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1 Introduction

These notes arise from the attempt to extend the results of [13] to a wider class of com-
plex threefolds with negative Kodaira dimension. If Y ! S is a conic bundle and S

is a rational surface, a semiorthogonal decomposition of Db.Y / by derived categories
of curves and exceptional objects gives a splitting of the intermediate Jacobian as the
direct sum of the Jacobians of the curves ([13], Theorem 1.1). This result is based
on the relation between fully faithful functors Db.�/ ! Db.Y / (where � is a smooth
projective curve) and algebraic cycles on Y . It turns out that the properties needed to
prove this result hold true also for certain threefolds other than conic bundles. One of
the aims of this article is to describe certain varieties satisfying these representability
assumptions. At the same time, semiorthogonal decompositions of rational conic bun-
dles over minimal rational surfaces are described in [13]. These turn out to be the most
recent examples in a quite extensive list of varieties (starting with [18]) of dimension
3 with negative Kodaira dimension admitting a semiorthogonal decomposition by ex-
ceptional objects and components which should somehow be related to the birational
properties. The possible interplays between derived categories and birational geometry
have been outlined in [19]. Recently, a challenging conjecture of Kuznetsov [49] has
added cubic fourfolds to the list.

In a generalization attempt, we define a new notion of representability based on
semiorthogonal decompositions, which we expect to carry useful geometrical insights
also in higher dimensions, and which allows to properly write down many of the ideas
which have been motivating these researches. Let X be a smooth projective variety of
dimension n. We define categorical representability in (co)dimension m for X , roughly
by requiring that the derived category Db.X/ admits a semiorthogonal decomposition
by categories which can be fully faithfully embedded into derived categories of smooth
projective varieties of dimension bounded by m (resp. n � m).

The idea of defining categorical representability comes from the classical theory
of algebraic cycles: various notions of representability of the group Ai

Z.X/ of al-
gebraically trivial cycles of codimension i on X have appeared through the years in
the literature, and it seems interesting to understand their interactions with categorical
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representability, as our examples suggest. Roughly speaking (for the actual defini-
tions see Section 2.2), weak representability for Ai

Z.X/ is given by an algebraic map
J.�/ ! Ai

Z.X/ whose kernel is an algebraic group, for an algebraic curve � . Working
with rational coefficients (that is, on Ai

Q) gives the notion of rational representability.
Algebraic representability requires the existence of a quasi-universal regular isomor-
phism Ai

Z.X/ ! A onto an abelian variety A. Finally, if dim .X/ D 2n C 1 is odd, A

is the algebraic representative of An
Z.X/, and if the principal polarization of A is “well

behaved“ with respect to this regular isomorphism we say that A carries an incidence
polarization.

The definition of categorical representability could seem rather disjoint from the
classical ones. It is nevertheless clear that rational representability is strongly related
to the structure of the motive h.X/ of X . Grothendieck (or classical) motives were
introduced to give an algebraic universal description of cohomologies and cycles on
X . In particular one gets a big amount of information from a Chow–Künnneth de-
composition of the motive h.X/, which is, roughly, a decomposition whose summands
are strictly related to algebraic cycles of a given codimension. For example, if X is a
threefold, then rational representability of all the Ai

Q.X/ is equivalent to the existence
of a specific Chow–Künneth decomposition [23]. A first point to note is then that
the existence of a fully faithful functor between the derived categories of two smooth
projective varieties should be reflected at a motivic level, as stated in the following
conjecture by Orlov.

Conjecture 1.1 ([64]). Let X and Y be smooth projective varieties and ˆ W Db.Y / !
Db.X/ be a fully faithful functor. Then the motive h.Y / is a direct summand of the
motive h.X/.

A clear link between categorical and rational representability should appear when
we consider the former in dimension 1. Note that being categorically representable
in dimension 1 is equivalent to the existence of a semiorthogonal decomposition by
exceptional objects and derived categories of curves. The motive of a curve splits into
two discrete and one abelian motives, the latter corresponding to the Jacobian up to
isogeny. Orlov’s conjecture would then imply that if X is categorically representable
in dimension 1, then its motive is a finite sum of abelian (corresponding to Jacobians of
curves) and discrete motives. This would give information about rational representabil-
ity for Ai

Q.X/. Being categorically representable in dimension 1 seems to be in fact a
very strong condition. For example a smooth cubic threefold is strongly representable
with incidence property but not categorically representable, otherwise we would have
the splitting of the intermediate Jacobian (see Corollary 3.10). Notice that in [50] the
study of the Abel–Jacobi map for some hypersurfaces and its link with categorical
constructions were already treated.

On the other hand, algebraic representability and the incidence property can have
deep interactions with categorical representability, and this is indeed the heart of the
proof of Theorem 1.1 in [13]. Consider a smooth projective threefold X and assume
it to be rationally representable, with h1.X/ D h5.X/ D 0 (i.e. X has discrete Picard
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group), and with A2
Z.X/ algebraically representable with the incidence property. The

arguments in [13] show that if X is categorically representable in dimension 1, then
the intermediate Jacobian J.X/ splits into Jacobians of curves, namely of those curves
of positive genus appearing in the semiorthogonal decomposition. This result can then
be applied to a large class of complex threefolds with negative Kodaira dimension (see
a list in Remark 3.8).

We can then reasonably raise the following question, which also points out how
this new definition could be useful: is categorical representability in codimension 2
a necessary condition for rationality? This is true for complex surfaces, since any
rational smooth projective complex surface admits a full exceptional sequence. Re-
mark 3.12 shows that this is true for a wide class of complex threefolds with negative
Kodaira dimension, but we can only argue so far by a case by case analysis. In di-
mension 4, Kuznetsov’s conjecture about rationality of cubics ([49], Conjecture 1.1)
is clearly related to (and indeed stronger than) this question, while in [4] we state a
similar conjecture for another class of smooth projective fourfolds explicitly in terms
of categorical representability.

Notation. Any triangulated category is assumed to be essentially small. Given a
smooth projective variety X , we denote by �X its Kodaira dimension, by Db.X/ the
bounded derived category of coherent sheaves on it, by K0.X/ its Grothendieck group,
by CHd

Z.X/ the Chow group of codimension d cycles modulo rational equivalence,
and by Ad

Z.X/ the subgroup of algebraically trivial cycles in CHd
Z.X/. If X is pure

d -dimensional, and Y any smooth projective variety, we denote by Corri .X; Y / WD
CHiCd

Q .X �Y / the group of correspondences with rational coefficients. If X D `
Xj ,

with Xj connected, then Corri .X; Y / D L
Corri .Xj ; Y /.

2 Categorical and classical representabilities for smooth
projective varieties

2.1 Semiorthogonal decompositions and categorical representability. We start by
recalling some categorical definitions which are necessary to define representability.
Let K be a field and T a K-linear triangulated category. A full triangulated subcategory
A of T is called admissible if the embedding functor admits a left and a right adjoint.

Definition 2.1 ([17], [18]). A semiorthogonal decomposition of T is a sequence of
admissible1 subcategories A1; : : : ; Al of T such that

• HomT.Ai ; Aj / D 0 for all i > j and any Ai in Ai and Aj in Aj ;

1Notice that some authors, as for example [66], do not require admissibility for the subcategories in the
definition of semiorthogonal decomposition.
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• for all objects Ai in Ai and Aj in Aj , and for every object T of T, there is a chain
of morphisms 0 D Tl ! Tl�1 ! � � � ! T1 ! T0 D T such that the cone of
Tk ! Tk�1 is an object of Ak for all k D 1; : : : ; l .

Such a decomposition will be written

T D hA1; : : : ; Ali:
Definition 2.2 ([16]). An object E of T is called exceptional if HomT.E; E/ D K, and
HomT.E; EŒi �/ D 0 for all i ¤ 0. A collection fE1; : : : ; Elg of exceptional objects is
called exceptional if HomT.Ej ; EkŒi �/ D 0 for all j > k and for all integers i .

If E in T is an exceptional object, the triangulated category generated by E (that
is, the smallest full triangulated subcategory of T containing E) is equivalent to the
derived category of a point, seen as a smooth projective variety. The equivalence
Db.pt/ ! hEi � T is indeed given by sending Opt to E. In the case where T is Db.X/

for a smooth projective variety X , given an exceptional collection fE1; : : : ; Elg, there
is a semiorthogonal decomposition (see [18])

Db.X/ D hA; E1; : : : ; Eli;
where A is the full triangulated subcategory whose objects are all the A satisfying
Hom.Ei ; A/ D 0 for all i D 1; : : : ; l; and we denote by Ei the category generated
by Ei . We say that the exceptional sequence is full if the category A is trivial. More
generally, if A � T is admissible, we have two semi-orthogonal decompositions

T D hA?; Ai D hA;? Ai;
where A? and ?A are respectively the left and right orthogonal of A in T [17].

Definition 2.3. A triangulated category T is representable in dimension m if it admits
a semiorthogonal decomposition

T D hA1; : : : ; Ali;
and for all i D 1; : : : ; l there exists a smooth projective connected variety Yi with
dim Yi � m, such that Ai is equivalent to an admissible subcategory of Db.Yi /.

Definition 2.4. Let X be a smooth projective variety of dimension n. We say that X

is categorically representable in dimension m (or equivalently in codimension n � m)
if Db.X/ is representable in dimension m.

Remark 2.5. Suppose that X is not smooth. Then to define categorical representability
for it, we need to replace in Definition 2.4 the derived category Db.X/ with another
triangulated category zD, enjoying some “smoothness“ which would be called a cate-
gorical resolution of singularities.
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In [46], Kuznetsov suggest a definition for which the resolution of singularities zD
of Db.X/ could be realized as an admissible subcategory of the derived category of
geometrical resolution of singularities zX ! X , whenever X has rational singulari-
ties. The notion of categorical representability would naturally sit inside this kind of
approach (for example, all projective varieties would be categorically representable at
least in its dimension). Notice that anyway there is in general no unicity or minimality
of such a resolution.

Notice that any fully faithful functor F W Db.X/ ! Db.Y / between the derived
categories of two smooth projective varieties X and Y is of Fourier–Mukai type [62],
[63], i.e. there is an object E in Db.X � Y / (called kernel of F ) and F.�/ is given by
pulling back a complex to Db.X �Y /, tensoring with E and pushing-forward to Db.Y /.
It is moreover worth noting and recalling the following facts, which are well-known in
the derived categorical setting.

Remark 2.6 ([9]). The derived category of P n admits a full exceptional sequence.

Remark 2.7 ([59]). If � is a smooth connected projective curve of positive genus, then
Db.�/ has no proper admissible subcategory. Indeed any fully faithful functor A !
Db.�/ is an equivalence, unless A is trivial. Then being categorically representable
in dimension 1 is equivalent to admit a semiorthogonal decomposition by exceptional
objects and derived categories of smooth projective curves.

Remark 2.8. If X and Yi are smooth projective and

Db.X/ D hDb.Y1/; : : : ; Db.Yk/i;
then

K0.X/ D
kM

iD1

K0.Yi /

and the Riemann–Roch Theorem gives an isomorphism of Q-vector spaces

CH�
Q.X/ D

kM

iD1

CH�
Q.Yi /:

Remark that the last isomorphism is in general not compatible with gradings.

Proposition 2.9 ([61]). Let X be smooth projective and Z � X a smooth subvariety
of codimension d > 1. Denote by " W zX ! X the blow up of X along Z. Then

Db. zX/ D h"�Db.X/; Db.Z/1; : : : ; Db.Z/d�1i;
where Db.Z/i is equivalent to Db.Z/ for all i D 1; : : : ; d � 1.
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2.2 Classical representabilities and motives. In general, it is a very deep and in-
teresting geometric problem to understand whether the group Ai

Z.X/ of algebraically
trivial cycles of codimension i on X can carry a scheme structure. The notion of rep-
resentability of such groups has been introduced to tackle this problem. In this section
we outline a list of definitions of representabilities for the groups Ai

Z.X/. This is far
for being exhaustive, especially in the referencing. Indeed, giving a faithful list of all
contributions to these questions is out of the aim of these notes. Chow motives and
their properties could give, through Conjecture 1.1, a way to connect categorical and
classical representabilities. We also outline the basic facts needed to stress the possible
interplay between new and old definitions.

Let X as usual be a smooth projective variety over a field K. Recall that, if � is a
curve, then J.�/ Š A1

Z.�/.

Definition 2.10. Let T be any nonsingular variety over K. An map f W T ! Ai
Z.X/

is an algebraic map if there exists a cycle class z in CHi
Z.T � X/ such that f .t/ is the

restriction of z to ftg�X . In other words, f .t/ D q�..p�t /:z/, where p and q denote,
respectively, the projections from T � X to T and X . In this case, such a map will be
denoted by z�.

Definition 2.11 ([15]). The group Ai
Z.X/ is said to be weakly representable if there

exists a smooth projective curve � , a class z of a cycle in CHi
Z.X ��/ and an algebraic

subgroup G � J.�/ of the Jacobian variety of � , such that, for any algebraically closed
field � � K, the induced algebraic map

z� W J.�/.�/ ' A1
Z.��/ ! Ai

Z.X�/

is surjective with kernel G.�/.

When working with coefficients in Q, we have the following definition.

Definition 2.12. The group Ai
Q.X/ is rationally representable if there exists a cycle

z in CHi
Q.X � �/ giving a surjective algebraic map

z� W A1
Q.�/ ! Ai

Q.X/:

The variety X is rationally representable if Ai
Q.X/ is rationally representable for

all i .

Rational representability is a name that has been used several times in the literature,
so it might lead to some misunderstanding. We underline that Definition 2.12 is exactly
the one from ([23], page 5). In the complex case, we have also a stronger notion, which
is called the Abel–Jacobi property [15], which requires the existence of an isogeny
(i.e. a regular surjective morphism) Ai

Z.X/ ! J i .X/, induced by a correspondence,
onto the i -th intermediate Jacobian J i .X/ WD H i .X; R/=H i .X; Z/. The Abel–Jacobi
property implies weak representability for smooth projective varieties defined on C.

An even stronger notion is given by algebraic representability, which requires that
the group Ai

Z.X/ is isomorphic via a regular map to an abelian variety.
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Definition 2.13. Let A be an abelian variety. A group homomorphism g W Ai
Z.X/ ! A

is a regular map if for every non-singular variety T and for every algebraic map
f W T ! Ai .X/Z, the composite map g B f is a morphism.

Definition 2.14 ([7], Definition 3.2.3). An abelian variety A is the algebraic represen-
tative of Ai

Z.X/ if there exists a quasi-universal regular map G W Ai
Z.X/ ! A, i.e. for

all regular maps g from Ai
Z.X/ to an abelian variety B , there is a unique morphism of

abelian varieties u W A ! B such that u B G D g. In this case we say that Ai
Z.X/ is

algebraically representable.

The first examples of algebraic representatives are the Picard variety Pic0.X/ or
the Albanese variety Alb.X/ if n D 1 or, respectively, n D dim .X/. We remark that
in these two cases the associated correspondences are those induced, respectively, by
the first Chern class of the Poincaré bundle on X � Pic0.X/ and by the graph of the
natural Albanese map.

Definition 2.15 ([7], Definition 3.4.2). Let X be a smooth projective variety of odd
dimension 2nC1 and A the algebraic representative of AnC1

Z .X/ via the canonical map
G W AnC1

Z .X/ ! A. A polarization of A with class �A in Corr.A; A/ is the incidence
polarization with respect to X if for all algebraic maps f W T ! AnC1

Z .X/ defined by
a cycle z in CHnC1

Z .X � T /, we have

.G B f /��A D .�1/nC1I.z/;

where I.z/ in Corr.T / is the composition of the correspondences z 2 Corr.T; X/ and
z 2 Corr.X; T /.

For example, if C is a smooth projective curve, then the group A1
Z.C / ' J.C /

carries an incidence polarization, namely the canonical polarization of the Jacobian.
Indeed, it is easy to check that the correspondence associated such polarization is the
opposite to the incidence polarization given by a Poincaré line bundle.

There are many complex threefolds X with negative Kodaira dimension, for which
A2

Z.X/ is strongly represented by a generalized Prym variety with incidence polariza-
tion. For these threefolds, we will show how categorical representability in dimension
1 gives a splitting of the intermediate Jacobian. A list of the main cases will be given
in Section 3.2.

A more modern approach to representability questions has to take Chow motives
into account. Let us recall their basic definitions and notations. The category MK

of Chow motives over K with rational coefficients is defined as follows: an object of
MK is a triple .X; p; m/, where X is a variety, m an integer and p 2 Corr0.X; X/ an
idempotent, called a projector. Morphisms from .X; p; m/ to .Y; q; n/ are given by
elements of Corrn�m.X; Y / precomposed with p and composed with q.

There is a natural functor h from the category of smooth projective schemes to the
category of motives, defined by h.X/ D .X; id; 0/, and, for any morphism � W X ! Y ,
h.�/ being the correspondence given by the graph of �. We write 1 WD .Spec K; id; 0/
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for the unit motive and L WD .Spec K; id; �1/ for the Lefschetz motive, and M.�i/ WD
M ˝ Li . Moreover, we have Hom.Li ; h.X// D CHi

Q.X/ for all smooth projective
schemes X and all integers i .

If X is irreducible of dimension d , the embedding ˛ W pt ! X of the point defines
a motivic map 1 ! h.X/. We denote by h0.X/ its image and by h�1.X/ the quotient
of h.X/ via h0.X/. Similarly, Ld is a quotient of h.X/, and we denote it by h2d .X/.
Notice that both h0.X/ and h2d .X/ split off the motive h.X/ as direct summands.

In the case of smooth projective curves of positive genus there exists another factor
which corresponds to the Jacobian variety of the curve. Let C be a smooth projective
connected curve, let us define a motive h1.C / such that we have a direct sum:

h.C / D h0.C / ˚ h1.C / ˚ h2.C /:

The upshot is that the theory of the motives h1.C / corresponds to that of Jacobian
varieties (up to isogeny), in fact we have

Hom.h1.C /; h1.C 0// D Hom.J.C /; J.C 0// ˝ Q:

In particular, the full subcategory of MK whose objects are direct summands of
the motive h1.C / is equivalent to the category of abelian subvarieties of J.C / up to
isogeny. Such motives can be called abelian. We will say that a motive is discrete if it
is the direct sum of a finite number of Lefschetz motives.

Let S be a surface. Murre constructed [56] the motives hi .S/, defined by projectors
pi in CHi

Q.S � S/ for i D 1; 2; 3, and described a decomposition

h.S/ D h0.S/ ˚ h1.S/ ˚ h2.S/ ˚ h3.S/ ˚ h4.S/:

We have already remarked that h0.S/ D 1 and h4.S/ D L2. Roughly speaking, the
submotive h1.S/ carries the Picard variety, the submotive h3.S/ the Albanese variety
and the submotive h2.S/ carries the Néron–Severi group, the Albanese kernel and the
transcendental cycles. If S is a smooth rational surface and K D xK, then h1.S/ and
h3.S/ are trivial, while h2.S/ ' L�, where � is the rank of the Néron–Severi group. In
particular, the motive of S splits in a finite direct sum of (differently twisted) Lefschetz
motives.

In general dimension, it is conjectured [57] that if X is a smooth projective variety
of dimension d , there exist projectors pi in CHd

Q.X � X/ defining motives hi .X/

such that h.X/ D L2d
iD0 hi .X/, and such that (over xK) pi modulo (co)homological

equivalence is the usual Künneth component. For example, if K D C, we require
.pi /�H �.X; Q/ D H i .X; Q/. Such a decomposition is called a Chow–Künneth de-
composition (see [57], Definition 1.3.1) and should be thought of as a universal co-
homological theory. We have seen that the motive of any smooth projective curve or
surface admits a Chow–Künneth decomposition. This is true also for the motive of a
smooth uniruled complex threefold, thanks to [2]. In this case, while h1 still carries the
Picard variety, now it is straightforward to remark that it is h5 that carries the Albanese
kernel. We will call them accordingly.
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The strict interplay between motives and representability for threefolds is shown
by Gorchinskiy and Guletskii. In this case, the rational representability of Ai

Q.X/ for
i � 2 is known ([55]). In [23] it is proved that A3

Q.X/ is rationally representable if
and only if the Chow motive of X has a given Chow–Künneth decomposition.

Theorem 2.16 ([23], Theorem 8). Let X be a smooth projective threefold. The group
A3

Q.X/ is rationally representable if and only if the motive h.X/ has the following
Chow–Künneth decomposition:

h.X/ Š 1 ˚ h1.X/ ˚ L˚b ˚ .h1.J /.�1// ˚ .L2/˚b ˚ h5.X/ ˚ L3;

where h1.X/ and h5.X/ are the Picard and Albanese motives respectively, b D
b2.X/ D b4.X/ is the Betti number, and J is a certain abelian variety, which is
isogenous to the intermediate Jacobian J.X/ if K D C.

3 Interactions between categorical and classical
representabilities

In this section, we will consider varieties defined over the complex numbers. This
restriction is not really necessary, since most of the constructions work over any alge-
braically closed field. Anyway, in the complex case, we can simplify our treatment by
dealing with intermediate Jacobians. Moreover, it will be more simple to list examples
without the need to make the choice of the base field explicit for any case.

3.1 Fully faithful functors and motives. At the end of the last section we have
seen that, in the case of threefolds, rational representability of A3

Q.X/ is equivalent
to the existence of some Chow–Künneth decomposition. The first step in relating
categorical and rational representability is exploiting an idea of Orlov about the motivic
decomposition which should be induced by a fully faithful functor between the derived
categories of smooth projective varieties. Assuming this conjecture we get that for
threefolds categorical representability in dimension 1 is a stronger notion than rational
representability.

Let us sketch Orlov’s idea [64]. If X and Y are smooth projective varieties of
dimension respectively n and m, and ˆ W Db.Y / ! Db.X/ is a fully faithful functor,
then it is of Fourier–Mukai type [62], [63]. Let E in Db.X � Y / be its kernel and F

in Db.X � Y / the kernel of its right adjoint ‰, we have F ' E_ ˝ pr�
X!X Œdim X�

(see [53]). Consider e WD ch.E/Td.X/ and f WD ch.F /Td.Y /, two mixed rational
cycles in CH�

Q.X � Y /. We denote by ei (resp. fi ) the i -th codimensional component
of e (resp. f ), that is ei ; fi 2 CHi

Q.X � Y /. As correspondences they induce motivic
maps ei W h.Y / ! h.X/.i � n/ and fj W h.X/.m � j / ! h.Y /. The Grothendieck–
Riemann–Roch Theorem implies that f:e WD LnCm

iD0 fnCm�iei D idh.Y /. This in turn
implies that h.Y / is a direct summand of

L
i2Z h.X/.i/.
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Conjecture 1.1. Let X and Y be smooth projective varieties and ˆ W Db.Y / ! Db.X/

be a fully faithful functor. Then the motive h.Y / is a direct summand of the motive
h.X/.

The conjecture is trivially true for Y a smooth point, in which case ˆ.Db.Y // is
generated by an exceptional object of Db.X/: then there is an integer d and a split
embedding Ld ! h.X/ induced by the exceptional object. In [64], it is proven that
the conjecture holds if X and Y have the same dimension n and E is supported in
dimension n. This already covers some interesting examples: if X is a smooth blow-
up of Y , or if there is a standard flip from X to Y . Using the same methods as in
[13] we will show that if Y is a curve and X a rationally representable threefold with
h1.X/ D h5.X/ D 0, then h1.Y / is a direct summand of h3.X/.1/.

But let us first take a look to the simplest case, that is categorical representability
in dimension 0. In this case, we have that Chow groups are finite dimensional vector
spaces. Over the complex numbers this gives the discreteness of the motive.

Proposition 3.1. If a smooth projective complex variety X is categorically repre-
sentable in dimension 0, then the group K0.X/ is free of finite type and the motive
h.X/ is discrete.

Proof. Being representable in dimension 0 is equivalent to having a full exceptional
sequence fE1; : : : ; Elg. Then the classes ŒEi �, for i D 1; : : : l , are nontrivial (since
Ei is exceptional, we have 	.Ei ; Ei / D 1) and give a free system of generators of
K0.X/, by the definition of semiorthogonal decomposition. Then K0.X/ ' Zl .
From this and Riemann–Roch, we get that CH�

Q.X/ is a finite dimensional Q-vector
space. For a complex smooth projective variety, this is enough to split the motive into
Lefschetz motives ([40]). Notice anyway that, since the Riemann–Roch isomorphism
K0.X/ ˝ Q ' CH�

Q.X/ is not compatible with gradings, there is no canonical way
to obtain the decomposition of X explicitly from the base of K0.X/, that is, from the
exceptional sequence.

A way more interesting case relates categorical representability in dimension 1 and
rational representability for threefolds. In this case, in light of Theorem 2.16, we have
a more specific conjecture.

Conjecture 3.2. If a smooth projective threefold X is categorically representable in
dimension 1, then it is rationally representable.

If X is a standard conic bundle over a rational surface and � a smooth projective
curve, the Chow–Künneth decomposition of h.X/ (see [58]) can be used to show that a
fully faithful functor Db.�/ ! Db.X/ gives h1.�/.�1/ as a direct summand of h.X/.
In particular, this gives an isogeny between J.�/ and an abelian subvariety of J.X/,
and proves (up to codimensional shift for each direct summand of h.�/) Conjecture 1.1
in this case. The proof in [13] is based on the fact that the motive h.X/ splits into a
discrete motive and in a unique abelian motive which corresponds to J.X/. Let us
make a first assumption:
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(?) X is a smooth projective rationally representable threefold with h1.X/ D 0 and
h5.X/ D 0.

Theorem 3.3. Suppose X satisfies .?/. If there is a smooth projective curve � and a
fully faithful functor Db.�/ ! Db.X/, then h1.�/.�1/ is a direct summand of h.X/.
This gives an injective morphism J.�/Q ! J.X/Q, that is an isogeny between J.�/

and an abelian subvariety of J.X/.

Proof. We only need the case where g.�/ > 0, and we can use the same argument
as in [13], Lemma 4.2: since all but one summand of h.X/ are discrete, the map
f:ejh1.�/ D idh1.�/ is given by f2:e2, which proves that h1.�/.�1/ is a direct summand
of h3.X/ D h1.J /.�1/.

Corollary 3.4. Suppose X satisfies .?/ and let f�igk
iD1 be smooth projective curves of

positive genus. If Db.X/ is categorically representable in dimension 1 by the categories
Db.�i / and by exceptional objects, then J.X/ is isogenous to

Lk
iD1 J.�i /.

Proof. From Theorem 3.3 together with the semiorthogonality, we get an injective
morphism � W L

J.�i /Q ! J.X/Q, which has to be surjective by Remark 2.8, as
explained in the proof of Theorem 4.1 in [13].

Remark 3.5 (Threefolds satisfying .?/). By [23], [58] Fano threefolds, threefolds
fibered in Del Pezzo or Enriques surfaces over P 1 with discrete Picard group, and
standard conic bundles over rational surfaces satisfy .?/.

3.2 Reconstruction of the intermediate Jacobian. The aim of this section is to show
how, under appropriate hypotheses, categorical representability in dimension 1 for a
threefold X gives a splitting of the intermediate Jacobian J.X/. Notice that in the case
of curves the derived category carries the information about the principal polarization
of the Jacobian [11]. In the case of threefolds, we need first of all the hypotheses of
Theorem 3.3. As we will see, the crucial hypothesis that will allow us to recover also
the principal polarization is that the polarization on J.X/ is an incidence polarization.

(\) X is a smooth projective rationally and algebraically representable threefold with
h1.X/ D 0 and h5.X/ D 0 and the algebraic representative of A2

Z.X/ carries
an incidence polarization.

Theorem 3.6. Suppose X satisfies .\/. Let � be smooth projective curve and
Db.�/ ! Db.X/ fully faithful. Then there is an injective morphism J.�/ ,! J.X/

preserving the principal polarization, that is J.X/ D J.�/ ˚ A for some principally
polarized abelian variety A.

Proof. From Theorem 3.3 we get an isogeny. As in the proof of Proposition 4.4 in [13],
the incidence property shows that this isogeny is an injective morphism respecting the
principal polarizations.
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Corollary 3.7. Suppose X satisfies .\/ and let f�igk
iD1 be smooth projective curves

of positive genus. If Db.X/ is categorically representable in dimension 1 by the
categories Db.�i / and by exceptional objects, then J.X/ is isomorphic to

Lk
iD1 J.�i /

as principally polarized variety.

Remark 3.8 (Threefolds satisfying .\/). The assumptions of Theorem 3.6 seem rather
restrictive. Anyway, they are satisfied by a quite big class of smooth projective three-
folds with �X < 0. The Chow–Künneth decomposition for the listed varieties is
provided by [58] for conic bundles and by [23] in any other case. In the following
list the references point out the most general results about strong representability and
incidence property. Giving an exhaustive list of all the results and contributors would
be out of reach (already in the cubic threefold case). We will consider Fano threefolds
with Picard number one only. The interested reader can find an exhaustive treatment
in [34].

1) Fano of index > 2: X is either P 3 or a smooth quadric.

2) Fano of index 2: X is a quartic double solid [68] , or a smooth cubic in P 4 [21],
or an intersection of two quadrics in P 5 [65], or a V5 (in the last case J.X/ is
trivial).

3) Fano of index 1: X is a general sextic double solid [20], or a smooth quartic in P 4

[15], or an intersection of a cubic and a quadric in P 5 [15], or the intersection of
three quadrics in P 6 [7], or a V10 [52], [26], or a V12 [32] (J.X/ is the Jacobian
of a genus 7 curve), or a V14 [31] (in which case the representability is related to
the birational map to a smooth cubic threefold), or a general V16 [27], [54], or a
general V18 [29], [34] (J.X/ is the Jacobian of a genus 2 curve), or a V22 (and
the Jacobian is trivial).

4) Conic bundles: X ! S is a standard conic bundle over a rational surface [7],
[10], this is the case examined in [13].

5) Del Pezzo fibrations: X ! P 1 is a Del Pezzo fibration with 2 � K2
X � 5 [35],

[36].

Notice that there are still some cases where it is not known (at least, to us) whether a
smooth projective threefold of negative Kodaira dimension satisfies .\/, as for example
if X is a Fano of index two and degree one, or a Del Pezzo fibration over P 1 of degree
one.

From the unicity of the splitting of the intermediate Jacobian we can easily infer
the following.

Corollary 3.9. Suppose X satisfies .\/ and is categorically representable in dimen-
sion 1, with semiorthogonal decomposition

Db.X/ D hDb.�1/; : : : ; Db.�k/; E1; : : : ; Eli:
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Then there is no fully faithful functor Db.�/ ! Db.X/ unless � ' �i for some
i 2 f1; : : : ; kg. Moreover, the semiorthogonal decomposition is essentially unique,
that is, any semiorthogonal decomposition of Db.X/ by smooth projective curves and
exceptional objects is given precisely by the curves �i and by l exceptional objects.

Corollary 3.10. Suppose X satisfies .\/, � is a smooth projective curve of positive
genus and there is no splitting J.X/ D J.�/˚A. Then there is no fully faithful functor
Db.�/ ! Db.X/.

The assumptions of Corollary 3.10 are trivially satisfied if the threefold satisfying
.\/ has J.X/ D 0. A way more interesting case is when the intermediate Jacobian is
not trivial and there is no injective morphism J.�/ ! J.X/ for any curve � , in which
case the variety is not categorically representable in dimension < 2.

Remark 3.11 (Threefolds not categorically representable in dimension < 2). The
assumptions of Corollary 3.10 are satisfied by smooth threefolds with J.X/ ¤ 0 for
all curves � of positive genus in the following cases:

1) Fano varieties of index 2: X is a smooth cubic [21].

2) Fano varieties of index 1: for instance when X is a generic quartic threefold [51],
the intersection of three quadrics in P 7 [7], or a generic complete intersection
of type .3; 2/ in P 5 [7]. The case of a .3; 2/-complete intersection of Fermat
polynomials is described in [8].

3) Conic bundles: X is a standard conic bundle X ! P 2 degenerating along a
curve of degree � 6 [7], or a non-rational standard conic bundle X ! S on a
Hirzebruch surface [67].

4) Del Pezzo fibrations: X ! P 1 non-rational of degree four [1].

There are some other cases of Fano threefolds of specific type satisfying geometric
assumptions. For a detailed treatment, see Chapter 8 of [34].

Notice that if X is a smooth cubic threefold, the equivalence class of a notable
admissible subcategory AX (the orthogonal complement of fOX ; OX .1/g) corresponds
to the isomorphism class of J.X/ as principally polarized abelian variety [14]; the
proof is based on the reconstruction of the Fano variety and the techniques used there
are far away from the subject of this paper.

A natural question is if, under some hypotheses, one can give the inverse statement
of Corollaries 3.4 and 3.7, that is, suppose that X is a threefold satisfying either .?/ or
.\/, such that J.X/ ' L

J.�i /. Can one describe a semiorthogonal decomposition of
Db.X/ by exceptional objects and the categories Db.�i /? Notice that a positive answer
for X implies a positive answer for all the smooth blow-ups of X .
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Remark 3.12 (Threefolds with �X < 0 categorically representable in dimension � 1).
Let X be a threefold satisfying .?/ or .\/ and with J.X/ D L

J.�i /. Then if X is in
the following list (or is obtained by a finite number of smooth blow-ups from a variety
in the list) we have a semiorthogonal decomposition

Db.X/ D hDb.�1/; : : : ; Db.�k/; E1; : : : ; Eli;
with Ei exceptional objects.

1) Threefolds with a full exceptional sequence: X is P 3 [9], or a smooth quadric
[37], or a P 1-bundle over a rational surface or a P 2-bundle over P 1 [61], or a V5

[60], or a V22 Fano threefold [41].

2) Fano threefolds without any full exceptional sequence: X is the complete inter-
section of two quadrics or a Fano threefold of type V18, and J.�/ ' J.X/ with
� a genus 2 curve. The semiorthogonal decompositions are described in [18],
[44], and are strikingly related (as in the cases of V5 and V22 and of the cubic
and V14) by a correspondence in the moduli spaces, as described in [47]. X is a
V12 Fano threefold [42], or a V16 Fano threefold [44].

3) Conic bundles without any full exceptional sequence: X ! S is a rational conic
bundle over a minimal surface [13]. If the degeneration locus of X is either
empty or a cubic in P 2, then X is a P 1-bundle and is listed in 1).

4) Del Pezzo fibrations: X ! P 1 is a quadric fibration with at most simple de-
generations, in which case the hyperelliptic curve � ! P 1 ramified along the
degeneration appears naturally as the orthogonal complement of an exceptional
sequence of Db.X/ [48]. X ! P 1 is a rational Del Pezzo fibration of degree
four. In this case X is birational to a conic bundle over a Hirzebruch surface [1]
and the semiorthogonal decomposition is described in [4].

Notice that the first two items cover all classes of Fano threefolds with Picard number
one whose members are all rational.

4 Categorical representability and rationality: further
developments and open questions

This last section is dedicated to speculations and open questions about categorical
representability and rationality. The baby example of curves is full understood. A
smooth projective curve X over a field K is categorically representable in dimension 0
if and only if it is rational. Indeed, the only case where Db.X/ has exceptional objects
is X D P 1, and Db.X/ D hOX ; OX .1/i.

Let us start with a trivial remark: the projective space P n over K is categorically
representable in dimension 0. Then if X is given by a finite number of smooth blow-ups
of P n, it is categorically representable in codimension � 2. This is easily obtained from
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Orlov’s blow-up formula (see Proposition 2.9). More generally, if a smooth projective
variety X of dimension � 2 is categorically representable in codimension m, then any
finite chain of smooth blow-ups of X is categorically representable in codimension
� min.2; m/.

One could naively wonder about the inverse statement: if X ! Y is a finite chain
of smooth blow-ups and X is categorically representable in codimension m, what can
we say about Y ? Unfortunately, triangulated categories do not have enough structure
to let us compare different semiorthogonal decomposition. For example, the theory of
mutations allows to do this only in a few very special cases.

In this section we present some more example to stress how the interaction between
categorical representability and rationality can be developed further, and we point out
some open question. We deal with surfaces in 4.1 and with threefolds in 4.2. Then
we will discuss in 4.3 how categorical representability for noncommutative varieties
plays an important role in this frame, to deal with varieties of dimension bigger than 3
in 4.4. Finally, we compare in 4.5 our methods with recent approaches to birationality
problems via derived categories. We will work over the field C for simplicity, even if
many problems and arguments do not depend on that.

4.1 Surfaces. If X is a smooth projective rational surface, then it is categorically
representable in codimension 2. Indeed, X is the blow-up in a finite number of smooth
points of a minimal rational surface, that is either P 2 or Fn. Are there any other
example of surfaces categorically representable in codimension 2? Notice that by
Proposition 3.1 such a surface would have a discrete motive, and even more: we would
have K0.X/ D Zl . In particular, if K0.X/ is not free, then X is not categorically
representable in dimension 0.

In general, an interesting problem is to construct exceptional sequences on surfaces
with pg D q D 0, and to study their orthogonal complement. Notice that on such
surfaces any line bundle is an exceptional object, so we already have at least a length
one exceptional sequence. The main question is then to understand if it is possible to
find a somehow “maximal” one, that is, such that the orthogonal complement does not
contain exceptional objects. The length of such sequence should be bounded by the
rank of maximal free subgroup of K0.X/.

Suppose for example that X is an Enriques surface: a (non-full) exceptional col-
lection of 10 vector bundles on X is described in [69]. Since K0.X/ is not free of finite
rank, we do not expect any full exceptional collection. The orthogonal complement
AX turns then out to be a very interesting object, related also to the geometry of some
singular quartic double solid [33]. Using a motivic trick, we can prove that, under
some assumption, a surface with pg D q D 0 is either categorically representable in
codimension 2 or not categorically representable in positive codimension.

Proposition 4.1. Let X be a surface with h.X/ discrete. Then for any curve � of
positive genus, there is no fully faithful functor Db.�/ ! Db.X/.
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Proof. Suppose there is such a curve and such a functor ˆ W Db.�/ ! Db.X/. Let
E denote the kernel of ˆ (which has to be of Fourier–Mukai type) and F the kernel
of its adjoint. Consider the cycles e and f described in Section 3.1, and recall that
f:e D L3

iD0 f3�i :ei D idh.�/. Restricting now to h1.�/ we would have that idh1.�/

would factor through a discrete motive, which is impossible.

Corollary 4.2. Let X be a surface with h.X/ discrete and K0.X/ not free of finite
rank. Then X is not categorically representable in codimension > 0.

Remark 4.3 (Surfaces with pg D q D 0 not categorically representable in positive
codimension). Proposition 3.1 could be an interesting tool in the study of derived cate-
gories of surfaces with pg D q D 0: notice that many of them have torsion in H1.X; Z/

(for an exhaustive treatment and referencing, see [6]). Anyway the discreteness of the
motive is a rather strong assumption, which for example implies the Bloch conjecture.
There are few cases where this is known.

1) X is an Enriques surface [22].

2) X is a Godeaux surface obtained as a quotient of a quintic by an action of
Z=5Z [24]. In this case in particular it is shown that the motive decomposes as
1 ˚ 9L ˚ L2.

These observations lead to state some deep question about categorical representabil-
ity of surfaces.

Question 4.4. Let X be a smooth projective surface with pg D q D 0.

1) Is there a full exceptional sequence? Equivalently, is X categorically repre-
sentable in codimension 2? If not, can one describe a non full maximal (i.e. the
complement does not contain any exceptional object) exceptional sequence and
its complement?

2) If X is representable in codimension 2, is X rational?

4.2 Threefolds. Remark that there are examples of smooth projective non-rational
threefolds X which are categorically representable in codimension 2: just consider a
rank three vector bundle E on a curve C of positive genus and take X WD P .E/. In
Section 6.3 of [13] we provide a conic bundle example. Anyway, Corollary 3.7 some-
how suggests that categorical representability in codimension 2 should be a necessary
condition for rationality.

A reasonable idea is to restrict our attention to minimal threefolds with �X < 0

(recall that this is a necessary condition for rationality), in particular to the ones we
expect to satisfy assumption .\/, in order to have interesting information about the
intermediate Jacobian from semiorthogonal decompositions. The three big families of
such threefolds are: Fano threefolds, conic bundles over rational surfaces and del Pezzo
fibrations over P 1. Remarks 3.8 and 3.12 give a long list of examples either of rational
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threefolds which are categorically representable in codimension 2 or non-rational ones
which cannot be categorically representable in codimension > 1.

Question 4.5. Let X be a smooth projective threefold with �X < 0.

1) If X is rational, is X categorically representable in codimension 2?

2) Is X categorically representable in codimension 2 if and only if X is rational?

A positive answer to the second question is provided for standard conic bundles over
minimal surfaces [13], but it seems to be quite a strong fact to hold in general: recall that
having a splitting J.X/ ' L

J.�i / is only a necessary condition for rationality, and
Corollary 3.7 shows that if X satisfies .\/, categorical representability in codimension
2 would give the splitting of the Jacobian.

Remark 3.12 provides a large list of rational threefolds categorically representable
in codimension 2. Is it possible to add examples to this list? In particular in the case of
Del Pezzo fibrations over P 1 only the quadric and the degree 4 fibration are described
respectively in [48] and [4].

A good way to understand these questions is by studying some special rational or
non-rational (that is non generic in their family) threefold. This forces to consider
non smooth ones, but we can use Kuznetsov’s theory of categorical resolution of sin-
gularities [46] and study the categorical resolution of Db.X/, as we pointed out in
Remark 2.5. For example, let X � P 4 be nodal cubic threefold with a double point,
which is known to be rational.

Proposition 4.6. Let X � P 4 be a cubic threefold with a double point and zX ! X

the blow-up of the singular point. There exists a categorical resolution of singularities
zD � Db. zX/ of Db.X/ (in the sense of [46]) which is representable in codimension
two. Indeed there is a semiorthogonal decomposition

zD D hDb.�/; E1; : : : ; E3i;
where Ei are exceptional objects and � a complete intersection of a quadric and a
cubic in P 3.

Proof. This is shown following step by step [49], Section 5, where the four dimensional
case is studied. Let us give a sketch of the proof. Let P be the singular point of X , and

 W zX ! X its blow-up. The exceptional locus ˛ W Q ,! zX of 
 is a quadric surface.
The projection of P 4 to P 3 from the point P restricted to X gives the birational map
X Ü P 3. The induced map � W zX ! P 3 is the blow-up of a smooth curve � of
genus 4, given by the complete intersection of a cubic and a quadric surface. If we
write h WD ��OP3.1/ and H WD 
�OX .1/, we have that Q D 2h � D, H D 3h � D,
then h D H � Q and D D 2H � 3Q as in [49], Lemma 5.1. The canonical bundle
! zX D �4h C D D �2H C Q can be calculated via the blow-up � .

In order to describe a categorical resolution of singularities, we have to provide a
Lefschetz decomposition of Q with respect to the conormal bundle (for definitions and
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details, see [46]). The conormal bundle of Q is OQ.h/ and the Lefschetz decomposition
with respect to it is

hA1.�h/; A0i;
where A1 D hOQi and A0 D hOQ; S1; S2i, with S1 and S2 the two spinor bun-
dles. Indeed, Q is even-dimensional and then has two non-isomorphic spinor bundles
giving the previous semiorthogonal decomposition [37]. The case where X is four-
dimensional, considered in [49] is slightly different.

We then get, by [46] a categorical resolution of singularities zD of Db.X/ in the
semiorthogonal decomposition:

Db. zX/ D h˛�OQ.�h/; zDi:
We then get

Db. zX/ D h˛�OQ.�h/; zAX ; O zX ; O zX .H/i; (4.1)

where zAX is a categorical resolution of AX , as in [49], Lemma 5.8. The representability
of zD relies then on the representability of zAX .

On the other side, applying the blow-up formula to � W zX ! P 3 (see Proposi-
tion 2.9), and choosing fOP3.�3/; : : : ; OP3g as full exceptional sequence for Db.P 3/,
we obtain

Db. zX/ D hˆDb.�/; O zX .�3h/; O zX .�2h/; O zX .�h/; O zX i;
where ˆ W Db.�/ ! Db. zX/ is fully faithful. Now as in Lemma 5.3 of [49], if we
mutate O zX .�3h/ and O zX .�2h/ to the left with respect to ˆDb.�/, and put B WD
hˆDb.�/; O zX .�h/i, we get

Db. zX/ D hO zX .�3h C D/; O zX .�2h C D/; B; O zX i: (4.2)

Finally, one can show that B and zAX are equivalent, following exactly the same path of
mutations as in Section 5 of [49] to compare the decompositions (4.1) and (4.2).

Remark 4.7. As noted in [19], we could aim to some kind of minimal resolution of
singularities, where minimality has to be taken with respect to full and faithful functors.
Then one is lead to suspect that the category zAX is not minimal. A natural question to
ask for is if it possible to give a categorical resolution of singularities of AX equivalent
to Db.�/.

Another special very interesting example is described in [33]: a singular double
solid X ! P 3 ramified along a quartic symmetroid. This threefold is non-rational
thanks to [3], because H 3.X; Z/ has torsion. A rough account (skipping the details
about the resolution of singularities) of Ingalls and Kuznetsov’s result is the following:
if X 0 is the small resolution of X , there is an Enriques surface S and a semiorthogonal
decomposition

Db.X 0/ D hAS ; E1; E2i; (4.3)
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where Ei are exceptional objects and AS is the orthogonal complement in Db.S/ of
10 exceptional vector bundles on S ([69]). By Corollary 4.2, the category AS is not
representable in dimension < 2. This is anyway not enough to show that X 0 cannot
be categorically representable in codimension > 1, because it does not exclude the
existence of other semiorthogonal decompositions.

Remark anyway that the lack of categorical representability of X 0 (and presumably
of X , thinking about the categorical resolution of singularities) should be based on
the lack of categorical representability of S , which relies on the presence of torsion
in K0.S/ and in particular in H1.S; Z/, and on the structure of the motive. On the
other side, the non-rationality of X is due to the presence of torsion in H 3.X; Z/. The
relation between torsion in H 3.X; Z/ and categorical representability needs a further
investigation, for example in the case recently described in [28].

4.3 Noncommutative varieties. The previous speculations and partial results give
rise to the hope of extending fruitfully the study of categorical representability to
higher dimensions and to the noncommutative setting. By the latter we mean, following
Kuznetsov ([48], Section 2), an algebraic variety Y with a sheaf B of OY -algebras of
finite type. Very roughly, the corresponding noncommutative variety xY would have a
category of coherent sheaves Coh. xY / D Coh.Y; B/ and a bounded derived category
Db. xY / D Db.Y; B/. The examples which appear very naturally in our setting are the
cases where B is anAzumaya algebra or the even part of the Clifford algebra associated
to some quadratic form over Y .

Finally, if a triangulated category A has Serre functor such that Sm
A D Œn�, for some

integers n and m, with m minimal with this property, we will call it a n
m

-Calabi–Yau
category. If m D 1, these categories deserve the name of noncommutative Calabi–Yau
n-folds, even if they are not a priori given by the derived category of some Calabi–Yau
n-fold with a sheaf of algebras.

If S is any smooth projective variety, X ! S a Brauer–Severi variety of relative
dimension r , and A the associated Azumaya algebra in Br.S/, then (see [12])

Db.X/ D hDb.S/; Db.S; A�1/; : : : ; Db.S; A�rC1/i:

The categorical representability of X would then rely on the categorical representability
of .S; A/, which is an interesting object in itself. For example, if Y is a generic cubic
fourfold containing a plane, there are a K3 surface S and an Azumaya algebra A such
that the categorical representability of .S; A/ is the subject of Kuznetsov’s conjecture
[49] about the rationality of cubic fourfolds.

If S is a smooth projective variety and Q ! S a quadric fibration of relative
dimension r , we can consider the sheaf B0 of the even parts of the Clifford algebra
associated to the quadratic form defining Q. There is a semiorthogonal decomposition:

Db.Q/ D hDb.S; B0/; Db.S/1; : : : ; Db.S/ri;



20 M. Bernardara and M. Bolognesi

where Db.S/i are equivalent to Db.S/ [48]. The categorical representability of .S; B0/

should then be a very important tool in studying birational properties of Q. This is
indeed the case for conic bundles over rational surfaces [13].

Finally, let A be an n
m

-Calabi–Yau category. Such categories appear as orthogonal
complements of an exceptional sequence on Fano hypersurfaces in projective spaces,
see Corollary 4.3 in [43]. It is then natural to wonder about their representability.
For example, if X is a cubic or a quartic threefold, it follows from Remark 3.11 that
these orthogonal complements (which are, respectively, 5

3
- and 10

4
-Calabi–Yau) are not

representable in dimension 1.

Question 4.8. Let A be a n
m

-Calabi–Yau category.

1) Is A representable in some dimension?

2) If yes, is there an explicit lower bound for this dimension?

3) If m D 1, is A representable in dimension n if and only if there exist a smooth
n-dimensional variety X and an equivalence Db.X/ ' A?

4.4 Higher dimensional varieties. Unfortunately, it looks like the techniques used
for threefolds in [13] hardly extend to dimensions bigger than 3. The examples and
supporting evidences provided so far lead anyway to suppose that categorical repre-
sentability can give useful information on the birational properties of any projective
variety. The main case is a challenging conjecture by Kuznetsov [49]. Let X � P 5 be
a smooth cubic fourfold, then there is a semiorthogonal decomposition

Db.X/ D hAX ; OX ; OX .1/; OX .2/i:
The category AX is 2-Calabi–Yau.

Conjecture 4.9 (Kuznetsov). The cubic fourfold X is rational if and only if AX '
Db.Y / for a smooth projective K3 surface Y .

This conjecture has been verified in [49] for singular cubics, Pfaffian cubics and
Hassett’s [25] examples. When X contains a plane P there is a way more explicit
construction: blowing up P we obtain a quadric bundle zX ! P 2 of relative dimension
2, degenerating along a sextic. If the sextic is smooth, let S ! P 2 be the double cover,
which is a K3 surface. Then

AX ' Db.P 2; B0/ ' Db.S; A/;

where B0 is associated to the quadric fibration and A is an Azumaya algebra, obtained
lifting B0 to S . The questions about categorical representability of noncommutative
varieties arise then very naturally in this context. Notice that if AX is representable in
dimension 2, then we know something weaker than Kuznetsov conjecture: we would
have a smooth projective surface S 0 and a fully faithful functor AX ! Db.S 0/. Point 3)
of Question 4.8 appears naturally in this context.
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Question 4.10. One can then wonder if the Kuzentsov conjecture may be stated in
the following form: the cubic fourfold X is rational if and only if it is categorically
representable in codimension 2. An important check in this perspective is to show that
the 2-Calabi–Yau category AX is representable in dimension 2 if and only if there exist
a K3 surface Y and an equivalence Db.Y / ' AX .

Notice anyway that there could be a priori other semiorthogonal decompositions
not related to the one considered in the conjecture. A very deep question is then to un-
derstand if and under which conditions one has a canonical choice for a semiorthogonal
decomposition.

We can propose some more examples of fourfolds for which a Kuznetsov-type
conjecture seems natural: if X is the complete intersection of three quadrics Q1,
Q2, Q3 in P 7, then Homological Projective Duality ([45], [48]) gives an exceptional
sequence on X and its complement AX ' Db.P 2; B0/, where B0 is the even Clifford
algebra associated to the family of quadrics generated by Q1; Q2; Q3. Similarly, if
we consider two quadric fibrations Q1; Q2 ! P 1 of relative dimension 4 and their
complete intersection X , there is an exceptional sequence on X , and let AX be its
orthogonal complement. A relative version of Homological Projective Duality shows
that AX equivalent to Db.S; B0/, where S is a P 1-bundle over P 1 and B0 the even
Clifford algebra associated to the pencil of quadrics generated by Q1 and Q2. It is
natural to wonder if representability in dimension 2 of the noncommutative varieties is
equivalent or is a necessary condition for rationality of X . A partial answer to the last
example is provided in [4].

Other examples in dimension 7 are provided in [30]. If X is a cubic sevenfold, there
is a distinguished subcategory AX of Db.X/, namely the orthogonal complement of the
exceptional sequence fOX ; : : : ; OX .5/g. This is a 3-Calabi–Yau category. Moreover
it can be shown [30] that AX cannot be equivalent to the derived category of a 3-
dimensional Calabi–Yau variety. It is also conjectured that AX is equivalent to the
orthogonal complement of an exceptional sequence in the derived category Db.Y / of
a Fano sevenfold Y of index 3, birationally equivalent to X .

4.5 Other approaches. Of course categorical representability is just one among dif-
ferent approaches to the study of birational geometry of a variety via derived categories.
Nevertheless there is some common ground.

First of all, Kuznetsov mentions in [49] the notion of Clemens–Griffiths component
of Db.X/, whose vanishing would be a necessary condition for rationality. It seems
reasonable to expect that categorical representability in codimension 2 implies the
vanishing of the Clemens–Griffiths component.

Another recent theory is based on Orlov spectra and their gaps [5]. Let us even
refrain from sketching a definition of it, but just notice that ([5], Conjecture 2) draws
a link between categorical representability and gaps in the Orlov spectrum (see, in
particular, [5], Corollary 1.11). Finally, conjectures based on homological mirror
symmetry are proposed in [38], [39], but we cannot state a precise relation with our
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construction. A careful study of the example constructed in [28] would be a good
starting point.
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