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(Spatial) Demography

• In many cases, simple quantities can characterise changes in 
population size or density:
– λ: (annual) rate of population growth
– R0: net reproductive number (generational population growth)

• Versions of R0, in particular, are used across ecology and 
epidemiology

“…R0 is arguably the most important 
quantity in the study of epidemics…”

Heesterbeek, J. (2002). Acta Biotheoretica, 50, 189–204. 



Spreading speed

• Integrodifference equations (IDEs) can represent both scalar and 
stage-structured (age, size, maturity) populations growing and 
spreading in space

• Can be used to calculate theoretical spreading speed for a 
population (re)colonising empty habitat
– applies to both scalar (Kot et al. 1996) and stage-structured 

(Neubert & Caswell 2000) demography

• These measures of spreading speed are analogous to the 
population growth rate, λ, in discrete-time population dynamics 
models

• A measure of generational spread analogous to R0 is missing

Kot, M., Lewis, M., & van den Driessche, P. (1996). Ecology, 77(7), 2027–2042. 
Neubert, M., & Caswell, H. (2000). Ecology, 81(6), 1613–1628. 
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Spatial spread

• Consider an invasion in a single continuous spatial dimension, x
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Spatial spread

• Consider an invasion in a single continuous spatial dimension, x
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Spatial spread

• Population density will level off as density dependence takes effect 
behind the invasion front
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Spatial spread

• In many cases, it is possible to derive the spreading speed of the 
advancing population by considering dynamics at the invasion front

• When this occurs we say the spreading speed is linearly determined 
• It is this case that we focus upon
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Spatial spread

• Here, we consider the case of a stage-structured population:  
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Stage-structured IDEs

• Model:

– A is a population projection matrix 
– K(x,y) is a matrix of dispersal kernels, with entries kij(x,y) 

describing movement to x of a stage-i individual, produced at y 
by a stage-j individual

– ￮ is the Hadamard (elementwise) product



• Native to Eurasia, wild teasel (Dispacus fullonum) is now an 
invasive of increasing concern in eastern North America

• Teasel rosettes develop into plants that put up tall flower stalks and 
finally drop seed

Example: wild teasel



Growth and dispersal matricies for teasel

𝑘𝑖𝑗 𝑥 − 𝑦 = 𝛿 𝑥 − 𝑦 , 𝑗 ≠ 6



Spreading speed

• Model:

• Assume K(x,y) =K(x-y) and consider solutions of the form:

– s determines the shape of the low-density wave front
– w gives the relative stage abundances in the wave
– c > 0 is the wave speed

Neubert, M., & Caswell, H. (2000). Ecology, 81, 1613–1628.
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Spreading speed

• Rearrangement and change of variables yields

where H(s) = M(s) ￮ A, and M(s) is the matrix of moment-generating 
functions,

corresponding to the dispersal kernels 

Neubert, M., & Caswell, H. (2000). Ecology, 81, 1613–1628.



Spreading speed

• From wesc = H(s)w we can equate esc to the dominant eigenvalue of 
H(s), with eigenvector w, to give: 

where ρ1[·] denotes the dominant eigenvalue of a matrix

• The asymptotic spreading speed for the invading population is 

where Ω is the domain of existence for M(s)

Neubert, M., & Caswell, H. (2000). Ecology, 81, 1613–1628.
Lui, R. (1989). Math. Biosci., 93, 269–295.



Spreading speed

Neubert, M., & Caswell, H. (2000). Ecology, 81, 1613–1628.



Spreading speed for teasel



Stage-structured invasion

• So, we can calculate a theoretical invasion speed, given descriptions 
of life history and dispersal

• Can also calculate sensitivity of wave speed to parameters 
(Neubert & Caswell 2000) 

BUT…

• For complicated life-histories, calculations are numerical 
(eigenvalue of an NxN matrix involves solving an Nth-order 
polynomial)

• Any other way to gain analytical insight?

Neubert, M., & Caswell, H. (2000). Ecology, 81, 1613–1628.



Generational demography

• Each generation produces the next as it ages, reproduces, and dies

• Consider the processes that go into demographic change:

A = F + T

T is the transition matrix – survival and maturation
F is the fecundity matrix – reproduction 



Generational demography

• If we start with a (stage-structured) vector, u(g), of population 
density in generation g

• then:
u(g + 1) = Fu(g) + FTu(g) + FT2u(g) + FT3u(g) + …

= F[I + T + T2 + T3 + …]u(g)
= F[I – T]–1u(g)

• Q = F[I – T]–1 is the next-generation matrix



Generational demography

• λ, the asymptotic annual population growth rate is ρ1[A] 

• ρ1[Q] is the asymptotic generational population growth rate
(or net reproductive number), R0

• Calculation of λ, like c*, commonly involves solving an Nth-order 
polynomial

• Q = F[I – T]–1, however, is typically of rank one because of its direct 
dependence on the fecundity matrix, F, and all reproduction 
commonly passes through a single stage (e.g. adults, seeds)



Generational demography

• Also, R0 – 1 and λ – 1 have the same sign (Cushing & Yicang 1994), 
so that both R0 and λ indicate: 

population decline R0, λ < 1
population stability R0, λ = 1
population growth R0, λ > 1

• Analytical insight gained about changes to R0 can carry information 
about population growth more generally 

• Motivated by potential for similar insight into process of spatial 
spread 

Cushing, J. & Yicang, Z. (1994). Nat. Resour. Model., 8, 297–333.



Generational spread

• Consider the process of generational spread:



Generational spread

• To begin, we decompose the linearised IDE into spatiopemporal 
transition and fecundity operators:

• The dispersal-dependent next generation in space is:

                            
next-generation operator
! "### $###

          



Generational spread

• We look for exponential-form solutions

with wave speed cG and wave shape sG,

• and we define HF(s) and HT(s) so that

H(sG) = M(sG) ￮ A = M(sG) ￮ [F + T]
= M(sG) ￮ F + M(sG) ￮ T            

HF ( sG )
!"# $#             

HT ( sG )
!"# $#



Generational spread

• We can show that:

under the condition that ρ1[HT(sG)] < 1.  

• Here, HF(sG)[I – HT(sG)]–1 = HG(sG) is the spatiodemographic 
analogue of the purely demographic next-generation matrix, Q.



Generational spread

• We get a dispersion relation for the linearised system:

• the generational spreading speed is:

where ΩG incorporates the condition ρ1[HT(sG)] < 1;  GW Í W



Generational spreading speed



• We can also show that the following holds:

→ generational spreading speed, cG*, carries information about c*
comparable to that which R0 carries about λ.

Generational spreading speed



Population-change statistics

annual generational

λ = ρ1[A] R0 = ρ1[Q]
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• Recall the lifecycle is complex, with multiple dormant seed and  
rosette stages as well as adult plants

Example: wild teasel



• Estimates for transition and fecundity parameters result in 
corresponding matrices (Werner & Caswell 1977):

Example: wild teasel

Werner, P. & Caswell, H. (1977). Ecology, 58, 1103–1111.



• When seeds are mature, they drop a short distance from their parent 
plants.

• Seed dispersal can be characterised by a Laplace distribution with a 
mean dispersal distance of α = 0.257 m (Werner 1975):

• The wave-speed function can be simplified:

• where m(sG)=1/(1-α2sG
2) is the moment-generating function 

associated with seed dispersal

Example: wild teasel

Werner, P. (1975). Can. J. Bot., 53, 810–813.



• We can solve for R0 algebraically (Rueffler & Metz 2013 ) or using 
graph reduction (de-Camino-Beck & Lewis 2007):

• Then the spreading speed is given by 

Example: wild teasel

Rueffler, C. & Metz, J. (2013). J. Math. Biol., 66, 1099–1122.
de-Camino-Beck, T. & Lewis, M. (2007). Bull. Math. Biol., 69, 1341–1354.



• Although we cannot find a closed form for the generational 
spreading speed in this case, due to the non-normal dispersal 
kernel, we can use an approximation (Lutscher 2007):

where σ is the standard deviation and γ is the excess kurtosis, 
relative to the normal distribution, of the moment-generating function

• This gives

• Compare to the case of normal dispersal:

Example: wild teasel

Lutscher, F. (2007). Bull. Math. Biol., 69, 1615–1630.



Summary
• We can calculate generational wave speed, a spatiotemporal 

R0–analogue, for stage-structured populations growing and 
spreading in space

• This quantity completes a set of four statistics to assess the 
potential for population growth and spread

• Generational spreading speed can be easier to calculate and offer 
greater analytical insight than often-numerical calculations of annual 
spreading speed.

• However, we have been unable to find a simple way to connect cG* 
to c* via the mean generation time or something similar.

λ = ρ1[A] R0 = ρ1[Q]



Thank You
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• Teasel rosettes develop into flowering plants that drop seeds

Example: wild teasel


