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Introduction

Introduction

Goal of the talk:

o Study general PDE models of evolution, describing the evolution
of quantitative phenotypic traits.

o Apply as in the talk of B. Perthame on Monday a limit of
“concentration” in order to describe the population dynamics as
Dirac mass(es) evolving with time.

o Give an alternative description of the Hamilton-Jacobi limit
using a probabilistic interpretation of the PDE.

» Discuss extensions of this approach, including the case of a finite
trait space.
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Introduction Chemostat example model, HJ limit

[ 1]
Chemostat example

substrat substrat + biomasse

PDE model with r resources: u(t, z) is the density of population with
trait z € R at time ¢ > 0
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Chemostat example
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Chemostat example

Accelerated resources dynamics

Putting resources dynamics at equilibrium, we obtain the PDE

Competition for two re-

dyu(t,z) = %Au(t,:l:) +u(t, z) (Z 1+ fi,n(gi(tx) - 1)
sources

i=1
(Diekmann, Jabin, Mis-
" chler, Perthame, 2005)
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General model, HJ limit
[

General model

General model

dyult,z) = %Au(t,x) +ut,o)R (z,0), ©E€RY, £>0,
v} :/ ni(z)u(t,z)de, 1<i<r,
]Rd

where
o m W2 with M~ <n(z) < M,
* R W% with

~M <0y R(z,01,...,0,) < =M%

* min,cga R(z,v) > 0 as soon as ||v|| <
Umin, and max,cre R(z,v) < 0 as soon as ||v]| > Umag-
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General model, HJ limit

[ Jolele)
Hamilton-Jacobi limit

Scaling of small/rare mutations and large time

£,1

g :/ ni(z)u®(t, z)dz,
Rd

where h. are uniformly Lipschitz and converge to h in L*°
Diekmann et al., 2005: defining (WKB ansatz)

2

Us+ 5 Ue,
3

the PDE becomes

1 Qo

1 €
Oupe(t,2) = R(z, vf) + 5 |Vipe(t, 2)” + 5 Ape
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General model, HJ limit
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Hamilton-Jacobi limit

Hamilton-Jacobi limit with constraints

This suggests the convergence of ¢, to a solution of
1
Orp(t,z) = R(z,v) + §|V<p5(t, z)|?,
p0.0) = =h(a), i = [ mCahuildo)

where p;(dz) is (in some sense) the limit of u. (¢, z)dz.

Such a convergence and the limit equation were studied in lots of
works (Diekmann, Jabin, Mischler, Perthame, 2005; Barles, Perthame,
2007, 2008; Barles, Mirrahimi, Perthame, 2009; C., Jabin, 2011; Lorz,
Mirrahimi, Perthame, 2011; Mirrahimi, Roquejoffre, 2016...)
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General model, HJ limit
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Hamilton-Jacobi limit

How to characterize ;7

o The total population mass remains bounded ~» max, ¢(t,2) =0
for all ¢t > 0.

o The limit population density at time ¢ is 0 except at the points z
where p(t,2) =0 ~» p; has support in {p(t,-) = 0}.

o The measure pu; has to be metastable, i.e.

o R(z,v) <0 for all  such that ¢(t,z) =0,
¢ R(z,v) =0 for all z in the support of ;.

These properties are enough to characterize p; from {¢(¢,-) =0} in
the case of a single resources, but it is only known in particular cases
for two or more resources (chemostat example, cf. C., Jabin, 2011).

Well-posedness is a hard problem, only solved in general for a single
resource (Mirrahimi, Roquejofire, 2016).

1 Qo

For evolutionary branching to occur, we need r > 2.
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Simulation of HJ in the chemostat example [T. Causseron]
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Probabilistic interpretation
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Feynman-Kac formula

Probabilistic interpretation of the PDE

We follow ideas from Freidlin (1987, 1992).

Feynman-Kac formula expresses solutions of linear PDEs as
expectation of stochastic processes:

t
o (1) =B [eo (< 0+ 2 [ RO )]
0

where X7 = z + /e B; with B; Brownian motion.
Strongly suggests to apply Varadhan’s lemmal!

W @o

)
Pl
i)



Probabilistic interpretation
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Feynman-Kac formula

Computation

This can be proved applying It6’s formula between times 0 and ¢ to

Setting a(s,z) = R(z, v¢), we obtain

—_

£(0, X7 ) exp (— at — u,Xj)du)
0

t 1 5
—l—/ Vus(t —s, XS) exp( / a(t — u,X,‘f)du) axs
0 €Jo
1 1 /¢
+/ ( Osu® + = Au + au)(t—s,Xss)exp(g/ a(t—u,ij)du).
0 0

This gives the formula taking expectations.

0’)
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Varadhan’s lemma
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Large deviations principle for Brownian paths

Large deviations principle for Brownian paths

The process Xf = z + /eB; satisfies a LDP as ¢ — 0 (Schilder’s
theorem):

1 Tt

P, ((Xf)se[o,t] ~ (ws)se[o,t]) R exp (——h(«?)) o I(e) = —/ 951 ds.
€ 2 Jo

More formally, for all F C C([0, t], R%),

. < Timi .
goeglltf(F) L(p) < llrarlg(r)lfslogIPw(X el

<limsupelogP,(X® € F) < — inf [ .
- 6—>0p & ( ) peadh(F) t((P)
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Varadhan’s lemma
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Large deviations principle for Brownian paths

Varadhan's lemma

Varadhan’s lemma is a version of Laplace’s principle: for all
f:10,1] = R continuous,

1
/ 2@ gy~ ¢ Pyeton £ )
0

or, more formally,

1
limslog/ et/ @ gy = sup f(y).
e—=0 0 yE[O,l]

Varadhan’s lemma: if F : C([0, T],R?) — R is continuous,
E, (6§F<XE>) :/eém)p(xa € dy) z/eéF(v)e—éh(cp)d%

or

1 Qo

lim elog E, (eéF(X”) = sup (F(p)— L(p)).
¢ s.t. p(0)=z
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Varadhan’s lemma
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Application to our model

Application to our model

In our case,

Fe(p) = —he(¢1) +/0 R(ps, v;_,)ds.

Need it to converge as € — 0 to F' continuous.
o he — hin L h Lipschitz,

* to have a continuous limit of

t t
/OR(%,vf_s)dSZ/O / R(ps, y)du:_ (dy)ds,

enough to look at weak convergence of measures: up to a
subsequence ey,

1 Qo

8,01 (dy)ds — M (dy)ds.
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Varadhan’s lemma
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Application to our model

Main result

Theorem
For all z € R and t > 0,

V(t,z):= klirgo ex log u® (¢, x)

t 1 t )
= s {ot+ [ rewnattanas— g [ ledPas)

p s.t. o=

and V (t,z) is locally Lipschitz in R, x R?.

Biologically, the optimal function ¢ may be thought of as the trait of
the ancestors of the dominant individuals at time ¢.
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Varadhan’s lemma
[

Variational form of HJ problem

Link with the HJ problem

When r = 1, using the results of Lorz, Mirrahimi, Perthame (2011),
we deduce that M; is a Dirac mass and V (¢, z) = ¢(t, =), where

Oup(t.a) = [ Rla,)Muldy) + 5Vt o)

This is the classical variational formulation of Hamilton-Jacobi
problems.

Note that, in general, ¢t — M; is not continuous, so we cannot apply
the standard results of this theory.
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Varadhan’s lemma
o

Other mutation models

Extensions to other mutation models

Our method applies in general to any with mutation operators
satisfying a large deviations principle. For example,

Dyus(t,2) = E/R [ (t, 2 + e2) — u (1, 2)) K (2)dz + éua(t,x)R (@, 0)

where K : R? — R satisfies

/ 2K (z)dz =0 and e? K (z)dz < o0, Va > 0.
R¢ R

The rate function is

I.(p) = /Ot /]Rd (e¥* —1) K(2)dz ds

1 Qo

In this case, the Hamilton-Jacobi limit was obtained in the chemostat
example for any number of resources in C., Jabin (2011). 5
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Finite trait space
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The model

The case of finite trait space

In the case where the trait space E is finite, to have a large deviations
principle for the mutation process, one needs mutations rates to be
exponentially small:

= 3 e W (19) — (1, 0) + Tl () R(45),

JjeEE
u® (O, i) = exp __hEE(z) ,

an Yu(t, 1),

i€lE

where

T(i,j)>0vVi#j, T(,j)+ TG, k) > T(i,k), Vi,j, k
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Finite trait space
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The model

Feynman-Kac representation and LDP

We have as above

e =8 o (20 1 i),

3 &

where X7 is a Markov jump process with X§ = ¢ and jump rate

e~ from to j.

Thanks to the assumption T'(%,7) + T(j,k) > T(i, k), Vi,j,k, the
processes (X¢).so satisfy a LDP with rate function

It : ]D)([O, t] E) — R+

90'_)2 (0s—,®s),

s<t

1 Qo

where we assume T'(i,i) = 0 for all ¢ € E and where D([0, ¢], E) is the
set of right-continuous functions from [0, ] to E admiting left limits
at all positive times. 5
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Finite trait space
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The model

Variational problem

The rate function does not have compact level sets. However, it is
possible to adapt Varadhan’s lemma to prove

Theorem
Foralli € F and t > 0,

V(t,i) = kh_)rlgo e log u®*(t, x)

= s 3-he)+ [ [ Ren M= T o)

@ s.t. o=t o<t

This problem is simpler to study than the previous one. In some
cases, it is possible to characterize the limit.
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