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The choice of life-cycle matters

In homogeneously structured populations,
with e�ects of social interactions on fecundity:

Wright-Fisher Moran Birth-Death Moran Death-Birth

/

Ohtsuki et al. (2006); Taylor, Day & Wild (2007); Taylor et al. (2010) 4



A common feature of models

What is the e�ect of population
viscosity on the evolution of
altruism when parent-o�spring

strategy transmission is imperfect?
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Fidelity of parent-o�spring transmission

Causes of imperfect strategy transmission
I Mutation

I Partial heritability
I Cultural transmission (vertical)

In the model
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Expected state of pairs of sites and identity by descent

At neutrality (i.e., in the absence of selection, δ = 0),

Pij

Expected state
of the i, j pair

= Probability that the two
individuals are altruists

= Qij ν

Probability that the individuals at
sites i and j are identical by descent

(no mutation since
their common ancestor)

Probability that a mutant is
an altruist
= Probability that a given site
is occupied by an altruist

+(1− Qij)ν2

Qin, Qout
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Population structures

Population of fixed size N

Dispersal graph

D = (dij)1≤i,j≤N∑N
i=1 dij =

∑N
j=1 dji = 1.
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Subdivided population – Islandmodel

Nd demes

of n individuals each (total population size N = nNd)

1−m

m
Emigration
probability

focal

in
out
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Updating the population

Constant population size (N), so between two time steps,

=# RIP #

=N RIP N
... ...

=k RIP k
... ...

=1 RIP 1

Wright-Fisher

Moran process

Life-cycle

“Death-Birth” updating

O�spring
production

O�spring
dispersal

k parents die

Establishment of
k o�spring
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Population

1 if site i occupied by at time t (1 ≤ i ≤ N)

0 if site i occupied by at time t (1 ≤ i ≤ N)
Xi(t) =

We are interested inE[X],
the expected (E) proportion (X) of altruists in the population.
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Social interactions

Phenotype

φi = δXi.

Social interactions a�ect fecundity

f = 1+ δ
(
b
k − 1
n− 1

−c
)
,

f = 1+ δ
(
b

k
n− 1

)
.

In a deme with k :

Selection is weak
δ � 1.
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Calculations

Notation
Bi = Bi(X, δ): expected # of o�spring of individual i;
Di = Di(X, δ): probability that i dies.

I Expected proportion of altruists at t + 1 in the proportion of
altruists, conditional on the state of the population at time t:

E[X(t + 1)|X(t)] = 1
N

N∑
i=1

[Bi(1− µ)Xi + (1− Di)Xi + Biµν]

I Take expectation and let t→∞; stationary distribution ξ

0 =
1
N

∑
X∈Ω

 N∑
i=1

Bi(1− µ)− Di)︸ ︷︷ ︸
Wi

Xi +
N∑
i=1

Biµν

 ξ(X, δ, µ)
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Calculations (2)

I Selection is weak (δ � 1) and reproductive values are all equal:

0 =
δ

N

N∑
i=1

[∑
X∈Ω

∂Wi

∂δ
Xiξ(X, 0, µ)−

∑
X∈Ω

µB∗Xi
∂ξ

∂δ

]
+ O(δ2),

which we rewrite as

δµB∗
∂E[X]
∂δ

=
δ

N

N∑
i=1

E0
[
∂Wi

∂δ
Xi

]
+ O(δ2).

I Using partial derivatives: phenotypes

∂Wi

∂δ
=

N∑
k=1

∂Wi

∂φk

∂φk
∂δ

=
N∑
k=1

∂Wi

∂φk
Xk.

I We obtain

δµB∗
∂E[X]
∂δ

=
δ

N

N∑
i=1

N∑
k=1

∂Wi

∂φk
E0 [XiXk]︸ ︷︷ ︸

Pik

+O(δ2).
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Calculations (3)

I In a subdivided population,
∂Wi

∂φi
+ (n− 1) ∂Wi

∂φin
+ (N− n) ∂Wi

∂φout
= 0,

I So

δµB∗
∂E[X]
∂δ

=
δ

N

N∑
i=1

∂Wi

∂φi︸︷︷︸
−C

+(n− 1) ∂Wi

∂φin︸ ︷︷ ︸
B

Pin − Pout
Pii − Pout︸ ︷︷ ︸

R

 (Pii−Pout)+O(δ2).

I Then further decompose with partial derivatives:

∂Wi

∂φk
=

N∑
`=1

∂Wi

∂f`
∂f`
∂φk

∂f`
∂φ`

= −c; ∂f`
∂φin

=
b

n− 1
;

∂f`
∂φout

= 0.

Rousset & Billiard (2000) 16
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n− 1
;

∂f`
∂φout

= 0.

Rousset & Billiard (2000) 16
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E�ect of the emigration probabilitym on the expected proportion of
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How to explain this result? (Moran Death-Birth)

−C + BR > 0⇔ R > C/B
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Is the result robust?
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Another life-cycle
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Strong selection
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Heterogeneous deme sizes (n = 4 as before, but 2 ≤ n ≤ 5)
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Political implications

When strategy transmission is imperfect, too small emigration
probabilities can prevent the evolution of altruistic behavior
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Take-Home Messages

I Under weak selection, it is possible to compute the expected
frequency of social individuals, for any life-cycle, any regular
population structure, any mutation probability. (D., 2017, JTB)

I E[X] > ν ⇔ B R > C ⇔ bκ > c.
I In subdivided populations,E[X] can increase with the
emigration probabilitymwhen strategy transmission is
imperfect (µ > 0). (D., in review.)

I This result seems to hold under stronger selection and in
heterogeneous populations.
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