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Introduction

Goal of the talk:

• Study general PDE models of evolution, describing the evolution
of quantitative phenotypic traits.

• Apply as in the talk of B. Perthame on Monday a limit of
“concentration” in order to describe the population dynamics as
Dirac mass(es) evolving with time.

• Give an alternative description of the Hamilton-Jacobi limit
using a probabilistic interpretation of the PDE.

• Discuss extensions of this approach, including the case of a finite
trait space.
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Chemostat example
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PDE model with r resources: u(t , x ) is the density of population with
trait x ∈ R at time t ≥ 0

∂tu(t , x ) = u(t , x )

(
r∑

i=1

vi(t)ηi(x )︸ ︷︷ ︸
growth

− 1︸︷︷︸
outflow

)
+

1

2
∆u(t , x )︸ ︷︷ ︸
mutation

v̇i(t) = ci︸︷︷︸
inflow

− vi(t)︸︷︷︸
outflow

− vi(t)

∫
R
ηi(x )u(t , x )dx︸ ︷︷ ︸

consumption
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Chemostat example

Accelerated resources dynamics

Putting resources dynamics at equilibrium, we obtain the PDE

∂tu(t , x ) =
1

2
∆u(t , x ) + u(t , x )

(
r∑

i=1

ciηi(x )

1 +
∫
ηi(x )u(t , x )

− 1

)

Competition for two re-
sources

(Diekmann, Jabin, Mis-

chler, Perthame, 2005)
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General model

General model

∂tu(t , x ) =
1

2
∆u(t , x ) + u(t , x )R (x , vt) , x ∈ Rd , t ≥ 0,

v i
t =

∫
Rd

ηi(x )u(t , x )dx , 1 ≤ i ≤ r ,

where

• ηi W
2,∞ with M−1 ≤ ηi(x ) ≤ M ,

• R W 2,∞ with

−M ≤ ∂viR (x , v1, . . . , vr ) ≤ −M−1.

• minx∈Rd R(x , v) > 0 as soon as ‖v‖ <
vmin , and maxx∈Rd R(x , v) < 0 as soon as ‖v‖ > vmax .
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Hamilton-Jacobi limit

Scaling of small/rare mutations and large time

∂tu
ε(t , x ) =

ε

2
∆uε(t , x ) +

1

ε
uε(t , x )R (x , vε

t ) ,

uε(0, x ) = exp−hε(x )

ε
,

vε,i
t =

∫
Rd

ηi(x )uε(t , x )dx ,

where hε are uniformly Lipschitz and converge to h in L∞

Diekmann et al., 2005: defining (WKB ansatz)

uε(t , x ) = exp

(
ϕε(t , x )

ε

)
, ∂tuε =

uε
ε
∂tϕε, ∆uε =

∆ϕε

ε
uε+
|∇ϕε|2

ε2
uε,

the PDE becomes

∂tϕε(t , x ) = R(x , vε
t ) +

1

2
|∇ϕε(t , x )|2 +

ε

2
∆ϕε
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Hamilton-Jacobi limit

Hamilton-Jacobi limit with constraints

This suggests the convergence of ϕε to a solution of

∂tϕ(t , x ) = R(x , vt) +
1

2
|∇ϕε(t , x )|2,

ϕ(0, x ) = −h(x ), v i
t =

∫
Rd

ηi(x )µt(dx ),

where µt(dx ) is (in some sense) the limit of uε(t , x )dx .

Such a convergence and the limit equation were studied in lots of
works (Diekmann, Jabin, Mischler, Perthame, 2005; Barles, Perthame,
2007, 2008; Barles, Mirrahimi, Perthame, 2009; C., Jabin, 2011; Lorz,
Mirrahimi, Perthame, 2011; Mirrahimi, Roquejoffre, 2016...)
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Hamilton-Jacobi limit

How to characterize µt?

• The total population mass remains bounded  maxx ϕ(t , x ) = 0
for all t ≥ 0.

• The limit population density at time t is 0 except at the points x
where ϕ(t , x ) = 0  µt has support in {ϕ(t , ·) = 0}.

• The measure µt has to be metastable, i.e.

• R(x , vt) ≤ 0 for all x such that ϕ(t , x) = 0,
• R(x , vt) = 0 for all x in the support of µt .

These properties are enough to characterize µt from {ϕ(t , ·) = 0} in
the case of a single resources, but it is only known in particular cases
for two or more resources (chemostat example, cf. C., Jabin, 2011).

Well-posedness is a hard problem, only solved in general for a single
resource (Mirrahimi, Roquejoffre, 2016).

For evolutionary branching to occur, we need r ≥ 2.
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Hamilton-Jacobi limit

Simulation of HJ in the chemostat example [T. Causseron]
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Feynman-Kac formula

Probabilistic interpretation of the PDE

We follow ideas from Freidlin (1987, 1992).

Feynman-Kac formula expresses solutions of linear PDEs as
expectation of stochastic processes:

uε (t , x ) = Ex

[
exp

(
−ε−1hε (X ε

t ) +
1

ε

∫ t

0

R
(
X ε

s , v
ε
t−s
)
ds

)]
,

where X ε
t = x +

√
εBt with Bt Brownian motion.

Strongly suggests to apply Varadhan’s lemma!!
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Feynman-Kac formula

Computation

This can be proved applying Itô’s formula between times 0 and t to

Ys = uε(t − s,X ε
s ) exp

(
−1

ε

∫ s

0

R(X ε
u , v

ε
t−u)du

)
.

Setting α(s, x ) = R(x , vε
s ), we obtain

uε(0,X ε
t ) exp

(
1

ε

∫ t

0

α(t − u,X ε
u )du

)
= uε(t , x ) +

∫ t

0

∇uε(t − s,X ε
s ) exp

(
1

ε

∫ s

0

α(t − u,X ε
u )du

)
dX ε

s

+

∫ t

0

(
−∂suε +

ε

2
∆uε +

1

ε
αuε

)
(t − s,X ε

s ) exp

(
1

ε

∫ s

0

α(t − u,X ε
u )du

)
.

This gives the formula taking expectations.
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Large deviations principle for Brownian paths

Large deviations principle for Brownian paths

The process X ε
t = x +

√
εBt satisfies a LDP as ε→ 0 (Schilder’s

theorem):

Px

(
(X ε

s )s∈[0,t] ≈ (ϕs)s∈[0,t]

)
≈ exp

(
−1

ε
It(ϕ)

)
, It(ϕ) =

1

2

∫ t

0

‖ϕ̇s‖2ds.

More formally, for all F ⊂ C([0, t ],Rd),

− inf
ϕ∈int(F)

It(ϕ) ≤ lim inf
ε→0

ε logPx (X ε ∈ F )

≤ lim sup
ε→0

ε logPx (X ε ∈ F ) ≤ − inf
ϕ∈adh(F)

It(ϕ).
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Large deviations principle for Brownian paths

Varadhan’s lemma

Varadhan’s lemma is a version of Laplace’s principle: for all
f : [0, 1]→ R continuous,∫ 1

0

e
1
ε f (x)dx ≈ e

1
ε supy∈[0,1] f (y),

or, more formally,

lim
ε→0

ε log

∫ 1

0

e
1
ε f (x)dx = sup

y∈[0,1]

f (y).

Varadhan’s lemma: if F : C([0,T ],Rd)→ R is continuous,

Ex

(
e

1
εF(X ε)

)
=

∫
e

1
εF(ϕ)P(X ε ∈ dϕ) ≈

∫
e

1
εF(ϕ)e−

1
ε It (ϕ)dϕ,

or

lim
ε→0

ε logEx

(
e

1
εF(X ε)

)
= sup

ϕ s.t. ϕ(0)=x

(F (ϕ)− It(ϕ)) .
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Application to our model

Application to our model

In our case,

Fε(ϕ) = −hε(ϕt) +

∫ t

0

R(ϕs , v
ε
t−s)ds.

Need it to converge as ε→ 0 to F continuous.

• hε → h in L∞, h Lipschitz,

• to have a continuous limit of∫ t

0

R(ϕs , v
ε
t−s)ds =

∫ t

0

∫
Rr

R(ϕs , y)δvε
t−s

(dy)ds,

enough to look at weak convergence of measures: up to a
subsequence εk ,

δvεk
s

(dy)ds →Ms(dy)ds.
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Application to our model

Main result

Theorem

For all x ∈ Rd and t ≥ 0,

V (t , x ) := lim
k→∞

εk log uεk (t , x )

= sup
ϕ s.t. ϕt=x

{
−h(ϕ0) +

∫ t

0

∫
Rr

R(ϕs , y)Ms(dy)ds − 1

2

∫ t

0

‖ϕ̇s‖2ds
}

and V (t , x ) is locally Lipschitz in R+ × Rd .

Biologically, the optimal function ϕ may be thought of as the trait of
the ancestors of the dominant individuals at time t .
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Variational form of HJ problem

Link with the HJ problem

When r = 1, using the results of Lorz, Mirrahimi, Perthame (2011),
we deduce that Mt is a Dirac mass and V (t , x ) = ϕ(t , x ), where

∂tϕ(t , x ) =

∫
R
R(x , y)Mt(dy) +

1

2
|∇ϕ(t , x )|2.

This is the classical variational formulation of Hamilton-Jacobi
problems.

Note that, in general, t 7→ Mt is not continuous, so we cannot apply
the standard results of this theory.
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Other mutation models

Extensions to other mutation models

Our method applies in general to any with mutation operators
satisfying a large deviations principle. For example,

∂tu
ε(t , x ) =

1

ε

∫
Rd

[uε(t , x + εz )− uε(t , x )]K (z )dz +
1

ε
uε(t , x )R (x , vε

t ) ,

where K : Rd → R+ satisfies∫
Rd

zK (z )dz = 0 and

∫
Rd

ea|z |K (z )dz <∞, ∀a > 0.

The rate function is

It(ϕ) =

∫ t

0

∫
Rd

(
eϕ̇sz − 1

)
K (z )dz ds

In this case, the Hamilton-Jacobi limit was obtained in the chemostat
example for any number of resources in C., Jabin (2011).
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The model

The case of finite trait space

In the case where the trait space E is finite, to have a large deviations
principle for the mutation process, one needs mutations rates to be
exponentially small:

u̇ε(t , i) =
∑
j∈E

e−
T(i,j)

ε (uε(t , j )− uε(t , i)) +
1

ε
uε(t , i)Ri(v

ε
t ),

uε(0, i) = exp−hε(i)

ε
,

vk ,ε
t =

∑
i∈E

ηk (i)uε(t , i),

where

T (i , j ) > 0 ∀i 6= j , T (i , j ) + T (j , k) > T (i , k), ∀i , j , k .
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The model

Feynman-Kac representation and LDP

We have as above

uε(t , i) = Ei

[
exp

(
−hε(X

ε
t )

ε
+

1

ε

∫ t

0

R(X ε
s , v

ε
t−s)ds

)]
,

where X ε
t is a Markov jump process with X ε

0 = i and jump rate

e−
T(i,j)

ε from i to j .

Thanks to the assumption T (i , j ) + T (j , k) > T (i , k), ∀i , j , k , the
processes (X ε)ε>0 satisfy a LDP with rate function

It : D([0, t ],E ) → R+

ϕ 7→
∑
s≤t

T (ϕs−, ϕs),

where we assume T (i , i) = 0 for all i ∈ E and where D([0, t ],E ) is the
set of right-continuous functions from [0, t ] to E admiting left limits
at all positive times.
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The model

Variational problem

The rate function does not have compact level sets. However, it is
possible to adapt Varadhan’s lemma to prove

Theorem

For all i ∈ E and t ≥ 0,

V (t , i) := lim
k→∞

εk log uεk (t , x )

= sup
ϕ s.t. ϕ0=i

−h(ϕt) +

∫ t

0

∫
Rr

R(ϕs , y)Ms(dy)ds −
∑
s≤t

T (ϕs−, ϕs)

 .

This problem is simpler to study than the previous one. In some
cases, it is possible to characterize the limit.
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