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VIRULENCE (READ, 1994)

» The term virulence is used to describe two closely intertwined aspects of
a pathogen’s disease-producing capacity:
» infectivity: the ability to colonise and to invade a host, and
» the severity of the disease produced
» In most mathematical models (including those I'll present)
virulence = increase in host mortality rate.
» Why is there variation in the virulence of infectious diseases?

common cold <— ebola
» Natural selection acts on virulence:

» Virulence has major effects on host & pathogen fitness
» Standing genetic variation (polymorphisms, phage, plasmids, transposons)
» Artificial selection can maintain or reduce virulence

» Examples of evolution towards reduced virulence, e.g., myxomatosis,
SIV vs., HIV, etc.
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WHY IS THERE VARIATION IN THE VIRULENCE OF INFECTIOUS
DISEASES?
» For along time, group selection was used to argue evolution to
avirulence:

“[without] the early appearance and dominance of strains of virus
which caused a lower mortality [. .. ] rabbits would have been
eradicated or greatly reduced in numbers, and the rabbit itself would
have disappeared from such localities”

Fenner & Ratcliffe. Myxomatosis. Cambridge University Press, 1965.

» But deterministic models quickly dismissed this thinking;:

“The ‘conventional wisdom’ that successful parasites have to become
benign is not based on exact evolutionary thinking. Rather than
minimizing virulence, selection will work to increase a parasite’s
reproductive rate.”

Nowak & May (1994) Proc. R. Soc. Lond. B 255 (4): 81-89

» But this doesn’t explain the observed evolution to reduced virulence.
» Can including demographic stochasticity tell us anything?

)
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A HOST-PATHOGEN MODEL: TWO STRAIN SIR MODEL WITH
DEMOGRAPHY

Il(n)
An  immigration rate for susceptibles
\ 0 base mortality rate
i W ) 2 RO) B;  contact rate for strain i
«;  excess mortality for strain i
Yi recovery rate for strain i
By (m) dtaztyy
n 2 —————
(n)
L"

» Population is grouped into susceptibles, S™ (t), infectives, ™" (t), and
removed individuals, R™ ().

» Assume cross-immunity between strains, no co-infection.

» Model is completely described by (S (£), I\ (¢), 1" (t)) - can ignore
removed individuals.

)
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CONTINUOUS TIME MARKOV CHAIN FORMULATION

» This is a continuous-time Markov chain taking values in Nj with jump

rates

q(s,iri2), (s+1,i1,0) =

A(siri2),(5—1i1,00) =

A(s,i1,i0), (5= Ly +1,ip) =

G(s)iri2),(s— 1,11, +1) =

n
os
Brsiy

n
ﬂzsiz
n

Qs,ir i), (s —1,ip) = (0 + 1 + )i
As,iy i), (s,ia i —1) = (0 + 02 + 72)i2

» The parameter n is a “system-size”, proportional to the average host

population size. The actual number of individuals fluctuates

stochastically.

» Crucially, it allows us to consider our host-pathogen model as a density

dependent population process.
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LAW OF LARGE NUMBERS (KURTZ 1978)

Let
S (1) = %S(t), IV (t) = %Il(t), and I{" () = %Iz(t).

Then, for any fixed T > 0,

lim sup’( 50 (¢ 1<">()j;">(t))—(S(t)jl(t)jz(t))‘zo as.

n— oo f<T

where S(t), T1 (t) and I (t) satisfy

95 = A— (Bh©) + BLO +5) SO
910 = (550 - @+ o1+ ) L)
%12( ) = (BSEH) —(6+a+1)) L)

with initial condition

(5(0),1(0), 1:(0)) = lim (5*(0),1{"(0), 1" (0)) .

n—o0
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One can improve on Kurtz’s result: for all ¥ < s < 1, there exists Cr,s,x
such that

P sup
t<Crs,xInn

The Law of Large Numbers tells us that we can neglect stochasticity

» when the number of individuals of the pathogen or host are already
proportional to 7, and
» over sufficiently slow time scales

(37 ®. 1" ®. 1" 1) - (g(t),fl(t),fz(t))| > N”} <N

When either of these conditions is violated, stochasticity can be
important.

Nonetheless, the deterministic approximation will guide our
investigation of the stochastic model.
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THE BASIC REPRODUCTION NUMBER & EQUILIBRIA
The i basic reproduction number,

Bi
Ry =
O 7 5+ ai +

is the total number of new infections caused by a single infective with strain
entering a disease free population. It is a bifurcation parameter for the Law
of Large Numbers, which has equilibria at the points (5*, I7, I3),

A 1 1 A 1 1 A
(*70,0>’ —_— = —6),0), and ,0, — -6 .
3 Reo,1y B1 \Re,1) R,y B2 \ R,

The first is stable if R(g 1y, R(,2) < %.
The second is stable if max{2, R} < R,1)-

v

v

v

If Rio,1) = Reo,2) (> 2), then coexistence at any point on the slow manifold
of points (5*, I}, I;) such that

1 1 A
= = — I+ Bl = — —6.
Ron ~ R Bt + Bol; "

S S

v

Today I'll focus on the latter...
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CRITICAL MANIFOLD

Kogan et al. (2014)
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WEAK SELECTION

» To understand what happens when R 1) = R(,2), we'll borrow an idea
from population genetics: weak selection.

» Consider the case when the rates depend on 7, to order O (%)

B0 = B+O(3). " = 0 (}). 8= 3+0(}). and o = a0 ().
» We then have

) _L_R*(prﬁ)ﬂ)(;)
O = 560 4 a® 440 0 n n

1
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STOCHASTIC SLOW MANIFOLD
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Kogan et al. (2014)
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DIFFUSION APPROXIMATION / DIMENSION REDUCTION

» Consider the process in “generation time”, i.e., time rescaled by n. Then,
(5 0ut), 1 (nt), 187 (nt) ) =2 (8°,11(), 21

where §* = 2 is the equilibrium number of susceptibles and
0
(Ii(t), (1)) is a diffusion trapped on the slow manifold i.e.,
P 5 A
Pili(t) + Paba(t) = - = 0.

that can be explicitly calculated (Katzenberger, 1992, Parsons & Rogers,
2017).

» This is a one-dimensional problem that is completely characterised by
the frequency of strain 2,



INTRODUCTION IBM LLN WEAK SELECTION

ADAPTIVE DYNAMICS

CONCLUSIONS

GENERATOR

P(t) has generator

p(l—p)

B1B2 (Bip + B (1 —p))

Bir+ B0 —p)

—p)s

! 1 1!
Af(p) =b(p)f (p) — 5a(P)f " (p),
where
1 BB Bip + B(1 —p)
b - _ _ _ ] L e Sl o
(r) R i(p) ((7‘1 1) — (B1 — B2) (B + 201 —p))2>
X ((51(1 =p)+Bep) = (Bip + B2(1 = p)) +
1 B1B2 (Brp + Ba(1 —p))?
=2 AP TP TP e
a(p) RS ie(p) (Bp + A3(1 — p))z p(
and i ( ) — )\RS = ~_ total number of infectives
P B1p+B2(1—p) n ’

).
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UNDERSTANDING INDUCED DRIFT

We got an odd new drift term, proportional to 51 — 3.. Where does it come

from?

Parsons & Rogers (2017)

The geometry of the flow lines and of the manifold cause the restoring action
to transform variability transverse the manifold into drift along the manifold.
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FIXATION PROBABILITY

As this is one dimensional, we can explicitly solve the Dirichlet problem for
the corresponding backwards equation to obtain the fixation probability of

strain 2:
Y(p) — ¥(0)

hp) = {hrnP _1’13 _p} o)

where »
W(p) = / 2 g
is the scale function for P(t). For the SIR model, if r; = r2, then
B 1
2pe 2+ 51 —=pe 1
h(p) =rt _bBathy ~ Brthr
Ble” P2 4 Bl P
L BBy
(ﬂ;P + 5%(1 - )) e PptB1(1-p)
B2t Byt B
oo+ (1) (B8 4 ppe )

+
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INTERPRETING THE FIXATION PROBABILITY

» This isn’t terribly illuminating, but inspection shows it only depends on
the ratio /% ; set
pr=p2(1+5).
» Because ratios R(o,1) = Ro,2) are fixed, this means (wild-type) strain 1
has higher contact rate and higher virulence.

» Taylor expansion gives fixation probability for (mutant) strain 2 is
s
pt5p(l—p)+O(s).

» If a mutation conveys no benefit, it’s fixation probability is just its initial
frequency p.

» Get advantage to type with lower contact rate/virulence (at least for
small values of s).
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FIXATION PROBABILITIES FOR A SINGLE INVADER, p = 0, s VARYING

-0.6 -04 -02 0 02 s 04 06 08 1 12
Simulations, /(p), p + 5p(1 — p)

Parameters: n =100, 81 = S2(1+5s), a1 = ‘Hf‘% —6—v,A=2,6=1,
i =20,and e = 3, Ry, =R();) = Ry = 4.
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FIXATION PROBABILITY WITH SELECTION

» If r; # 2, we can no longer get a completely closed form for the scale
function, but we can still express it as an integral:

_ [ Bip+51-p)
o0 = [ Gt iy

B1+B2 i () 1=72) 1 BB
% ¢ BitB =P ® E=py (1462 zﬂlpwz(l—p))dp

» If weset p:=r —rpand 81 = B2(1 + s) as before, then Taylor expansion
gives

¥(p) —+(0)
¥(1) —4(0)

» In particular, for a single invader, expressed in the original variables, this

is
(m) (n)
1 1 Rohy 1 < ( )) (1)
+5(1-=2+ — 1) | +o( =],
L(0) 2 ( REO,)Z) 1.(0) 5§ ) n

where I (p) = ni.(p) ~ total number of infectives.

n(p) = =pt 5 s~ )P~ p) + O 7).
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FIXATION PROBABILITIES FOR A SINGLE INVADER, p, s VARYING

04
03
02

0.1

]

-03 -02 -01 0 01 02 03 04 05 06

s

Simulations, h(p), p + 1 (s — ie(p)p) p(1 — p)

Parameters: n = 100, 81 = B2(1 +s), RES,)U = RES?Z)(l +53). RES?Z) =R} =4,
A=2,6=1,8 =20,and a; = 3.
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TRANSMISSION / VIRULENCE TRADEOFFS

Consider the long term evolution of the virulence in the framework of
adaptive dynamics.

» Assume that the transmissibility of the strain depends on the virulence
according to some function $(«). Then the reproductive number is a
function of the virulence:

Ro(a) =5 f(ocazr v

Assume that Ry is maximized at .
» Under these assumptions, there are approximately
)\R()(Oz) -4
p ) 7 9
pla)

individuals infected with the resident strain at the endemic equilibrium.

(o) =

» I* () is non-zero on a range (Quin, Cumax); Outside of this range, the
pathogen goes extinct.



INTRODUCTION IBM LLN WEAK SELECTION ADAPTIVE DYNAMICS CONCLUSIONS

MUTATIONAL DYNAMICS

Further, assume that
» the mutation rate n < 1 is sufficiently low that fixation occurs before a
second novel mutation can arise, and that
» mutational effects are small and unbiased. A mutation in a strain with
virulence « gives rise to a new strain with virulence o, with probability
K(a,'):

/ " (a —a)K(a,a')da' =0

Amax
/ (o — o VK(, ') da! = ev.
QXmin
Then, from before, an invader of virulence o’ invading a resident population
of virulence « has fixation probability (to lowest order in 1)

n_ 1 1/ B@@+a' +9) 1 Be) —Be)
f(“’“)‘1*<a>+2(1 BN taty) @) A )

20/ 2!
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TRAIT SUBSTITUTION SEQUENCE & CANONICAL DIFFUSION

The virulence of the population at time ¢, A (t) is then a jump process with
generator

Boole) = [ (el a)f(@a) (8(a) - (@) dol

The rescaled process A. (%) then converges to a diffusion process with
generator

(R 1 F@Y g
Bo() = (R4 - 52 @) + g (@)

to lowest order in n.

)
)
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QUASI-STATIONARY DISTRIBUTION

We can use this to analytically compute quasi-stationary distribution of the
virulence conditioned on non-extinction. For large values of n, Laplace’s
method gives a simple approximation:

B(aw)
B(a)

where N(«y, az) is the Gaussian distribution with mean « and variance

N(a()? 0_2)’

2 1

g = |R”( )‘ °
Leg(cxo) R?)(oc:)

%((O;O)) biases the probability distribution towards reduced

The pre-factor
virulence.

9
)
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SUMMARY STATISTICS

The full distribution has mode and mean

Ry’ (c0)

o R 1 Iéq(OéO) -
mean = ©0 0+ oo+ Yy qu(Oéo)
and 5
amode = aO - 0-7 Jr
d+ao+7

|Rs'<ao>|) +o(3)

o)

which reflect a bias towards reduced virulence in finite populations, but one
that is confounded by the effects of asymmetry in the fitness landcape.

N
N

)
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THE DISTRIBUTION OF VIRULENCE IN DIFFERENT FITNESS LANSCAPES

Take B(a) = (6 + & + ) (Ryar — w(a — ap)?); w determines the “flatness” of
the fitness landscape.

5 5 5
g 08 o E g
w=

£ s £ £
2 2 2
T 04 ° kel
=l
@ 0.2 E 5
c c <
8 o ° =
T 0 1 2 3 4 5 6 T T 0 1 2 3 4 5 6
@ 2] 7]

Pathogen virulence Pathogen virulence Pathogen virulence

Simulations (histogram)  Stationary Distribution (solid) ~Laplace Approximation (dashed)

Stationary distribution for symmetric fitness landscapes with increasing
strength of selection around the optimum (w = 0, 0.001 and 0.1). The dashed
vertical line indicates the position of ay.

Parameters: n = 200, Rojuax =4, d =1, 00 =3,7v=1,A=2, 1 =0.01.
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SUMMARY

Population genetic approaches can give insight into pathogen evolution:

>

>

Not all R are created equal!

When two strains with approximately the same Ry compete, the one
with lower virulence has a competitive advantage.

In the long term, this can lead to distributions of virulence through time
that are biased away from the maximal Ry towards reduced virulence.

This effect can become significant as the adaptive landscape becomes
flatter.

In finite populations, we would expect to see considerable variation in
virulence on evolutionary timescales.

Perhaps the ‘conventional wisdom’ isn’t completely lacking. ..
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THANK YOU!

» For your attention!
» For the opportunity to speak today!
» And your questions...

ma_ UPme
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