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1. Introduction and statement of results

The goal of this note is not to introduce new concepts but rather to gather the work of different people 
in order to establish some precise relations between the recent theory of noncommutative motives and the 
classical theory of Chow motives. The key technical ingredient used is the Grothendieck–Riemann–Roch 
theorem. In what follows, k denotes a base field and R a commutative ring of coefficients.

Chow motives. In the early sixties Grothendieck envisioned the existence of a “universal” cohomology 
theory of schemes. Among several conjectures and developments, a contravariant ⊗-functor M(−)R :
SmProj(k)op → Chow(k)R from smooth projective k-schemes to Chow motives (with R coefficients) was 
constructed. Intuitively speaking, Chow(k)R encodes all the geometric/arithmetic information about smooth 
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projective k-schemes and acts as a gateway between algebraic geometry and the assortment of the numerous 
Weil cohomology theories.

Noncommutative motives. A dg category A is a category enriched over complexes of k-vector spaces; see 
Section 2.1. Every (dg) k-algebra A gives naturally rise to a dg category A with a single object. Another 
source of examples is provided by schemes since the bounded derived category Db(X) of every smooth 
projective k-scheme X admits a unique dg enhancement Db

dg(X); see Lunts and Orlov [18]. In what follows, 
we will write dgcat(k) for the category of (small) dg categories.

All the classical invariants such as algebraic K-theory, cyclic homology, and topological Hochschild homol-
ogy extend naturally from k-algebras to dg categories. In order to study all these invariants simultaneously 
the notion of additive invariant, which we now recall, was introduced in [25]. Let I be the dg category with 
objects {1, 2} and complexes of morphisms I(1, 1) = I(2, 2) = I(1, 2) = k and I(2, 1) = 0. Given a dg 
category A, let us write T (A) for the tensor product A ⊗ I. Intuitively speaking, T (A) “dg categorifies” the 
notion of upper triangular matrix. Note that we have two inclusion dg functors i1, i2 : A → T (A). Given an 
R-linear additive category D, a functor E : dgcat(k) → D is called an additive invariant if it satisfies the 
following two conditions:

(i) It sends Morita equivalences (see Section 2.1) to isomorphisms;
(ii) The dg functors ι1, ι2 induce an isomorphism2 E(A) ⊕E(A) ∼→ E(T (A)).

Fix a commutative ring R. In [25], an R-linear additive category Hmo0(k)R and an additive invariant 
U(−)R : dgcat(k) → Hmo0(k)R were constructed. This functor is characterized by the following universal 
property: given any R-linear additive category D, there is an induced equivalence of categories

U(−)∗R : Funadd(Hmo0(k)R,D) ∼−→ Invadd(dgcat(k),D) , (1.1)

where the left-hand side denotes the category of R-linear additive functors and the right-hand side the 
category of additive invariants. Because of this universal property, Hmo0(k)R is called the category of 
noncommutative motives.

Statement of results. Let L ∈ Chow(k)R be the Lefschetz motive and 1 := U(k)R the ⊗-unit of Hmo0(k)R. 
Following Gorchinskiy and Orlov [9], a Chow motive is called of Lefschetz type if it is isomorphic to L⊗l1 ⊕
· · · ⊕ L⊗lm for some non-negative integers l1, . . . , lm. In the same vein, a noncommutative motive is called 
of trivial type if it is isomorphic to ⊕m

i=11 for some integer m. The following implication was established by 
Gorchinskiy and Orlov in [9, §4] (assuming that Z ⊆ R):

M(X)R Lefschtez type ⇒ U(Db
dg(X))R trivial type . (1.2)

In the particular case where R = Q, (1.2) becomes an equivalence (see [19, §1]):

M(X)Q Lefschetz type ⇔ U(Db
dg(X))Q trivial type . (1.3)

The following result establishes a partial converse of the above implication (1.2):

Theorem 1.4. Let X be an irreducible smooth projective k-scheme of dimension d. Assume that Z ⊆ R and 
that every finitely generated projective R[1/(2d)!]-module is free (e.g. R a principal ideal domain). Assume 

2 Condition (ii) can be equivalently formulated in terms of semi-orthogonal decompositions in the sense of Bondal and Orlov [4]; 
see [25, Thm. 6.3(4)].
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also that U(Db
dg(X))R 	 ⊕m

i=11 for some integer m. Under these assumptions, there is a choice of integers 
(up to permutation) l1, . . . , lm ∈ {0, . . . , d} giving rise to an isomorphism

M(X)R[1/(2d)!] 	 L⊗l1 ⊕ · · · ⊕ L⊗lm . (1.5)

Intuitively speaking, Theorem 1.4 shows that the converse of the above implication (1.2) holds as soon 
as one inverts the integer (2d)! (or equivalently its prime factors). By combining this result with (1.2), one 
obtains a refinement of (1.3):

Corollary 1.6. Given X and R as in Theorem 1.4, we have the equivalence

M(X)R[1/(2d)!] Lefschetz type ⇔ U(Db
dg(X))R[1/(2d)!] trivial type .

In the particular case where X is a curve C or a surface S and R = Z, we have

M(C)Z[1/2] Lefschetz type ⇔ U(Db
dg(C))Z[1/2] trivial type .

M(S)Z[1/6] Lefschetz type ⇔ U(Db
dg(S))Z[1/6] trivial type .

As the following proposition shows, the (strict) converse of implication (1.2) is false!

Proposition 1.7. Let q be a non-singular quadratic form and Qq the associated smooth projective quadric. 
Assume that q is even dimensional, anisotropic, and has trivial discriminant and trivial Clifford invariant 
(see Lam [17, §V.2]).

(i) The noncommutative motive U(Db
dg(Qq))Z is of trivial type.

(ii) The Chow motive M(Qq)Z is not of Lefschetz type.3

Example 1.8. As explained by Lam in [17, §V Cor. 3.4 and page 138], a non-singular quadratic form q is 
even dimensional, anisotropic, and has trivial discriminant and trivial Clifford invariant if and only if it 
belongs to the third power of the fundamental ideal I(k) of the Witt ring W (k).

As an application of Theorem 1.4, we obtain the following sharpening of the main result of [19] (which 
was obtained only with rational coefficients).

Corollary 1.9. Let X be an irreducible smooth projective k-scheme of dimension d. Assume that Db(X)
admits a full exceptional collection (E1, . . . , Em) of length m. Under these assumptions, there is a choice of 
integers (up to permutation) l1, . . . , lm ∈ {0, . . . , d} giving rise to an isomorphism

M(X)Z[1/(2d)!] 	 L⊗l1 ⊕ · · · ⊕ L⊗lm . (1.10)

Thanks to the work of Beilinson, Kapranov, Kawamata, Kuznetsov, Orlov, and others (see [2,10,13,15,
21]), Corollary 1.9 applies to projective spaces and rational surfaces (in the case where k is algebraically 
closed), and to smooth quadric hypersurfaces, Grassmannians, flag varieties, Fano threefolds with vanishing 
odd cohomology, and toric varieties (in the case where k = C). Conjecturally, it applies also to all the 
homogeneous spaces of the form G/P , with P a parabolic subgroup of a semisimple algebraic group G; see 
Kuznetsov and Polishchuk [16].

The following result concerns decomposability:

3 The explicit computation of M(Qq)Z was achieved by Rost [23]; see also Elman, Karpenko and Merkurjev [6, §XVII].
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Theorem 1.11. Let X be an irreducible smooth projective k-scheme of dimension d. Under the assumption 
Z ⊆ R, the following implication holds:

M(X)R[1/(2d)!] decomposable ⇒ U(Db
dg(X))R[1/(2d)!] decomposable . (1.12)

As the following proposition shows, if one does not invert the dimension of X, the converse of implication 
(1.12) is false!

Proposition 1.13. Let A be a central simple k-algebra of degree 
√

dim(A) = d and X = SB(A) the associated 
Severi–Brauer variety.

(i) For every commutative ring R one has the following motivic decomposition

U(Db
dg(X))R 	 1 ⊕ U(A)R ⊕ U(A)⊗2

R ⊕ · · · ⊕ U(A)⊗d−1
R . (1.14)

In particular, the noncommutative motive U(Db
dg(X))R is decomposable.

(ii) (Karpenko) When A is a division algebra, the Chow motive M(X)Z is indecomposable. Moreover, when 
d is a prime power ps, the Chow motive M(X)Z/pZ is also indecomposable.

Remark 1.15. Item (ii) holds also for M(X)Zp
; see De Clercq [5, Rmq. 2.3].

Roughly speaking, Proposition 1.13 shows that the decomposition (1.14) is “truly noncommutative”. Our 
final result is the following:

Theorem 1.16. Let {Xi}1≤i≤n (resp. {Yj}1≤j≤m) be irreducible smooth projective k-schemes of dimen-
sion dXi

(resp. dYj
), d := max{dXi

, dYj
| i, j}, and {li}1≤i≤n (resp. {lj}1≤j≤m) arbitrary integers. Assume 

that Z ⊆ R and 1/(2d)! ∈ R. Under these assumptions, we have the following implication

⊕iM(Xi)R ⊗ L⊗li 	 ⊕jM(Yj)R ⊗ L⊗lj ⇒ ⊕iU(Db
dg(Xi))R 	 ⊕jU(Db

dg(Yj))R .

As the following example shows, if one does not invert the maximum of the dimensions, the converse of 
the implication of Theorem 1.16 is false!

Example 1.17. The Chow motives M(X)Z and M(X̂)Z of an abelian variety X and of its dual X̂ are in 
general not isomorphic. However, thanks to the work of Mukai [20], we have U(Db

dg(X))R 	 U(Db
dg(X̂))R

for every commutative ring R.

Finally, by combining Theorem 1.16 with (1.1), we obtain the application:

Corollary 1.18. Let X (resp. Y ) be an irreducible smooth projective k-scheme of dimension dX (resp. dY ), 
and d := max{dX , dY }. Assume that Z ⊆ R and 1/(2d)! ∈ R. Under these assumptions, M(X)R 	
M(Y )R ⇒ E(X) 	 E(Y ) for every additive invariant E with values in an R-linear additive category.

2. Preliminaries

2.1. Dg categories

A differential graded (= dg) category A is a category enriched over complexes of k-modules (morphisms 
sets A(x, y) are complexes) in such a way that composition fulfills the Leibniz rule d(f ◦ g) = d(f) ◦ g +
(−1)deg(f)f ◦d(g); consult Keller ICM survey [14]. A dg functor F : A → B is called a Morita equivalence if it
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induces an equivalence of (triangulated) categories D(A) ∼→ D(B) between the associated derived categories; 
see [14, §4.6]. Finally, the tensor product A ⊗B of two dg categories is defined as follows: the set of objects 
is the cartesian product of the sets of objects of A and B and the complexes of morphisms are given by 
(A ⊗ B)((x, z), (y, w)) = A(x, y) ⊗ B(z, w).

2.2. K0-motives

Recall from Gillet and Soulé [7, §5.2], [8, §5.2] the construction of the category KM(k)R of K0-motives. The 
objects are the smooth projective k-schemes, the morphisms are given by HomKM(k)R(X, Y ) := K0(X×Y )R, 
and the symmetric monoidal structure is induced by the product of k-schemes. Furthermore, KM(k)R comes 
equipped with a canonical (contravariant) ⊗-functor

M0(−)R : SmProj(k)op −→ KM(k)R X �→ X

that sends a morphism f : X → Y in SmProj(k) to the class [OΓt
f
] ∈ K0(Y ×X)R of the transpose Γt

f of 
the graph Γf := {(x, f(x)) | x ∈ X} ⊂ X × Y of f .

Notation 2.1. Given irreducible smooth projective k-schemes X1, . . . , Xn of dimension d1, . . . , dn, let us 
denote by (X1, . . . , Xn)R the full subcategory of KM(k)R consisting of the objects {M0(Xi)R | 1 ≤ i ≤ n}. 
Its closure (inside KM(k)R) under finite direct sums will be denoted by (X1, . . . , Xn)⊕R.

Remark 2.2. As explained in [19, §4.4], there exists an R-linear additive fully faithful ⊗-functor θ making 
the following diagram commute:

SmProj(k)op

M0(−)R

Db
dg(−)

dgcat(k)

U(−)R

KM(k)R
θ

Hmo0(k)R .

(2.3)

2.3. Orbit categories

Let C be an additive symmetric monoidal category and O a ⊗-invertible object. Recall from [24, §7] that 
the orbit category C/−⊗O has the same objects as C and morphisms HomC/−⊗O(a, b) := ⊕j∈ZHomC(a, b ⊗O⊗j). 
Given objects a, b, c and morphisms f = {fj}j∈Z ∈ HomC/−⊗O(a, b) and g = {gj}j∈Z ∈ HomC/−⊗O (b, c), the 
lth-component of the composition g ◦ f is given by the finite sum 

∑
j((gl−j ⊗O⊗j) ◦ fj). We obtain in this 

way an additive category C/−⊗O and a canonical additive projection functor π : C → C/−⊗O which comes 
equipped with a natural 2-isomorphism π ◦ (− ⊗O) ∼⇒ π.

3. Proof of Theorem 1.4

By assumption, Z ⊆ R. Let us write RQ for the localization of R at Z\{0}. Recall that the Lef-
schetz motive L is a ⊗-invertible object. Following Section 2.3, we can then consider the orbit category 
Chow(k)RQ

/−⊗L.

Proposition 3.1. There exists an additive functor Ψ making the diagram commute:
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SmProj(k)op

M(−)RQ

SmProj(k)op

M0(−)RChow(k)RQ

π

Chow(k)RQ
/−⊗L KM(k)R .

Ψ

(3.2)

Proof. Let X and Y be irreducible smooth projective k-schemes of dimensions dX and dY . As explained by 
André in [1, §4], one has canonical isomorphisms

HomChow(k)RQ
(M(X)RQ

,M(Y )RQ
⊗ L⊗j) 	 CH dX−j(X × Y )RQ

,

where CH dX−j(X×Y )RQ
is the RQ-linear Chow group of algebraic cycles of codimension dX − j on X×Y . 

By definition of the orbit category, the RQ-module

HomChow(k)RQ
/−⊗L

(π(M(X)RQ
), π(M(Y )RQ

))

identifies with the direct sum ⊕j∈ZCH dX−j(X × Y )RQ
= CH ∗(X × Y )RQ

. This shows us that the or-
bit category agrees with the category CHMkRQ

of all correspondences introduced by Gillet and Soulé 
in [8, page 3128]. On the other hand, recall from Section 2.2 that HomKM(k)R(M0(X)R, M0(Y )R) =
K0(X×Y )R. The desired functor Ψ is defined on objects by sending M0(X)R to π(M(X)RQ

). On morphisms 
it is defined by the following assignment

K0(X × Y )R −→ CH ∗(X × Y )RQ
α �→ ch(α) · π∗

Y (Td(Y )) ,

where ch(−) denotes the Chern character, Td(Y ) the Todd class of Y , and πY the projection X×Y → Y mor-
phism. As explained by Gillet and Soulé in [8, page 3128], it follows from the Grothendieck–Riemann–Roch 
theorem that the above assignments give rise to an additive functor Ψ. The commutativity of diagram (3.2)
follows also from the Grothendieck–Riemann–Roch theorem; see [8, page 3129]. �

Consider the following diagram of additive functors

Chow(k)R → · · · → Chow(k)R[1/n!] → Chow(k)R[1/(n+1)!] → · · · → Chow(k)RQ
.

Since the Lefschetz motive is mapped to itself, the functoriality of orbit categories gives rise to the following 
diagram of additive functors

· · · · · · → Chow(k)R[1/n!]/−⊗L → Chow(k)R[1/(n+1)!]/−⊗L → · · · → Chow(k)RQ
/−⊗L .

Proposition 3.3. Given irreducible smooth projective k-schemes X1, . . . , Xn of dimension d1, . . . , dn, the 
following composition (see Notation 2.1)

(X1, . . . , Xn)R ⊂ KM(k)R
Ψ−→ Chow(k)RQ

/−⊗L

factors through the following functor (where d := max{d1, . . . , dn}):

Chow(k)R[1/(2d)!]/−⊗L −→ Chow(k)RQ
/−⊗L .
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Proof. Let Xr, Xs ∈ {X1, . . . , Xn}. By the very construction of the functor Ψ (see the proof of Proposi-
tion 3.1), it suffices to show that

K0(Xr ×Xs)R −→ CH ∗(Xr ×Xs)RQ
α �→ ch(α) · π∗

Xs
(Td(Xs))

factors through the homomorphism CH ∗(Xr ×Xs)R[1/(2d)!] → CH ∗(Xr ×Xs)RQ
. This is now standard by 

the Grothendieck–Riemann–Roch theorem. �
We now have all the ingredients necessary for the proof of Theorem 1.4. Recall that by hypothesis 

U(Db
dg(X))R 	 ⊕m

i=11 for some integer m. Since 1 = U(k)R 	 U(Db
dg(Spec(k)))R, one hence concludes from 

diagram (2.3) and from the additivity and fully faithfulness of θ that M0(X)R 	 ⊕m
i=1M0(Spec(k))R. Recall 

that the orbit category Chow(k)R[1/(2d)!]/−⊗L is additive. Therefore, by extending the functor Ψ to finite 
direct sums (see Notation 2.1), one obtains an additive functor

Ψ⊕ : (X, Spec(k))⊕ −→ Chow(k)R[1/(2d)!]/−⊗L

and consequently an isomorphism

π(M(X)R[1/(2d)!]) 	 ⊕m
i=1π(M(Spec(k))R[1/(2d)!]) . (3.4)

Since the projection functor π is additive and M(Spec(k))R[1/(2d)!] is the ⊗-unit of the category of Chow 
motives, there exist morphisms in the orbit category

f = {fj}j∈Z ∈ ⊕j∈ZHomChow(k)R[1/(2d)!](M(X),⊕m
i=1L⊗j)

g = {gj}j∈Z ∈ ⊕j∈ZHomChow(k)R[1/(2d)!](⊕m
i=1M(Spec(k)),M(X) ⊗ L⊗j)

verifying the equalities g ◦ f = id = f ◦ g; note that we have removed some subscripts in order to simplify 
the exposition. As explained by André in [1, §4], one has

HomChow(k)R[1/(2d)!](M(X),⊕m
i=1L⊗j) 	 ⊕m

i=1CH d−j(X)R[1/(2d)!]

HomChow(k)R[1/(2d)!](⊕m
i=1M(Spec(k)),M(X) ⊗ L⊗j) 	 ⊕m

i=1CH−j(X)R[1/(2d)!] .

As a consequence, fj = 0 for j �= {0, . . . , d} and gj = 0 for j �= {−d, . . . , 0}. The sets {fl | 0 ≤ l ≤ d} and 
{gl ⊗ L⊗l | − d ≤ l ≤ 0} give then rise to morphisms

α : M(X)R[1/(2d)!] −→ ⊕d
l=0 ⊕m

i=1 L⊗l β : ⊕d
l=0 ⊕m

i=1 L⊗l −→ M(X)R[1/(2d)!] .

The composition β ◦ α agrees with the 0th-component of the composition g ◦ f = id, i.e. it agrees with the 
identity of M(X)R[1/(2d)!]. We hence conclude that M(X)R[1/(2d)!] is a direct factor of the Chow motive 
⊕d

l=0 ⊕m
i=1 L⊗l.

By definition of the Lefschetz motive L, we have the following equalities

HomChow(k)R[1/(2d)!](L
⊗p,L⊗q) = δpq ·R[1/(2d)!] p, q ≥ 0 , (3.5)

where δpq stands for the Kronecker symbol. This implies that M(X)R[1/(2d)!] decomposes into a direct sum 
(indexed by l) of direct factors of ⊕m

i=1L⊗l. Note that a direct factor of ⊕m
i=1L⊗l is the same data as an 

idempotent element of End(⊕m
i=1L⊗l). Thanks to the above equality (3.5), End(⊕m

i=1L⊗l) identifies with the 
m ×m matrices Mm×m(R[1/(2d)!]) with coefficients in R[1/(2d)!]. Hence, a direct factor of ⊕m

i=1L⊗l is the 
same data as an idempotent element of Mm×m(R[1/(2d)!]), i.e. a finitely projective R[1/(2d)!]-module. Since 
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by hypothesis all these modules are free we then conclude that the only direct factors of ⊕m
i=1L⊗l are its 

subsums. Consequently, M(X)R[1/(2d)!] is isomorphic to a subsum of ⊕d
l=0⊕m

i=1 L⊗l indexed by a subset S of 
{0, . . . , d} ×{1, . . . , m}. By construction of the orbit category, we have π(L⊗l) 	 π(M(Spec(k))Z[1/(2d)!]) for 
every l ≥ 0. Therefore, since the above direct sum (3.4) contains m terms, we conclude that the cardinality 
of S is also m. This means that there is a choice of integers (up to permutation) l1, . . . , lm ∈ {0, . . . , d}
giving rise to the desired isomorphism (1.5).

4. Proof of Proposition 1.7

Note that since the quadratic form q is anisotropic, the associated quadric Qq has no rational points. This 
implies that M(Qq)Z cannot be of Lefschetz type. Let us now prove item (i). Recall from Kapranov [10] that 
we have a semi-orthogonal decomposition Db(Qq) = 〈Db(C0(q)), O(−d + 1), . . . , O〉, where C0(q) denotes 
the even Clifford algebra of q and d the dimension of Qq. Recall from Section 1 that C0(q) stands for 
the dg category with a single object and (dg) k-algebra of endomorphisms C0(q). As proved in [19, §5], 
semi-orthogonal decompositions become direct sums in the category of noncommutative motives. Since 
Db

dg(C0(q)) is Morita equivalent to C0(q), one hence obtains the following motivic decomposition

U(Db
dg(Qq))Z 	 U(C0(q))Z ⊕ 1⊕d . (4.1)

By assumption, q is even dimensional, anisotropic, and has trivial discriminant and trivial Clifford invariant. 
It follows then from Lam [17, page 111] that the even Clifford algebra C0(q) is isomorphic to Mr(k) ×Mr(k)
where r := 2d and Mr(k) is the algebra of r × r matrices over k. In particular, C0 is Morita equivalent to 
k × k. This allows us to conclude that the right-hand side of (4.1) identifies with 1⊕(d+2) and consequently 
that U(Db

dg(Qq))Z is of trivial type.

5. Proof of Theorem 1.11

The following result is well-known; see Soulé [22] for example.

Proposition 5.1. Let X be an irreducible smooth projective k-scheme of dimension dX . Under the assumption 
Z ⊆ R, the following holds:

(i) The Todd class Td(X) is invertible in the Chow ring CH ∗(X)R[1/(2dX)!].
(ii) We have a Chern character isomorphism K0(X)R[1/(2dX)!] 	 CH ∗(X)R[1/(2dX)!].

Let X1, . . . , Xn be irreducible smooth projective k-schemes of dimensions d1, . . . , dn. Recall from Section 3
the construction of the functor (where d := max{d1, . . . , dn}):

Ψ⊕ : (X1, . . . , Xn)⊕R −→ Chow(k)R[1/(2d)!]/−⊗L .

Proposition 5.2. The induced R[1/(2d)!]-linear functor is fully faithful

Ψ⊕ : (X1, . . . , Xn)⊕R[1/(2d)!] −→ Chow(k)R[1/(2d)!]/−⊗L .

Proof. Let Xr, Xs ∈ {X1, . . . , Xn}. By the very construction of the functor Ψ⊕, it suffices to show that the 
following homomorphism is invertible

K0(Xr ×Xs)R[1/(2d)!] −→ CH ∗(Xr ×Xs)R[1/(2d)!] α �→ ch(α) · π∗
Xs

(Td(Xs)) .

This follows automatically from Proposition 5.1 above. �
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Recall that by hypothesis X is an irreducible smooth projective k-scheme of dimension d. By com-
bining the commutativity of diagram (2.3) with the fully faithfulness of the functor θ one obtains an 
R[1/(2d)!]-algebra isomorphism

End(U(Db
dg(X))R[1/(2d)!]) 	 End(M0(X)R[1/(2d)!]) .

Thanks to the fully faithfulness of the functor Ψ⊕ of Proposition 5.2 (applied to the category (X)⊕R[1/(2d)!]) 
and the commutativity of diagram (3.2), one has moreover

End(M0(X)R[1/(2d)!]) 	 End(Ψ⊕(M0(X)R[1/(2d)!])) 	 End(π(M(X)R[1/(2d)!])) .

Since projection functor π is faithful, one hence obtains the following inclusion

End(M(X)R[1/(2d)!]) ↪→ End(U(Db
dg(X))R[1/(2d)!]) .

This automatically gives rise to the desired implication (1.12).

6. Proof of Proposition 1.13

Item (ii) was proved by Karpenko, see [11, Thm. 2.2.1] for the first statement and [12, Cor. 2.22] for the 
second one. Let us now prove item (i). Recall from [3] that we have the semi-orthogonal decomposition

Db(X) = 〈Db(k),Db(A),Db(A⊗2), . . . ,Db(A⊗d−1)〉 .

As proved in [19, §5], semi-orthogonal decompositions become direct sums in the category of noncommutative 
motives. Since Db

dg(A⊗i) is Morita equivalent to A⊗i, one hence obtains the following motivic decomposition

U(Db
dg(X))R 	 U(k)R ⊕ U(A)R ⊕ U(A⊗2)R ⊕ . . .⊕ U(A⊗d−1)R . (6.1)

Finally, since the functor U(−)R is symmetric monoidal, (6.1) identifies with (1.14).

7. Proof of Theorem 1.16

Note first that, by combining the commutativity of diagram (2.3) with the fully faithfulness of the 
functor θ, it suffices to prove the implication

⊕n
i=1M(Xi)R ⊗ L⊗li 	 ⊕m

j=1M(Yj)R ⊗ L⊗lj ⇒ ⊕n
i=1M0(Xi)R 	 ⊕m

j=1M0(Yj)R .

As mentioned in Section 2.3, the projection functor π is additive and sends M(Xi)R ⊗ L⊗li to π(M(Xi)R)
(up to isomorphism). Hence, the left-hand side of the above implication gives rise to an isomorphism 
⊕n

i=1π(M(Xi)R) 	 ⊕m
j=1π(M(Yj)R). Since by hypothesis 1/(2d)! ∈ R, Proposition 5.2 gives us a fully 

faithful functor

Ψ⊕ : (X1, . . . , Xn, Y1, . . . , Ym)⊕R −→ Chow(k)R/−⊗L .

Using this functor and the commutativity of diagram (3.2), one observes that

Ψ⊕(⊕n
i=1M0(Xi)R) 	 ⊕n

i=1π(M(Xi))R Ψ⊕(⊕m
j=1M0(Yj)R) 	 ⊕m

j=1π(M(Yj))R .

Finally, by combining all the above isomorphisms, one hence obtains the right-hand side of the above 
implication, which concludes the proof.
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