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What is dispersal?

Dispersal =

e Any movement of individuals or propagules
contributing to gene flow

e Reproducing away from birth place

» (zool.) movement between successive
breeding sites

= (bota.) movement of seeds or pollen



Variability of dispersal in natura
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Heritability of dispersal
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Selective pressures on dispersal
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Heterogeneity and variability

e Environments are temporally variable

organisms experience temporally variable habitats

geometric average -> sensitivity to “lows”
selects for more dispersal

e Environments are spatially heterogeneous
dispersing allows for different habitats among siblings

dispersal bias from good to bad habitats
selects for less dispersal



Measuring heterogeneity

First-order measure: proportion of type 1 patch, p




Measuring variability

temporal autocorrelation in patch state, @
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Questions [ Outline

1. How can we model the evolution of dispersal
in uncertain heterogeneous environments?

2. What happens when dispersal is informed by
patch quality?



Adaptive dynamics

Assumptions:
— phenotypic gambit

“The phenotypic gambit is to examine the evolutionary basis of a character as if the
very simplest genetic system controlled it: as if there were a haploid locus at which
each distinct strategy was represented by a distinct allele, as if the payoff rule gave

the number of offspring for each allele, and as if enough mutation occurred to
allow each strategy the chance to invade.” A. Grafen, in Krebs & Davies 1984

— rare mutations of small effects

Tools:
— expression for fitness (using matrices)
— selection gradient — convergence stability
— Hessian of mutant fitness — evolutionary stability



How does environmental state change?

reproduction

regulation
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Life cycles

Looking at the evolution of local adaptation...

Model 3

Dempster

Ravigneé et al., 2004
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A general model

Massol (2013)

Ingredients:

— 2 patch types (1 & 2; affect fecundity through f, and f,),
infinity of patches

— 4 life cycle events: reproduction, dispersal, regulation
& environmental change

— discrete, non-overlapping generations

— reproduction: result of local adaptation, not limiting
— regulation: local (but large populations)

— dispersal: global (no limitation by distance)



Classification of life cycles

extended from Massol (2013)

Order of
events

R D E E R E
QE D|E R||D RIR D|E D|R D

—oft— Lot Lo Lof

Ravigné et al.’s Ravigné Levene soft selection Ravigné Dempster hard
classification type 3 regime type 3 selection regime
Modelling

complexity Simple life cycles Complex life cycles Simple life cycles



Classification of life cycles

extended from Massol (2013)

When dispersal is unconditional

Order of
events

R D E E R E

E D|E R|ID R|R D|E D|R D

—oft— EoftI” Eod Laof

Ravigné et al.’s Ravigné Levene soft selection Ravigné Dempster hard
classification type 3 regime type 3 selection regime

Classes of equivalence for fitness
correspond to Ravigné et al.’s

Mathematical justification:
* E always commutes with regulation.
* With unconditional dispersal, E also commutes with dispersal.



Evolution of dispersal

Massol & Débarre (2015)
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Evolution of dispersal

Massol & Débarre (2015)
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Evolution of dispersal

Massol & Débarre (2015)
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Evolution of dispersal

Massol & Débarre (2015)

D[ Evolution towards total philopatry

E R
Lo
Levene
R[] Intermediate dispersal rates are possible
E| D Branching happens for negatively autocorrelated

o} environments

Ravigné

C1R™ Either total philopatry or total dispersal
E D Bistability can happen

I

Dempster



Informed dispersal and life cycles

e Conditioning dispersal decision on patch “quality”
may decrease the indirect cost of dispersing

 First theoretical argument using two-patch
models (McPeek & Holt 1992)

e With almost static environments and bad cues,
dispersal is not conditioned on current perceived
patch quality (McNamara & Dall 2011)

— bang-bang dispersal (all or nothing), with no
polymorphism (informed dispersal vs. polymorphism)



Informed dispersal

after McNamara & Dall (2011)

Perceived Emigration rate
. —
environment strategy (e))
Error € Statistical

expectation
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environment strategy (d.)
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d, =ce, +(1-¢)e,



Classification of life cycles

Order of events R D E E
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Information & life cycles

Order of events R D E E
Q E D| E R|| D RI|| R D
o] 0| o] o]
Ravigné Levene Ravigné

evolution towards
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Information & life cycles
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Information & life cycles
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Information & life cycles

Massol & Débarre (in prep)
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Information & life cycles
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dispersal rate (e;)
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dispersal rate (e;)
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Evolutionary outcomes
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Evolutionary outcomes




Evolutionary outcomes
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Evolutionary outcomes
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Evolutionary outcomes
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Evolutionary outcomes
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Informed dispersal and life cycles

Observations:

— informed dispersal follows different rationales with
different life cycles

— disruptive selection can happen in an informed
dispersal model

— bang-bang dispersal strategies can happen under
any life cycle

— bistability can occur under any life cycle



Take-home messages

Environmental variability can affect the
evolution of dispersal in a variety of ways

Informed dispersal and dispersal
polymorphisms are not mutually exclusive
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