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Introduction

• A cline describes a gradual change in genotypic or
phenotypic frequency as a function of spatial location.

• Examples: The frequency of the AdhF allele in D.
melanogaster increases from south to north along Eastern
North America; in Australia, it increases as one goes
south.

• Clines are frequently caused by the interaction of
geographically variable selection and migration in a
spatially distributed population.
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Goals and problems

• When does a cline, a spatially nonuniform, stationary
solution, exist?

• How do existence and properties (e.g. shape) of a cline
depend on migration, selection, dominance,
recombination, etc.?

• What inferences about dispersal and selection intensity
can be drawn from empirical observations, i.e.,
measurements of the cline?
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Model assumptions

• The diploid species inhabits the continuous,
unidimensional habitat Ω = R, in which it migrates.

• Migration is modeled by diffusion.

• The fitness of individuals (genotypes) depends on the
position x, but is time- and density-independent.

• First, we consider a single gene (locus) with two alleles, A
and a.
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One-locus PDE model for migration and selection

• p(x, t) is the frequency of allele A at location x and time t.
Then p(x, t) evolves according to1

∂p

∂t
= p′′ + λα(x)f(p) in R× (0,∞) ,

0 < p(x, 0) < 1 in R ,

where p′′ = ∂2p
∂x2

.

• measures the strength of selection relative to diffusion.
• describes the spatial dependence of the fitnesses of the

alleles.
• describes selection.

1
Haldane (1948), Fleming (1975). For the derivation of a much more general model, see Nagylaki (1975, 1989).
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• p(x, t) is the frequency of allele A at location x and time t.
Then p(x, t) evolves according to1

∂p

∂t
= p′′ + λα(x)f(p) in R× (0,∞) ,

0 < p(x, 0) < 1 in R ,

where p′′ = ∂2p
∂x2

.

• λ ∝ s/σ2 measures the strength of selection relative to
diffusion.

• α(x) describes the spatial dependence of the fitnesses of
the alleles.

• f(p) = p(1− p)(1 + h− 2hp) describes selection.

1
Haldane (1948), Fleming (1975). For the derivation of a much more general model, see Nagylaki (1975, 1989).
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Step environment on R

• The step environment approximates an abruptly changing
environment:

α(x) =

{
α+ if x ≥ 0,

−α− if x < 0,

where α+, α− > 0.

x
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Step environment on R

• The step environment approximates an abruptly changing
environment:

α(x) =

{
α+ if x ≥ 0,

−α− if x < 0,

where α+, α− > 0.

• Haldane (1948) calculated the one-locus cline in terms of
hyperbolic functions for no dominance and for complete
dominance.2

2
Slatkin (1973) and Nagylaki (1975, 1976) extended his work to include environmental pockets, barriers, etc.
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Evolution of a cline
(no dominance, i.e., f(p) = p(1− p))
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A single locus with dominance
(or linear frequency dependence)

We assume a spatially independent, intermediate degree of
dominance:

f(p) = p(1− p)(1 + h− 2hp) , where − 1 ≤ h ≤ 1 .

Then the cline is the C1 solution P (x) of

P ′′ + λα(x)P (1− P )(1 + h− 2hP ) = 0

that satisfies 0 < P (x) < 1, P (−∞) = 0, and P (∞) = 1.
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The role of dominance

Separating variables and integrating, we eventually find the
slope of the cline in the center,

P ′(0) =

√
λ√
3

√
α+α−
α+ + α−

.

• Therefore, the slope P ′(0) is independent of the degree of
dominance.3

• An estimate of the dispersal variance is sufficient to infer
the selection intensity (λ ∝ 1/σ2), and vice versa.

3
See Lenormand et al. (1998), who concluded that dominance does not have an important effect on the

estimation of migration variance in a study of clines in the mosquito Culex pipiens.
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The single-locus cline can be computed explicitly

There exists a unique cline solution P (x).
For x ≥ 0, it is given by

P (x) =


1− 6(1− h)

Z+ + 2(1− 3h) + (1 + 3h)Z−1+

if h < 1 ,

1− 12

9 + 4(xλα+ +A+)2
if h = 1 ,

where
Z+(x) = A+e

X+ ,

X+ = xλα+

√
1− h (if h < 1) and A+ = F+(a0, h) .

An analogous result holds for x < 0.
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Dominance and the shape of the cline
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The single-locus cline P (x) as a function of x for different values of
the dominance parameter h. The other parameters are such that
λα+ = λα− = 1.
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Two loci

• Most traits are determined by more than one locus.

• Recombination, occurring at the (scaled) rate ρ ≥ 0, and
linkage disequilibrium have to be taken into account.

•
Alleles: A a B b

Fitnesses: 1
2α(x) −1

2α(x) 1
2β(x) −1

2β(x)

• We now have two step function, α(x) and β(x), which
change sign at the same point (w.l.o.g. at x = 0).

• We assume additive fitnesses.
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•
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• We now have two step function, α(x) and β(x), which
change sign at the same point (w.l.o.g. at x = 0).

• We assume additive fitnesses.4

4
On the expense of considerable technical complications, the analysis below can be performed for intermediate

dominance.
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Allele frequencies and linkage disequilibrium
• We use the following coordinates:

pA . . . frequency of A
pB . . . frequency of B
D . . . linkage disequilibrium
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The two-locus PDE model

• After rescaling time, the dynamics is given by

∂pA
∂t

= p′′A + λα(x)pA(1− pA) + λβ(x)D,

∂pB
∂t

= p′′B + λβ(x)pB(1− pB) + λα(x)D,

∂D

∂t
= D′′ + 2p′Ap

′
B

+ λ[α(x)(1− 2pA) + β(x)(1− 2pB)]D − ρD

• with zero-flux boundary conditions, 0 < pA < 1,
0 < pB < 1, and the natural constraints on D.
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Independent loci (D = 0)

• If loci are independent, as is expected if ρ→∞, the
dynamics becomes

∂pA
∂t

= p′′A + λα(x)pA(1− pA)+λβ(x)D,

∂pB
∂t

= p′′B + λβ(x)pB(1− pB)+λα(x)D,

∂D

∂t
= D′′ + 2p′Ap

′
B

+λ[α(x)(1− 2pA) + β(x)(1− 2pB)]D − ρD

• If D(x, t) is forced to be 0, then two decoupled one-locus
systems are obtained.
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Independent loci (D = 0)

• The system is uncoupled and has an internal equilibrium
because both one-locus systems have a nontrivial
equilibrium (cline).

• The internal equilibrium, being a Cartesian product, is
globally asymptotically stable.
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The two-locus model with strong recombination

We fix λ and assume

ε = 1/ρ� 1 .

Rescaling time yields

∂pA
∂t

= ε
[
p′′A + λα(x)pA(1− pA) + λβ(x)D

]
,

∂pB
∂t

= ε
[
p′′B + λβ(x)pB(1− pB) + λα(x)D

]
,

∂D

∂t
= ε
[
D′′ + 2p′Ap

′
B + λ[α(x)(1− 2pA) + β(x)(1− 2pB)]D

]
−D.

The limit ε→ 0 is degenerate: Every (pA, pB, 0) is an
equilibrium and this (noncompact) manifold (D = 0) is globally
attracting.
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Approximating the cline for strong recombination
(Quasi-linkage equilibrium)

• We apply a singular perturbation approach to derive the
cline by assuming

pA = P + εp+O(ε2) , pB = Q+ εq +O(ε2) ,

D = O(ε) ,

where P and Q are the single-locus clines.

• It is not difficult to show that

D = 2εP ′Q′ +O(ε2).5

5
For a more general multilocus approach, see Barton and Shpak (2000).
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Approximating the cline for strong recombination
(Quasi-linkage equilibrium)

• Eventually, we find that p(x) is the unique solution of the
linear inhomogeneous second-order equation

p′′ + λα(x)[1− 2P (x)]p+ 2λβ(x)P ′(x)Q′(x) = 0.

• Variation of constants yields

p(x) = P ′(x)k(x) ,

where k(x) is obtained by integration of expressions such
as [P ′(y)]2Q′(y).

• Explicit expressions can be derived if α = β; then P = Q.
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An important property of p(x) and pA(x)

•

p′(0) =
2
√

3λ[α2
−β

2
+I+(0) + α2

+β
2
−I−(0)]

α+α−

√
α2
+ + α2

−

> 0 .6

• Therefore, the cline

pA = P + εp+O(ε2)

gets steeper in its center as ε increases from 0, i.e., as
linkage between the two loci gets tighter.

6
If, more generally, h 6= 0 is admitted, then p′(0) depends on h (in contrast to P ′(0)!).
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p(x) and the ‘true’ (numerical) solution

ϵ = 1/ρ
1
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Two-locus clines: numerical solution
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Two-locus clines: numerical solution and approximation
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Two-locus clines: numerical solution and approximation
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Two-locus clines: numerical solution and approximation
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Two-locus clines: numerical solution and approximation
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Two-locus clines: numerical solution and approximation
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Summary8

• Linkage (smaller ρ) steepens the cline in the center7 but
affects the asymptotics only weakly.

• Therefore, the two loci ‘reinforce’ each other.

• Dominance does not (for two loci, almost not) affect the
slope in the center, but strongly influences the asymptotics.

7
see also Slatkin 1975, Barton 1983

8
For a detailed treatment, see Bürger R., Two-locus clines on the real line with a step environment. Theor.

Popul. Biol. 117, 1-22 (2017).
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A more general two-locus PDE model9

Now we consider

• A bounded, open domain Ω ⊂ Rn (with smooth boundary);

• ‘General’ functions α(x) and β(x) which change sign at
least once;

• Neumann boundary conditions.

9This is based on joint work in progress with Linlin Su, SUSTC, Shenzhen;
but see Oberwolfach Report No. 28/2017; DOI: 10.4171/OWR/2017/28
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A more general two-locus PDE model

Then the dynamics is given by

∂pA
∂t

= ∆pA + λα(x)pA(1− pA) + λβ(x)D,

∂pB
∂t

= ∆pB + λβ(x)pB(1− pB) + λα(x)D,

∂D

∂t
= ∆D + 2∇pA · ∇pB

+ λ[α(x)(1− 2pA) + β(x)(1− 2pB)]D − ρD .

The Laplace operator ∆ can be replaced by a second-order
elliptic operator (then it models rather general migration).
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The two-locus PDE model for strong recombination

As before, we fix λ and assume ε = 1/ρ� 1.
Rescaling time yields

∂pA
∂t

= ε
[
∆pA + λα(x)pA(1− pA) + λβ(x)D

]
,

∂pB
∂t

= ε
[
∆pB + λβ(x)pB(1− pB) + λα(x)D

]
,

∂D

∂t
= ε
[
∆D + 2∇pA · ∇pB + λ[α(x)(1− 2pA) + β(x)(1− 2pB)]D

]
−D.

The limit ε→ 0 is degenerate: Every (pA, pB, 0) is an
equilibrium and this manifold (D = 0) is globally attracting.



Introduction One locus Two loci Strong recombination Summary General model

Approximating the two-locus cline if ε = 1/ρ� 1

• Assume

p̂
(ε)
A = P +O(ε), p̂

(ε)
B = Q+O(ε), D̂(ε) = O(ε) ,

where P and Q are the one-locus clines at loci A and B.

• Then
D̂(ε) = 2ε∇P · ∇Q+O(ε2).
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Approximating the two-locus cline if ε = 1/ρ� 1

• We set p̂(ε)A = P + εp+ o(ε).

• Then p(x) is the unique solution of

∆p+ λα(x)[1− 2P (x)]p+ 2λβ(x)∇P (x) · ∇Q(x) = 0.

(Because P is a globally asymptotically stable equilibrium
of the one-locus problem, ∆ + λα(x)[1− 2P ] is invertible.)

• The above expansions (p̂(ε)A = P + εp+ o(ε), etc.)
essentially require the implicit function theorem.
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Open problem10

If ε > 0, every equilibrium of

∂pA
∂t

= ε
[
∆pA + λα(x)pA(1− pA) + λβ(x)D

]
,

∂pB
∂t

= ε
[
∆pB + λβ(x)pB(1− pB) + λα(x)D

]
,

∂D

∂t
= ε
[
∆D + 2∇pA · ∇pB + λ[α(x)(1− 2pA) + β(x)(1− 2pB)]D

]
−D.

is a solution of
F (pA, pB, D, ε) = 0,

where F denotes the right-hand side.

10
In the meantime, Adrian (K.Y.) Lam has suggested a solution.
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Open problem

For small ε, we want to show existence and uniqueness of
solutions (pA, pB, D) of

F (pA, pB, D, ε) = 0,

where
F : X3 × R→ Y 3 ,

and

X := {u ∈ C2+γ(Ω̄) : ∂u∂ν = 0 on ∂Ω} ,
Y := Cγ(Ω̄) for some γ ∈ (0, 1) .
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Open problem

• We need the eigenvalues of the linearization of F with
respect to (pA, pB, D) evaluated at (P,Q, 0):

−µφ1 = ∆φ1 + λα(x)(1− 2P )φ1 + λβ(x)φ3 in Ω ,

−µφ2 = ∆φ2 + λβ(x)(1− 2Q)φ2 + λα(x)φ3 in Ω ,

−µφ3 = −φ3 in Ω ,

∂φi
∂ν

= 0 on ∂Ω for i = 1, 2, 3 .

• Because P and Q are globally asymptotically stable in their
respective 1-locus problems, all eigenvalues are positive.

• Therefore, the linearization of F is one-to-one.

• However, it is not onto, as is required for applying the IFT
in infinitely many dimensions.
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