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Introduction

¢ A cline describes a gradual change in genotypic or
phenotypic frequency as a function of spatial location.

o Examples: The frequency of the Adh™ allele in D.
melanogaster increases from south to north along Eastern
North America; in Australia, it increases as one goes
south.

e Clines are frequently caused by the interaction of
geographically variable selection and migration in a
spatially distributed population.
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Goals and problems

e When does a cline, a spatially nonuniform, stationary
solution, exist?

e How do existence and properties (e.g. shape) of a cline
depend on migration, selection, dominance,
recombination, etc.?

e What inferences about dispersal and selection intensity
can be drawn from empirical observations, i.e.,
measurements of the cline?



One locus

Model assumptions

The diploid species inhabits the continuous,
unidimensional habitat (2 = R, in which it migrates.

Migration is modeled by diffusion.

The fitness of individuals (genotypes) depends on the
position x, but is time- and density-independent.

First, we consider a single gene (locus) with two alleles, A
and a.
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One-locus PDE model for migration and selection

e p(z,t) is the frequency of allele A at location = and time ¢.
Then p(z,t) evolves according to'

g;: =p" + Xa(x)f(p) in Rx (0,00),
0<p(x,0)<1 in R,
where p” = %.

1 Haldane (1948), Fleming (1975). For the derivation of a much more general model, see Nagylaki (1975, 1989).
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One-locus PDE model for migration and selection

e p(z,t) is the frequency of allele A at location x and time ¢.
Then p(x,t) evolves according to'

B+ 2a(@)f(p) in B x (0,00),
0<p(z,0)<1 in R,
where p’ = 28,
e )\ x s/0? measures the strength of selection relative to
diffusion.
e o(xz) describes the spatial dependence of the fitnesses of
the alleles.

1 Haldane (1948), Fleming (1975). For the derivation of a much more general model, see Nagylaki (1975, 1989).
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One-locus PDE model for migration and selection

e p(z,t) is the frequency of allele A at location x and time ¢.
Then p(x,t) evolves according to'

0 ,
5 =V +Aa@)f(p) in Rx (0,00),
0<p(z,0)<1 in R,
where p = 22,
e )\ o s/0% measures the strength of selection relative to
diffusion.

e «(x) describes the spatial dependence of the fitnesses of
the alleles.

e f(p)=p(1—p)(1+h—2hp) describes selection.

1 Haldane (1948), Fleming (1975). For the derivation of a much more general model, see Nagylaki (1975, 1989).
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Step environment on R

e The step environment approximates an abruptly changing

environment:

where ay,a_ > 0.

ay ifxz >0,
a(z) = :
—a_ ifz <0,
064X
0.4
A
0.2
X
3 = -1 2 3
a -0.2
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One locus

Step environment on R

e The step environment approximates an abruptly changing
environment:

ay  ifx >0,

ale) = —a_ ifz <O,

where ay,a_ > 0.

e Haldane (1948) calculated the one-locus cline in terms of
hyperbolic functions for no dominance and for complete
dominance.?

2Slaltkin (1973) and Nagylaki (1975, 1976) extended his work to include environmental pockets, barriers, etc.
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Evolution of a cline
(no dominance, i.e., f(p) = p(1 — p))
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Evolution of a cline
(no dominance, i.e., f(p) = p(1 — p))
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A single locus with dominance
(or linear frequency dependence)

We assume a spatially independent, intermediate degree of
dominance:

f(p) =p(1 —p)(1+h—2hp), where —1<h<1.

Then the cline is the C* solution P(z) of
P" 4+ Xa(z)P(1 - P)(1+h—2hP)=0

that satisfies 0 < P(z) < 1, P(—o0) =0, and P(o0) = 1.



One locus

The role of dominance

Separating variables and integrating, we eventually find the
slope of the cline in the center,

S VA aya_
P0)=—,———.
V3V ar+a-

e Therefore, the slope P’(0) is independent of the degree of
dominance.?

¢ An estimate of the dispersal variance is sufficient to infer
the selection intensity (A oc 1/02), and vice versa.

3See Lenormand et al. (1998), who concluded that dominance does not have an important effect on the
estimation of migration variance in a study of clines in the mosquito Culex pipiens.
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The single-locus cline can be computed explicitly

There exists a unique cline solution P(x).
Forz > 0, it is given by

1-— 6(1—h) —  ifh<1,
Zi+2(1—=3h)+ (14+3h)Z;
P(x) =
12 .
1— =
9 + 4(1U)\O[+ + A+)2 If h 1 ’
where

Zi(x) = Aye™t,

X+ = $>\Oé+\/ 1—-~h (|f h < 1) and A+ = F+(a0,h) .

An analogous result holds for z < 0.
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Dominance and the shape of the cline

The single-locus cline P(x) as a function of « for different values of
the dominance parameter h. The other parameters are such that
Aoy = da_ = 1.
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Two loci

Most traits are determined by more than one locus.

Recombination, occurring at the (scaled) rate p > 0, and
linkage disequilibrium have to be taken into account.

Alleles: A a B b
Fitnesses: 3a(z) —3a(z) i8(z) —iB(z)

We now have two step function, a(z) and g(x), which
change sign at the same point (w.l.o.g. at x = 0).

We assume additive fitnesses.*

4On the expense of considerable technical complications, the analysis below can be performed for intermediate
dominance.
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Allele frequencies and linkage disequilibrium
e We use the following coordinates:

DA ... frequency of A
PB-.-.. frequency of B
D ... linkage disequilibrium
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The two-locus PDE model

o After rescaling time, the dynamics is given by

0

% =plis + A(z)pa(l — pa) + A\3(x)D,
0

% =pp + AB(x)p(1 — pB) + Aa(z) D,
oD

+ Ala(z)(1 = 2pa) + B(x)(1 - 2pp)|D — pD

e with zero-flux boundary conditions, 0 < pa < 1,
0 < pp < 1, and the natural constraints on D.



Two loci

Independent loci (D = 0)

e If loci are independent, as is expected if p — oo, the
dynamics becomes

o
% — P+ Aa(@)pa(l — pa)
P

=L =P+ AB(@)ps(1 - pp)

e If D(z,t) is forced to be 0, then two decoupled one-locus
systems are obtained.



Two loci

Independent loci (D = 0)

e The system is uncoupled and has an internal equilibrium
because both one-locus systems have a nontrivial
equilibrium (cline).

¢ The internal equilibrium, being a Cartesian product, is
globally asymptotically stable.
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The two-locus model with strong recombination

We fix A and assume

e=1/p<1.
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The two-locus model with strong recombination

We fix A and assume
e=1/p<k1.

Rescaling time yields

(‘?? = e[p’y + Aa(z)pa(l — pa) + A\B(z)D],
ag;f = e[p'llg + AB(x)pp(l —pB) + Aa(ﬂf)D],
%—IZ = E[D” + 2405 + Ale(2) (1 — 2pa) + B(z)(1 — 2p3)]D]

- D.

The limit e — 0 is degenerate: Every (pa,pg,0) is an
equilibrium and this (noncompact) manifold (D = 0) is globally
attracting.
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Approximating the cline for strong recombination
(Quasi-linkage equilibrium)

e We apply a singular perturbation approach to derive the
cline by assuming

pa=P+ep+0(), pp=Q+eq+O(?),
D =0(e),

where P and @ are the single-locus clines.

5For a more general multilocus approach, see Barton and Shpak (2000).
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Approximating the cline for strong recombination
(Quasi-linkage equilibrium)

e We apply a singular perturbation approach to derive the
cline by assuming

pa=P+ep+0(), pp=Q+eq+O(?),
D = O(e),

where P and @ are the single-locus clines.
e ltis not difficult to show that

D =2eP'Q +0O(%).8

5For a more general multilocus approach, see Barton and Shpak (2000).
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Approximating the cline for strong recombination
(Quasi-linkage equilibrium)

o Eventually, we find that p(z) is the unique solution of the
linear inhomogeneous second-order equation

P+ Aa(z)[1 = 2P(z)]p + 2A8(2) P'()Q'(x) = 0.
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Approximating the cline for strong recombination
(Quasi-linkage equilibrium)

o Eventually, we find that p(z) is the unique solution of the
linear inhomogeneous second-order equation
P+ Aa(z)[1 - 2P(2)]p + 2AB(z) P'(2)Q'(z) = 0.
e Variation of constants yields
p(z) = P'(z)k(x),

where k(x) is obtained by integration of expressions such

as [P'(y)]*Q'(y).
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Approximating the cline for strong recombination
(Quasi-linkage equilibrium)

o Eventually, we find that p(z) is the unique solution of the
linear inhomogeneous second-order equation

P+ Aa(@)[1 — 2P(2)]p + 278(x) P'(2)Q'(z) = 0.
e Variation of constants yields
p(z) = P'(z)k(x),

where k(x) is obtained by integration of expressions such
as [P'(y)]*Q'(y).

e Explicit expressions can be derived if « = 3; then P = Q.
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An important property of p(z) and p4(x)

_ 2V3A[a? 11,.(0) + aF B2 1_(0)]

a+a,\/ai +a?

p'(0) >0.8

e Therefore, the cline
pa=P+ep+ 0(62)

gets steeper in its center as e increases from 0, i.e., as
linkage between the two loci gets tighter.

Glf, more generally, h # 0 is admitted, then p’ (0) depends on h (in contrast to P’ (0)!).



Introduction One locus Two loci Strong recombination Summary General model

p(z) and the ‘true’ (numerical) solution

p(x)
0.04

e=1lp
— 1
— 0.2
—_ 01 0.02
— 0.01
———— theory

X
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Two-locus clines: numerical solution

Pa(x) D(x)
1.0 0.25
0.8 0.20
0.6 P 0.15
— 10°
0.4, 0.10
0.2 0.05
- . - = X X
-4 -2 0 2 4 -4 -2 0 2 4

()\ == ]., oy = 02, a_ — 04, ﬁ+ == 1, ,8, = 08)
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Two-locus clines: numerical solution and approximation

pa(x) D(x)
1.0+ 0.020
0.8 {
0.015%
o A
0.6 — 10 \
0.010 ¢
0. — 10°
02! .005¢
' ' : — X X
-4 -2 0 2 4 -4 -2 2 4

A=1a4+=02,0_=04,5L =1, 5-=0.8)
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Two-locus clines: numerical solution and approximation

Pa(x)
1.01

0.8-
0.6-
0.

0.2;

-4 -2 0 2 4

A=1a4+=02,0_=04,5L =1, 5-=0.8)
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Two-locus clines: numerical solution and approximation
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Two-locus clines: numerical solution and approximation

A=1a4+=02,0_=04,5L =1, 5-=0.8)
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Summary®

o Linkage (smaller p) steepens the cline in the center’ but
affects the asymptotics only weakly.

7sez—.\ also Slatkin 1975, Barton 1983

8 For a detailed treatment, see Birger R., Two-locus clines on the real line with a step environment. Theor.
Popul. Biol. 117, 1-22 (2017).
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Summary®

o Linkage (smaller p) steepens the cline in the center’ but
affects the asymptotics only weakly.

e Therefore, the two loci ‘reinforce’ each other.

7see also Slatkin 1975, Barton 1983

8 For a detailed treatment, see Birger R., Two-locus clines on the real line with a step environment. Theor.
Popul. Biol. 117, 1-22 (2017).
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Summary®

o Linkage (smaller p) steepens the cline in the center’ but
affects the asymptotics only weakly.

e Therefore, the two loci ‘reinforce’ each other.

e Dominance does not (for two loci, almost not) affect the
slope in the center, but strongly influences the asymptotics.

7see also Slatkin 1975, Barton 1983

8 For a detailed treatment, see Birger R., Two-locus clines on the real line with a step environment. Theor.
Popul. Biol. 117, 1-22 (2017).
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A more general two-locus PDE model®

Now we consider

e A bounded, open domain 2 C R™ (with smooth boundary);

e ‘General’ functions a(x) and §(z) which change sign at
least once;

e Neumann boundary conditions.

%This is based on joint work in progress with Linlin Su, SUSTC, Shenzhen;
but see Oberwolfach Report No. 28/2017; DOI: 10.4171/OWR/2017/28
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A more general two-locus PDE model

Then the dynamics is given by

0

% = Apa + Aa(z)pa(l —pa) + AB(x)D,

0

% = App + AB(x)pp(1 — pB) + Aa(z)D,
D

% =AD +2Vpy - Vpp

+ Ale(z)(1 = 2pa) + B(x)(1 = 2pp)|D — pD.

The Laplace operator A can be replaced by a second-order
elliptic operator (then it models rather general migration).
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The two-locus PDE model for strong recombination

As before, we fix A and assume e = 1/p < 1.
Rescaling time yields

58?: — e[Apa+ Aa(@)pa(l —pa) + A\B(x)D],
aﬁptB = ¢[App + AB(x)pp(1 — pp) + Aa(z) D],
807175) _ e[AD +2Vpa - Vpp + Na(z)(1 — 2pa) + B(x)(1 — QPB)]D}

- D.

The limit e — 0 is degenerate: Every (pa,pg,0) is an
equilibrium and this manifold (D = 0) is globally attracting.
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Approximating the two-locus cline if e = 1/p < 1

e Assume
P =P +0(). b =@ +0(9), D = 0(e).

where P and @ are the one-locus clines at loci A and B.

e Then R
D) =2eVP - VQ + O(e2).
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Approximating the two-locus cline if e = 1/p < 1
o We set ;E)Ej) = P+ ep+ o(e).
e Then p(x) is the unique solution of
Ap + Aa(x)[1 —2P(z)]p + 2AB(x)VP(z) - VQ(x) = 0.

(Because P is a globally asymptotically stable equilibrium
of the one-locus problem, A + Xa(z)[1 — 2P] is invertible.)
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Approximating the two-locus cline if e = 1/p < 1

e We set;ﬁx) = P+ ep+ o(e).

e Then p(x) is the unique solution of
Ap + Aa(x)[1 —2P(z)]p + 2AB(x)VP(z) - VQ(x) = 0.

(Because P is a globally asymptotically stable equilibrium
of the one-locus problem, A + Xa(z)[1 — 2P] is invertible.)

e The above expansions (ﬁ(j) = P +ep + o(e), etc.)
essentially require the implicit function theorem.
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Open problem™

If e > 0, every equilibrium of

581’: e[Apa + Aa(z)pa(l — pa) + AB(z)D],

P8 _ [ App + M3(x)ps(1  p) + Ma(2)D].
8@—? = ¢ [AD +2Vpa - Vpp + Aa(z)(1 — 2pa) + B(x)(1 — QPB)]D}

- D.

is a solution of
F(pa,pB,D,€) =0,

where F denotes the right-hand side.

10In the meantime, Adrian (K.Y.) Lam has suggested a solution.
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Open problem

For small ¢, we want to show existence and uniqueness of
solutions (pa, pp, D) of

F(pa,pB,D,e) =0,

where
F:X3xR—=Y3,
and

X :={ueC*7(Q): % =00n0Q},

Y :=C7(Q) forsome~ € (0,1).
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Open problem

¢ We need the eigenvalues of the linearization of F' with
respect to (pa, pp, D) evaluated at (P, Q,0):

—pp1 = Ad1 + Aa(x)(1 = 2P)¢1 + AB(x)d3 in Q,
—pp2 = Apa + AB(x)(1 — 2Q)p2 + Aa(z)p3 in €2,
—pp3 = —p3 inQ,

O

=0 ondQfori=1,2,3.
v




General model

Open problem

¢ We need the eigenvalues of the linearization of F' with
respect to (pa, pp, D) evaluated at (P, Q,0):

—pg1 = A¢1 + Aa(z)(1 — 2P)¢1 + AB(z)¢s inQ,
—pp2 = Aga + AB(z)(1 — 2Q)d2 + Aa(z)¢s in O,

—pp3 = —@3 inQ,
%i _ on o fori =1,2,3.
ov

e Because P and Q) are globally asymptotically stable in their
respective 1-locus problems, all eigenvalues are positive.



General model

Open problem

¢ We need the eigenvalues of the linearization of F' with
respect to (pa, pp, D) evaluated at (P, Q,0):

—p1 = Ay + Aa(x)(1 — 2P)d1 + A3(z)ds in Q,
—pda = A + AB()(1 — 2Q) b2 + Aa(@)g3 in Q,

—pp3 = —@3 inQ,
%i _ on o fori =1,2,3.
ov

e Because P and Q) are globally asymptotically stable in their
respective 1-locus problems, all eigenvalues are positive.

e Therefore, the linearization of F' is one-to-one.



General model

Open problem

We need the eigenvalues of the linearization of F' with
respect to (pa, pp, D) evaluated at (P, Q,0):

—p1 = Ay + Aa(x)(1 — 2P)d1 + A3(z)ds in Q,
—pda = A + AB()(1 — 2Q) b2 + Aa(@)g3 in Q,

—pp3 = —@3 inQ,
%i _ on o fori =1,2,3.
ov

Because P and @ are globally asymptotically stable in their
respective 1-locus problems, all eigenvalues are positive.

Therefore, the linearization of I is one-to-one.

However, it is not onto, as is required for applying the IFT
in infinitely many dimensions.
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