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Altruism in viscous populations — an inclusive
fitness model

P.D. TAYLOR
Department of Mathematics and Statistics, Queen’s University, Kingston Ont. K7L 3N6, Canada

Summary

A viscous population (Hamilton, 1964) is one in which the movement of organisms from their place of birth
is relatively slow. This viscosity has two important effects: one is that local interactions tend to be among
relatives, and the other is that competition for resources tends to be among relatives. The first effect tends to
promote and the second to oppose the evolution of altruistic iour. In asil ion model of Wilson et
al. (1992) these two factors appear to exactly balance one another, thus opposing the evolution of local
altruistic behaviour. Here I show, with an inclusive fitness model, that the same result holds in a patch-
structured population.

Keywords: altruism; inclusive fitness; competition; viscosity




The choice of life-cycle matters

In homogeneously structured populations,
with effects of social interactions on fecundity:

Wright-Fisher Moran Birth-Death Moran Death-Birth
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Ohtsuki et al. (2006); Taylor, Day & Wild (2007); Taylor et al. (2010)



A common feature of models
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What is the effect of population
viscosity on the evolution of
altruism when parent-offspring
strategy transmission is imperfect?
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Genealogy, Identity by descent and Identity in state

Time
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Expected state of pairs of sites and identity by descent

At neutrality (i.e., in the absence of selection, § = 0),
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At neutrality (i.e., in the absence of selection, § = 0),

P,'j = QijV-i-(]—Q/j)Vz

Expected state Probability that a mutant is
of the i,j pair an altruist
= Probability that the two = Probability that a given site
individuals are altruists is occupied by an altruist

Probability that the individuals at
sites i and j are identical by descent
(no mutation since
their common ancestor)
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Population of fixed size N

Taylor, Day, Wild (2007)



Population structures

Population of fixed size N
Dispersal graph
D = (djh<ij<n
Sidy =Y di=1.

Taylor, Day, Wild (2007)



Population structures

Population of fixed size N
Dispersal graph

D = (djh<ij<n
Sidy =Y di=1.

Interaction graph

& = (ejh<ij<n

(any)

Taylor, Day, Wild (2007)



Population structures

Population of fixed size N
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Population structures

Population of fixed size N
Dispersal graph

D = (djh<ij<n
Sidy =Y di=1.

Interaction graph

€ = (ejh<ij<n

(any)

Evolutionary Subdivided
graph theory populations

Taylor, Day, Wild (2007)



Subdivided population - Island model

Ny demes
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Subdivided population - Island model

N4 demes of n individuals each (total population size N = n Ny)
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Subdivided population - Island model

N4 demes of n individuals each (total population size N = n Ny)

¥ . @
4 @ i @
a¥s () 3%
\“‘} ‘®‘
M M
o¥  ala
@ .®‘

ady oo ¥y [




Updating the population

Constant population size (N), so between two time steps,

#E) = #44



Updating the population

Constant population size (N), so between two time steps,

#E) = #44

N:N;—j
k_kg:{
B i



Updating the population

Constant population size (N), so between two time steps,

#E) = #44

Wright-Fisher

N:N;;f
k_kg:;f
B i

Moran process



Updating the population

Constant population size (N), so between two time steps,

# _ #ﬁ Life-cycle

Offspring
Wright-Fisher production

N:N;;f
k_kg:;f
15 = 16

Moran process



Updating the population

Constant population size (N), so between two time steps,

Life-cycle
#5) = #
Offspring
Wright-Fisher production
vE) - ne \

Offspring

k _ kﬁ dispersal
1) =

Moran process



Updating the population

Constant population size (N), so between two time steps,

Life-cycle
#5) = #
Offspring
Wright-Fisher production
vE) - ne \

Offspring

k _ kﬁ di;ersal
1 — 1 ﬁ k parents die

Moran process



Updating the population

Constant population size (N), so between two time steps,

#E) = #44

Wright-Fisher

N:N;;f
k—kg::f
1) - 167

Moran process

Life-cycle

Offspring
production

7 \

Establishment of Offspring
k offspring dispersal

\ /

k parents die



Constant population size (N), so between two time steps,
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if site i occupied by% attimet (1 <i<N)
Xi(t) =

0 if site i occupied by‘ attimet (1 <i<N)

We are interested in E[X],

the expected (E) proportion (X) of altruists in the population.



Social interactions

Phenotype
¢ = 0Xi.
Social interactions affect fecundity ‘ @
k—1
. g = 1+3(b ~c),
In a deme with k: % n—1
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Social interactions

Phenotype

¢ = 0Xi.

Social interactions affect fecundity

k—1
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Selection is weak
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(X, 0): expected # of offspring of individual i;
i(X,9): probability that i dies.
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Expected proportion of altruists at t + 1in the proportion of
altruists, conditional on the state of the population at time t:
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=B;j(X, 9): expected # of offspring of individual i;
=D;(X, 0): probability that i dies.

Expected proportion of altruists at t + 1in the proportion of
altruists, conditional on the state of the population at time t:

EX(t +1 Z [Bi(1 — w)Xi + (1 — D))X; + Biuv]

Take expectation and let t — oo; stationary distribution £
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Selection is weak (§ < 1) and reproductive values are all equal:
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Calculations (3)

» In asubdivided population,
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Rousset & Billiard (2000)
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Then further decompose with partial derivatives:
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Expected frequency of altruists in the population

Mutation-drift
equilibrium
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How does relatedness R change with the emigration probability m?
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Effect of the emigration probability m on the expected proportion of
altruists
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Is the result robust?
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Moran Birth-Death
(1 birth & 1 death)
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Another life-cycle
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Strong selection

Wright-Fisher, weak selection Moran Death-Birth, weak selection
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Strong selection
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Heterogeneous deme sizes (n = 4 as before, but2 < n <5)
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When strategy transmission is imperfect, too small emigration
probabilities can prevent the evolution of altruistic behavior
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Under weak selection, it is possible to compute the expected
frequency of social individuals, for any life-cycle, any regular
population structure, any mutation probability.

27



Under weak selection, it is possible to compute the expected
frequency of social individuals, for any life-cycle, any regular
population structure, any mutation probability.

EX]>v< BR>C& bk >c.

27



Under weak selection, it is possible to compute the expected
frequency of social individuals, for any life-cycle, any regular
population structure, any mutation probability.

EX]>v< BR>C& bk >c.

In subdivided populations, E[X] can increase with the
emigration probability m when strategy transmission is
imperfect (1 > 0).

27



Under weak selection, it is possible to compute the expected
frequency of social individuals, for any life-cycle, any regular
population structure, any mutation probability.

EX]>v< BR>C& bk >c.

In subdivided populations, E[X] can increase with the
emigration probability m when strategy transmission is
imperfect (1 > 0).

This result seems to hold under stronger selection and in
heterogeneous populations.

27



Under weak selection, it is possible to compute the expected
frequency of social individuals, for any life-cycle, any regular
population structure, any mutation probability.

EX]>v< BR>C& bk >c.

In subdivided populations, E[X] can increase with the
emigration probability m when strategy transmission is
imperfect (1 > 0).

This result seems to hold under stronger selection and in
heterogeneous populations.

R. Aguilée,

M. Costa, Ch. Mullon,

G. Faye, S. Lion
ANR-14-ACHN-0003-01 S Gandon, e
o hated S. Mirrahimi,

27



	Introduction
	Puzzle of altruism
	Relatedness and spatial structure
	Transition mutation

	Model
	Fidelity of transmission
	Population structure
	Updating the population
	Notation and Social interactions

	Results
	Calculations
	EX
	Explanation
	Robustness

	THM

