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VIRULENCE (READ, 1994)

I The term virulence is used to describe two closely intertwined aspects of
a pathogen’s disease-producing capacity:

I infectivity: the ability to colonise and to invade a host, and
I the severity of the disease produced

I In most mathematical models (including those I’ll present)

virulence = increase in host mortality rate.
I Why is there variation in the virulence of infectious diseases?

common cold←→ ebola
I Natural selection acts on virulence:

I Virulence has major effects on host & pathogen fitness
I Standing genetic variation (polymorphisms, phage, plasmids, transposons)
I Artificial selection can maintain or reduce virulence

I Examples of evolution towards reduced virulence, e.g., myxomatosis,
SIV vs., HIV, etc.
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WHY IS THERE VARIATION IN THE VIRULENCE OF INFECTIOUS
DISEASES?

I For along time, group selection was used to argue evolution to
avirulence:

“[without] the early appearance and dominance of strains of virus
which caused a lower mortality [. . . ] rabbits would have been
eradicated or greatly reduced in numbers, and the rabbit itself would
have disappeared from such localities”

Fenner & Ratcliffe. Myxomatosis. Cambridge University Press, 1965.

I But deterministic models quickly dismissed this thinking:

“The ‘conventional wisdom’ that successful parasites have to become
benign is not based on exact evolutionary thinking. Rather than
minimizing virulence, selection will work to increase a parasite’s
reproductive rate.”

Nowak & May (1994) Proc. R. Soc. Lond. B 255 (4): 81–89

I But this doesn’t explain the observed evolution to reduced virulence.
I Can including demographic stochasticity tell us anything?
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A HOST-PATHOGEN MODEL: TWO STRAIN SIR MODEL WITH
DEMOGRAPHY

I(n)
1

δ+α1+γ1

  
λn // S(n)

β1
n I(n)

1

>>

β2
n I(n)

2   

δ // R(n)

I(n)
2

δ+α2+γ2

>>

λn immigration rate for susceptibles
δ base mortality rate
βi contact rate for strain i
αi excess mortality for strain i
γi recovery rate for strain i

I Population is grouped into susceptibles, S(n)(t), infectives, I(n)
i (t), and

removed individuals, R(n)(t).
I Assume cross-immunity between strains, no co-infection.
I Model is completely described by (S(n)(t), I(n)

1 (t), I(n)
2 (t)) – can ignore

removed individuals.
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CONTINUOUS TIME MARKOV CHAIN FORMULATION

I This is a continuous-time Markov chain taking values in N3
0 with jump

rates

q(s,i1,i2),(s+1,i1,i2) = λn
q(s,i1,i2),(s−1,i1,i2) = δs

q(s,i1,i2),(s−1,i1+1,i2) =
β1si1

n

q(s,i1,i2),(s−1,i11,i2+1) =
β2si2

n
q(s,i1,i2),(s,i1−1,i2) = (δ + α1 + γ1)i1

q(s,i1,i2),(s,i11,i2−1) = (δ + α2 + γ2)i2

I The parameter n is a “system-size”, proportional to the average host
population size. The actual number of individuals fluctuates
stochastically.

I Crucially, it allows us to consider our host-pathogen model as a density
dependent population process.
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LAW OF LARGE NUMBERS (KURTZ 1978)
Let

S̄(n)(t) =
1
n

S(t), Ī(n)
1 (t) =

1
n

I1(t), and Ī(n)
2 (t) =

1
n

I2(t).

Then, for any fixed T > 0,

lim
n→∞

sup
t≤T

∣∣∣(S̄(n)(t), Ī(n)
1 (t), Ī(n)

2 (t)
)
−
(
S̄(t), Ī1(t), Ī2(t)

)∣∣∣ = 0 a.s.

where S̄(t), Ī1(t) and Ī2(t) satisfy

d
dt

S̄(t) = λ−
(
β1 Ī1(t) + β2 Ī2(t) + δ

)
S̄(t)

d
dt

Ī1(t) =
(
β1S̄(t)− (δ + α1 + γ1)

)
Ī1(t)

d
dt

Ī2(t) =
(
β2S̄(t)− (δ + α2 + γ2)

)
Ī2(t)

with initial condition(
S̄(0), Ī1(0), Ī2(0)

)
= lim

n→∞

(
S̄(n)(0), Ī(n)

1 (0), Ī(n)
2 (0)

)
.
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I One can improve on Kurtz’s result: for all r < s < 1, there exists Cr,s,x
such that

P
{

sup
t<Cr,s,x ln n

∣∣∣(S̄(n)
(t), Ī(n)

1 (t), Ī(n)
2 (t)

)
−
(

S̄(t), Ī1(t), Ī2(t)
)∣∣∣ > N−r

}
< N−s

.

I The Law of Large Numbers tells us that we can neglect stochasticity
I when the number of individuals of the pathogen or host are already

proportional to n, and
I over sufficiently slow time scales

I When either of these conditions is violated, stochasticity can be
important.

I Nonetheless, the deterministic approximation will guide our
investigation of the stochastic model.
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THE BASIC REPRODUCTION NUMBER & EQUILIBRIA
The ith basic reproduction number,

R(0,i) =
βi

δ + αi + γi

is the total number of new infections caused by a single infective with strain i
entering a disease free population. It is a bifurcation parameter for the Law
of Large Numbers, which has equilibria at the points (S?, I?1 , I

?
2 ),

(
λ

δ
, 0, 0

)
,

(
1

R(0,1)
,

1

β1

(
λ

R(0,1)
− δ

)
, 0

)
, and

(
1

R(0,2)
, 0,

1

β2

(
λ

R(0,2)
− δ

))
.

I The first is stable if R(0,1),R(0,2) <
δ
λ

.
I The second is stable if max{ δ

λ
,R(0,2)} < R(0,1).

I If R(0,1) = R(0,2)
(
> δ

λ

)
, then coexistence at any point on the slow manifold

of points (S?, I?1 , I
?
2 ) such that

S? =
1

R(0,1)
=

1
R(0,2)

, β1I?1 + β2I?2 =
λ

S?
− δ.

I Today I’ll focus on the latter...
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CRITICAL MANIFOLD

KOGAN, KHASIN, MEERSON, SCHNEIDER, AND MYERS PHYSICAL REVIEW E 90, 042149 (2014)

When R1 = R2 ≡ R, the nontrivial fixed points of this
dynamical system obey the relations

κ1I1 + κ2I2 = µ′N

(
1 − 1

R

)
, S = N

R , (8)

and form a straight line: the deterministic coexistence line
(CL) in the three-dimensional phase space I1I2S.

As in the SI1I2S model, when R > 1, the deterministic
trajectories approach the CL on the fast relaxation time scale,
independent of N ≫ 1. In contrast to the SI1I2S model, here
the character of fixed points making the CL can change
depending on the parameters R, µ, and a and, in general, on
the coordinate along the CL. A point of the CL can be either a
stable node or a stable spiral in the direction transverse to the
CL, see Appendix A. Introducing the rescaled population sizes
x = I1/N , y = I2/N , and z = S/N , denoting a = κ2/κ1 ! 1
and µ = µ′/κ1, and rescaling time by 1/κ1 we can rewrite
the deterministic equations (7) for the SI1I2R model with
population turnover as

ẋ = x(Rz − 1),

ẏ = ay(Rz − 1), (9)

ż = µ(1 − z) − Rz(x + ay),

whereas the rescaled CL is given by
x + ay = r ≡ µ (1 − 1/R) , z = 1/R. (10)

Unlike in the case of the SI1I2S model, here the length of
the CL increases as a becomes smaller. As one can see, the
deterministic theory of the SI1I2R model is characterized by
three rescaled parameters: the basic reproduction number 1 !
R ! ∞, or 0 ! r ! 1, the rescaled rate constant µ, and the
parameter a. Figure 2 shows a sketch of the deterministic
phase space of the quasineutral SI1I2R model in the rescaled
variables x, y, and z.

Dividing the second of Eqs. (9) by the first one and
integrating, we obtain the equation

y = Mxa, 0 ! M < ∞, (11)

0.00 0.05 0.10x

0.0

0.2

0.4
y
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0.7

0.8

z

FIG. 2. (Color online) A sketch of the deterministic phase space
of the SI1I2R model in the rescaled variables x = I1/N , y = I2/N ,
and z = S/N . The coexistence line (CL) is shown by the dotted line.
The rescaled parameters are R = 1.5, µ = 0.3, and a = 0.2.

which coincides with Eq. (6). That is, the projections of the
phase-space trajectories of the SI1I2R model onto the I1I2
plane lie on curves that coincide with the phase trajectories of
the SI1I2S model, see Fig. 1. This property holds for a whole
family of quasineutral competition models described by the
rescaled equations of the type

ẋ = x K(x,y,z),
ẏ = ay K(x,y,z),

and an equation for ż, leading to Eq. (11).

III. PERTURBATION METHOD AND EFFECTIVE
ONE-DIMENSIONAL FOKKER-PLANCK EQUATION

A. Quasineutral stochastic dynamics: A qualitative picture
and time-scale separation

Before embarking on the derivation of the perturbation
method, we give a physical picture and a road map we
follow in the remainder of the paper. The random character of
elementary processes of infection, recovery, etc., introduces
shot noise into the system. In the quasineutral case the
shot noise changes qualitatively the nature of the dynamics
compared to predictions from the deterministic theory. This is
because the noise makes the system wander randomly (mostly)
along the CL, eventually reaching extinction of one strain and
fixation of the other [10,13,14]. This effect is illustrated by
a sample stochastic trajectory of the SI1I2R model, generated
using Gillespie algorithm [16] and shown in Fig. 3.

At the level of probabilistic description, we characterize the
system by the probability distribution to have, at time t , certain
population sizes of each relevant subpopulation. For example,
for the SI1I2R model, which we will use for explanations in
this subsection, this probability distribution is Pm,n(t), where
m " 0 and n " 0 denote the population sizes of strains 1 and 2,
respectively. The time evolution of the probability distribution
is described by the master equations presented below: for the
SI1I2S model [Eq. (12)] and for the SI1I2R model [Eq. (34)].
Employing the van Kampen system size expansion, based on
the small parameter 1/N ≪ 1, we will first approximate the
master equation by a Fokker-Planck equation of corresponding
dimension [17]. Then we will employ time-scale separation,
intrinsic to the quasineutral stochastic dynamics, and derive
an effective one-dimensional Fokker-Planck equation for the
slowly evolving probability distribution of the system along the
CL. This one-dimensional Fokker-Planck equation then can
be analyzed in a standard way [17] to determine the fixation
probabilities and the mean time to fixation of each of the two
strains.

Throughout this work we assume N ≫ 1. We also assume
a “macroscopic” initial condition P (m,n,t = 0) = δm,m0 δn,n0

that involves fixed (and sufficiently large) numbers of infected
with the two strains: m0,n0 ≫ 1. In this case the evolution of
the probability distribution P (m,n,t) has three distinct stages.
During the first stage, Pm,n(t) develops a sharp peak at the CL
around the stable fixed point that is determined by x0 = m0/N
and y0 = n0/N : the (rescaled) initial numbers of infected with
strains 1 and 2. The characteristic formation time of this peaked
distribution is independent of N and therefore short.

During the much slower second stage (which duration turns
out to be ∼N ), this sharp peak evolves into a sharp ridge, as

042149-4

Kogan et al. (2014)
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WEAK SELECTION

I To understand what happens when R(0,1) ≈ R(0,2), we’ll borrow an idea
from population genetics: weak selection.

I Consider the case when the rates depend on n, to order O
( 1

n

)
:

β
(n)
i = βi+O

( 1
n

)
, γ

(n)
i = γi+O

( 1
n

)
, δ(n) = δ+O

( 1
n

)
, and α(n)

i = αi+O
( 1

n

)
.

I We then have

R(n)
(0,1) =

β
(n)
i

δ(n) + α
(n)
i + γ

(n)
i

= R?0
(

1 +
ri

n

)
+ o

( 1
n

)
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STOCHASTIC SLOW MANIFOLD
TWO-STRAIN COMPETITION IN QUASINEUTRAL . . . PHYSICAL REVIEW E 90, 042149 (2014)

FIG. 3. (Color online) A stochastic realization of the SI1I2R
model with population turnover in the phase space of I1, I2, and S (the
upper panel), and its projection onto the I1,I2 plane (the lower panel).
Extinction of I1 and fixation of I2 can be seen. The deterministic CL
and its projection onto the I1,I2 plane are shown as dashed lines. The
parameters are R = 2, a = 0.5, µ = 0.5, and N = 2000.

the probability distribution spreads along the CL. It is the
probability distribution spread along the CL that ultimately
causes the extinction of one strain and fixation of the other on
reaching the end of the CL at m = 0 or n = 0. Throughout this
process, large fluctuations away from the CL are suppressed
by the deterministic drift toward the CL. The with of the sharp
ridge around the CL, where noise and the deterministic flow
are comparable, is ∼1/

√
N .

The still-much-longer third stage involves an exponentially
slow leakage of the single-strain probability distribution to the
infection-free state, leading to a complete extinction of the
disease from the populations. The extinction of a single-strain
endemic disease has been extensively studied for the SIS model
with and without population turnover [18], and for the SIR
model with population turnover [19,20]. The mean time of
the disease extinction here is exponentially large in N . In
this work we are interested in the intermediate second stage
that determines which of the two strains has a competitive
advantage to become established, for a very long time, in the
susceptible population.

B. SI1I2S model: A case of two dimensions

The Markov stochastic dynamics in the discrete state space
of the subpopulation sizes is described by the master equation
for the probability Pm,n(t) to observe m individuals infected
with strain 1 and n individuals infected with strain 2. With
time rescaled by 1/µ, as in the deterministic equations (4),
this master equation is

Ṗm,n(t) = R
N

(m − 1)(N − m + 1 − n)Pm−1,n(t)

− R
N

m(N − m − n)Pm,n(t)

+ (m + 1)Pm+1,n(t) − mPm,n(t)

+ a
R
N

(n − 1)(N − m + 1 − n)Pm,n−1(t)

− a
R
N

n(N − m − n)Pm,n(t)

+ a(n + 1)Pm,n+1(t) − anPm,n(t). (12)

Using the large parameter N ≫ 1, we can perform the van
Kampen system size expansion [17] and approximate the exact
master equation (12) by the Fokker-Planck equation for the
quasicontinuous probability density ρ(x,y,t),

∂tρ(x,y,t) = − ∂

∂x
{[Rx(1 − x − y) − x] ρ}

− a
∂

∂y
{[Ry(1 − x − y) − y] ρ}

+ 1
2N

∂2

∂x2
{[Rx(1 − x − y) + x] ρ}

+ a

2N

∂2

∂y2
{[Ry(1 − x − y) + y] ρ} . (13)

The small noise enters the equation via the diffusion terms
that scale as 1/N ≪ 1. We anticipate that the noise rapidly
establishes a sharp distribution across the CL and then slowly
spreads this distribution along the CL. Let us introduce the
new variables

X = x − y, Y ′ = x + y − r, (14)
where X is the slow variable that measures the distance
along the CL and Y ′ is the fast variable that measures the
distance away from the CL. The CL is given by Y ′ = 0, so
x = (r + X)/2 and y = (r − X)/2 on the CL. In the new
variables the Fokker-Planck equation is

∂tρ(X,Y ′,t)

= −
(

∂

∂Y ′ + ∂

∂X

){
Y ′ + X + r

2
[R(1 − Y ′ − r) − 1]ρ

}

− a

(
∂

∂Y ′ − ∂

∂X

){
Y ′ − X + r

2
[R(1 − Y ′ − r) − 1]ρ

}

+ 1
2N

(
∂

∂Y ′ + ∂

∂X

)2{
Y ′ + X + r

2
[R(1 − Y ′ − r) + 1]ρ

}

+ a

2N

(
∂

∂Y ′ − ∂

∂X

)2{
Y ′ − X + r

2
[R(1 −Y ′− r) + 1]ρ

}
.

(15)

Since we expect the distribution of the fast variable Y ′ to
be sharply peaked about Y ′ = 0, with a characteristic width
∼1/

√
N , we introduce the new variable Y =

√
NY ′. Now

042149-5

Kogan et al. (2014)
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DIFFUSION APPROXIMATION/DIMENSION REDUCTION

I Consider the process in “generation time”, i.e., time rescaled by n. Then,(
S(n)(nt), I(n)

1 (nt), I(n)
2 (nt)

)
w

=⇒
(

S?, Î1(t), Î2(t)
)
,

where S? = 1
R?0

is the equilibrium number of susceptibles and

(̂I1(t), Î2(t)) is a diffusion trapped on the slow manifold i.e.,

β1 Î1(t) + β2 Î2(t) =
λ

S?
− δ.

that can be explicitly calculated (Katzenberger, 1992, Parsons & Rogers,
2017).

I This is a one-dimensional problem that is completely characterised by
the frequency of strain 2,

P(t) =
Î2(t)

Î1(t) + Î2(t)
.
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GENERATOR

P(t) has generator

Af (p) = b(p)f ′(p)− 1
2

a(p)f ′′(p),

where

b(p) =
1

R?0

β1β2

ie(p)

(
(r1 − r2) − (β1 − β2)

β1p + β2(1 − p)(
β2

1 p + β2
2(1 − p)

)2

)
p(1 − p)

×
(

(β1(1 − p) + β2p) − (β1p + β2(1 − p)) +
β1β2 (β1p + β2(1 − p))

β2
1 p + β2

2(1 − p)

)
,

a(p) = 2
1

R?0

β1β2

ie(p)

(β1p + β2(1 − p))3(
β2

1 p + β2
2(1 − p)

)2 p(1 − p),

and ie(p) =
λR?0−δ

β1p+β2(1−p) ∼
total number of infectives

n .
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UNDERSTANDING INDUCED DRIFT

We got an odd new drift term, proportional to β1 − β2. Where does it come
from?

Parsons & Rogers (2017)

The geometry of the flow lines and of the manifold cause the restoring action
to transform variability transverse the manifold into drift along the manifold.
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FIXATION PROBABILITY

As this is one dimensional, we can explicitly solve the Dirichlet problem for
the corresponding backwards equation to obtain the fixation probability of
strain 2:

h(p) := P
{

lim
t→∞

P(t) = 1
∣∣∣P(0) = p

}
=
ψ(p)− ψ(0)

ψ(1)− ψ(0)

where
ψ(p) :=

∫
e−2

∫ p b(q)
a(q) dq dp

is the scale function for P(t). For the SIR model, if r1 = r2, then

h(p) = p +
β2

2 pe−
β2+β1
β2 + β2

1(1− p)e−
β2+β1
β1

β2
2 e−

β2+β1
β2 + β2

1 e−
β2+β1
β1

+

(
β3

2 p + β3
1(1− p)

)
e−

β2+β1
β2p+β1(1−p)

(β2p + β1(1− p))

(
β2

2 e−
β2+β1
β2 + β2

1 e−
β2+β1
β1

) .
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INTERPRETING THE FIXATION PROBABILITY

I This isn’t terribly illuminating, but inspection shows it only depends on
the ratio β1

β2
; set

β1 = β2(1 + s).

I Because ratios R(0,1) = R(0,2) are fixed, this means (wild-type) strain 1
has higher contact rate and higher virulence.

I Taylor expansion gives fixation probability for (mutant) strain 2 is

p +
s
2

p(1− p) +O
(
s2).

I If a mutation conveys no benefit, it’s fixation probability is just its initial
frequency p.

I Get advantage to type with lower contact rate/virulence (at least for
small values of s).
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FIXATION PROBABILITIES FOR A SINGLE INVADER, ρ = 0, s VARYING

Simulations, h(p), p + s
2 p(1− p)

Parameters: n = 100, β1 = β2(1 + s), α1 = δ+α2+γ
1+s − δ − γ, λ = 2, δ = 1,

β1 = 20, and α2 = 3, R(n)
(0,2) = R(n)

(0,1) = R?0 = 4.
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FIXATION PROBABILITY WITH SELECTION

I If r1 6= r2, we can no longer get a completely closed form for the scale
function, but we can still express it as an integral:

ψ(p) =

∫
β2

1 p + β2
2(1− p)

(β1p + β2(1− p))3

× e−
β1+β2

β1p+β2(1−p) p−ie(p) (r1−r2)
(β2−β1)

(
β1+β2− 1

2
β1β2

β1p+β2(1−p)

)
dp

I If we set ρ := r1 − r2 and β1 = β2(1 + s) as before, then Taylor expansion
gives

h(p) =
ψ(p)− ψ(0)

ψ(1)− ψ(0)
= p +

1
2

(s− ie(p)ρ) p(1− p) +O
(
s2, ρ2).

I In particular, for a single invader, expressed in the original variables, this
is

1
Ie(0)

+
1
2

(
1−

R(n)
(0,1)

R(n)
(0,2)

+
1

Ie(0)

(
β
(n)
1

β
(n)
2

− 1

))
+ o

(
1
n

)
,

where Ie(p) = nie(p) ∼ total number of infectives.
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FIXATION PROBABILITIES FOR A SINGLE INVADER, ρ, s VARYING

Simulations, h(p), p + 1
2 (s− ie(p)ρ) p(1− p)

Parameters: n = 100, β1 = β2(1 + s), R(n)
(0,1) = R(n)

(0,2)(1 + s). R(n)
(0,2) = R?0 = 4,

λ = 2, δ = 1, β1 = 20, and α1 = 3.
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TRANSMISSION/VIRULENCE TRADEOFFS

Consider the long term evolution of the virulence in the framework of
adaptive dynamics.

I Assume that the transmissibility of the strain depends on the virulence
according to some function β(α). Then the reproductive number is a
function of the virulence:

R0(α) =
β(α)

δ + α+ γ

Assume that R0 is maximized at α0.
I Under these assumptions, there are approximately

I?(α) = n
λR0(α)− δ

β(α)

individuals infected with the resident strain at the endemic equilibrium.
I I?(α) is non-zero on a range (αmin, αmax); outside of this range, the

pathogen goes extinct.

19 / 25



INTRODUCTION IBM LLN WEAK SELECTION ADAPTIVE DYNAMICS CONCLUSIONS

MUTATIONAL DYNAMICS

Further, assume that
I the mutation rate η � 1 is sufficiently low that fixation occurs before a

second novel mutation can arise, and that
I mutational effects are small and unbiased. A mutation in a strain with

virulence α gives rise to a new strain with virulence α′, with probability
K(α, α′): ∫ αmax

αmin

(α− α′)K(α, α′) dα′ = 0∫ αmax

αmin

(α− α′)2K(α, α′) dα′ = εν.

Then, from before, an invader of virulence α′ invading a resident population
of virulence α has fixation probability (to lowest order in n)

f (α, α′) =
1

I?(α)
+

1
2

(
1− β(α)(δ + α′ + γ)

β(α′)(δ + α+ γ)
+

1
I?(α)

β(α)− β(α′)

β(α′)

)
.
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TRAIT SUBSTITUTION SEQUENCE & CANONICAL DIFFUSION

The virulence of the population at time t, Aε(t) is then a jump process with
generator

Bεφ(α) =

∫ αmax

αmin

ηK(α′, α)f (α′, α)
(
φ(α′)− φ(α)

)
dα′

The rescaled process Aε
( t
ε

)
then converges to a diffusion process with

generator

Bφ(α) = ην

(
R′0(α)

R0(α)
− 1

I?(α)

β′(α)

β(α)

)
φ′(α) +

1
2
ηνφ′′(α)

to lowest order in n.

21 / 25



INTRODUCTION IBM LLN WEAK SELECTION ADAPTIVE DYNAMICS CONCLUSIONS

QUASI-STATIONARY DISTRIBUTION

We can use this to analytically compute quasi-stationary distribution of the
virulence conditioned on non-extinction. For large values of n, Laplace’s
method gives a simple approximation:

β(α0)

β(α)
N(α0, σ

2),

where N(α0, σ
2) is the Gaussian distribution with mean α0 and variance

σ2 =
1

Ieq(α0)
|R′′0 (α0)|

R0(α0)

.

The pre-factor β(α0)
β(α)

biases the probability distribution towards reduced
virulence.
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SUMMARY STATISTICS

The full distribution has mode and mean

αmean = α0 − σ2
(

1
δ + α0 + γ

+
I′eq(α0)

Ieq(α0)
− R′′′0 (α0)

|R′′0 (α0)|

)
+ o
( 1

n

)
and

αmode = α0 −
σ2

δ + α0 + γ
+ o
( 1

n

)
,

which reflect a bias towards reduced virulence in finite populations, but one
that is confounded by the effects of asymmetry in the fitness landcape.
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THE DISTRIBUTION OF VIRULENCE IN DIFFERENT FITNESS LANSCAPES

Take β(α) = (δ + α+ γ)(Rmax − w(α− α0)
2); w determines the “flatness” of

the fitness landscape.
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Simulations (histogram) Stationary Distribution (solid) Laplace Approximation (dashed)

Stationary distribution for symmetric fitness landscapes with increasing
strength of selection around the optimum (w = 0, 0.001 and 0.1). The dashed
vertical line indicates the position of α0.

Parameters: n = 200, R0,max = 4, d = 1, α0 = 3, γ = 1, λ = 2, µ = 0.01.
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SUMMARY

Population genetic approaches can give insight into pathogen evolution:
I Not all R0 are created equal!
I When two strains with approximately the same R0 compete, the one

with lower virulence has a competitive advantage.
I In the long term, this can lead to distributions of virulence through time

that are biased away from the maximal R0 towards reduced virulence.
I This effect can become significant as the adaptive landscape becomes

flatter.
I In finite populations, we would expect to see considerable variation in

virulence on evolutionary timescales.
I Perhaps the ‘conventional wisdom’ isn’t completely lacking. . .
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THANK YOU!

I For your attention!
I For the opportunity to speak today!
I And your questions. . .
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