (1 — 5)"

o Let 2N be large, 2G—N — Tp,with Ty ~ Exp(1).
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The Coalescent and some approximations

Kingman, J., 1982. The coalescent.
A continuous-time Markov chain allowing to describe family
relationships between individuals backward in time.

Hudson, R. R., 1983. The coalescent with recombination.
A process allowing to trace back lineages, incorporating
recombination events.

Herbots, H. M. J. D. 1994. The structured coalescent.
An extension of Kingman's coalescent to subdivided populations.

McVean & Cardin, 2005. The Sequentially Markovian Coalescent.
An approximation to the coalescent with recombination using a
Markov chain along the genome.




Variable population size. Relation with T,

Griffiths & Tavaré. 1994,

Distribution of Ty, function of population size change

@ Population evolving with deterministically varying size.

o \(t) = N(t) , with 2/N: present population size (genes).

o A(t) = /Ot A(lu) i

o Distribution of the coalescence times of two genes (T3).
° ]P(TQ > 1.') =1l= FTz(t) = e NV
o r,(t) = (Fry(t)) = xfme ™.

Objective: Reconstruct the function A. )




Methods for estimating past population size changes

o MSVAR (1999).
Skyline plot (2000).
Bayesian skyline plot (2005).
dadi (2009)

PSMC (2011).
DiCal (2013).
VarEff (2014).
MSMC (2014).
stairway plot (2015)
PopSizeABC (2016).
SMC++ (2017)
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Methods for estimating past population size changes

PSMC (2011).




Li and Durbin, 2011.Pairwise Sequentially Markovian Coalescent.

The PSMC method
@ Input data: one diploid genome (one diploid individual).

@ Based on the Sequentially Markovian Coalescent (SMC.
McVean & Cardin, 2005).

@ Uses a relation between recombinations, mutations and g in
a model of variable population size.

@ Describes a Hidden Markov Model along the genome, allowing
to estimate values of population size in the past.

@ Developed to be applied on long DNA sequences (e.g.: one
chromosome.)




PSMC. Markov Chain along the genome
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PSMC. Markov Chain along the genome
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PSMC. Hidden Markov Chain along the genome
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Discrete state space, discrete-time HMM.

Hidden states: coalescence times (T3) at position a

(T2 € [tk, tks1])-

Observed states: homozygous or heterozygous at position a.
Parameters: scaled mutation rate (6), scaled recombination rate
(p), demographic history (Ax).




The psmc method (Heng Li & Richard Durbin, 2011) can be
affected by population structure.
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n islands model )




One example (the psmc). A simple structure model

n islands model
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Coalescence times and population size changes. The panmixia
hypothesis (random mating).
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What if we do not have random mating ?

What if we do not have random mating ?
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Griffiths & Tavaré (1994). Variable population size (N,)

Ne(t) = NO)‘(t)

L du

t
P(Ty>t) = e hxw

Inverse Instantaneous Coalescence Rate (IICR). Mazet et al. 2015

o log(P(T > t)) = —ﬁ

P(To>t 1—Fr,(2)
° N0 =S5 =

@ )\ can be evaluated at any t using only the T distribution.
Valid for any model.

@ T; can be interpreted as a lifetime. ﬁ: instantaneous
coalescence rate (hazard function of failure rate).

@ \(t) may be disconnected with size changes.
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https://github.com /willyrv/lIICREstimator




Explicit expression for the [ICR under the n islands model.
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Trace the [ICR for non panmictic models

L. Chikhi et al. The IICR (inverse instantaneous coalescence rate) as a summary of genomic diversity: insights into
demographic inference and model choice (to appear HDY)
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Trace the [ICR for non panmictic models
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Trace the [ICR for non panmictic models
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Considering alternative scenarios

IICR example
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Considering alternative scenarios

IICR example
8000

—— |IICR from real data
————— nislands. n=10 M=1
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Considering alternative scenarios

PSMC in human data. Alternative scenario: n islands model with
changes in gene flow and recent grow

— PSMC estim. 10 sim. scenarios
— PSMC estim. real data
Real pop. size sim. scenarios
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Considering alternative scenarios

PSMC in human data. Alternative scenario: n islands model with
changes in gene flow and recent grow

— PSMC estim. 10 sim. scenarios
— PSMC estim. real data
Real pop. size sim. scenarios
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Summary statistic in an ABC framework
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Identifiability problem when using T» (Tx) based methods. |

Reconstructed skyline plots are not meaningless but should be
interpreted carefully (as an IICR) in a general case.

For some models it is possible to have an explicit expression of the
IICR.

The IICR can be used as a summary statistic to explain the data
under any model, provided we can simulate coalescence times.

The IICR can be used as a summary statistic in an ABC framework.)
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