Derived categories and rationality of conic bundles

Marcello Bernardara, Michele Bolognesi

Periods, moduli spaces and arithmetic of algebraic varieties

Bonn - Mainz - Essen

Classical setting and the main results Let $\pi: X \to S$ be a smooth standard conic bundle over a smooth projective surface, and $C \to C$ the associated double cover of the discriminant curve given by connected components of singular conics. A classical Recall that if Γ is a smooth projective curve question in algebraic geometry is to determine the rationality of X. $h(\Gamma) = h^0(\Gamma) \oplus h^1(\Gamma) \oplus h^2(\Gamma),$ Necessary conditions: S is rational, C is connected and the intermediate Jacobian J(X) is isomorphic to the direct sum of Jacobians of smooth projective curves. Consequence [Clemens-Griffiths]. Any smooth cubic threefold in \mathbb{P}^4 is not rational. $\mathbb{Q}(-j)$ for any j. **[Beauville].** J(X) is isomorphic to the Prvm variety $P(\tilde{C}/C)$. **Consequence** [Beauville, Shokurov]. If S is minimal X is rational if and only if J(X) splits as the sum of Jacobians of curves. The only possible cases are: $S = \mathbb{P}^2$ and C is a smooth cubic, $S = \mathbb{P}^2$ and C is a quartic, $S = \mathbb{P}^2$ and C is a quintic and $\tilde{C} \to C$ is given by an even θ -characteristic, $S \to \mathbb{P}^1$ is ruled and C is either trigonal or hyperelliptic and the q_r^1 is induced by the ruling. position Question. Can we relate the derived category $D^{b}(X)$ and the rationality of X? The most promising way is $\mathbf{T} = \langle \mathbf{T}_1, \dots, \mathbf{T}_n \rangle,$ looking at semiorthogonal decompositions of $D^{b}(X)$. **Example** [**BMMS**]. If X is a smooth cubic threefold $D^{b}(X) = \langle \mathbf{T}, \mathcal{O}_{X}, \mathcal{O}_{X}(1) \rangle,$ and the equivalence class of the category **T** corresponds to the isomorphism class of J(X). r-codimensional subvariety W, then Main Results. Let $\pi : X \to S$ be a standard conic bundle over a smooth rational surface and $D^{b}(S, \mathcal{B}_{0})$ the Kuznetsov component of its derived category. where Ψ_i and χ^* are fully faithful. **Theorem 1** If there are smooth projective curves Γ_i with fully faithful functors $\Psi_i : D^{\mathrm{b}}(\Gamma_i) \to D^{\mathrm{b}}(S, \mathcal{B}_0)$, exceptional objects E_i in $D^{b}(S, \mathcal{B}_0)$ and a semiorthogonal decomposition associated to it and $D^{b}(S, \mathcal{B}_{0})$ the derived category of \mathcal{B}_{0} -algebras. $D^{\mathbf{b}}(S, \mathcal{B}_0) = \langle \Psi_1 D^{\mathbf{b}}(\Gamma_1), \dots \Psi_k D^{\mathbf{b}}(\Gamma_k), E_1, \dots, E_l \rangle,$ (1)then $J(X) \cong \oplus J(\Gamma_i)$. where Φ and π^* are fully faithful. **Theorem 2** If S is minimal, then X is rational and $J(X) \cong \oplus J(\Gamma_i)$ if and only if $D^{\mathrm{b}}(S, \mathcal{B}_0)$ decomposes

Motives and derived categories of conic bundles

The motive of a conic bundle. We consider here the category of Chow motives with rational coefficients.

where $h^0(\Gamma) = \mathbb{Q}$, $h^2(\Gamma) = \mathbb{Q}(-1)$ and $h^1(\Gamma)$ corresponds to $J(\Gamma)$ up to isogenies, in the sense that $\operatorname{Hom}(h^1(\Gamma), h^1(\Gamma')) = \operatorname{Hom}(J(\Gamma), J(\Gamma')) \otimes \mathbb{Q}$. Finally, no nontrivial map $h^1(\Gamma) \to h^1(\Gamma)$ factors through

[Nagel-Saito]: If $\pi: X \to S$ is a standard conic bundle, there is a submotive $Prym \subset h^1(\tilde{C})$, corresponding to the Prym variety, and $Prym(-1) \subset h^3(X)(-1)$. If S is rational, the motive h(X) is the direct sum of Prym(-1) and a finite number of copies of $\mathbb{Q}(-i)$ (with different twists).

The derived category of a conic bundle. If T is a linear triangulated category a semiorthogonal decom-

is an ordered collection of orthogonal (from right to left) subcategories generating the whole category.

An object E of **T** is exceptional if hom(E, E[i]) = 1 for i = 0 and 0 otherwise. It generates a triangulated subcategory of \mathbf{T} which is equivalent to the derived category of a point.

Orlov's Formula for blow-ups. If Z is smooth projective and $\chi: Y \to Z$ is the blow-up along a smooth

$$\mathbf{D}^{\mathbf{b}}(Y) = \langle \Psi_1 \mathbf{D}^{\mathbf{b}}(W), \dots, \Psi_{r-1} \mathbf{D}^{\mathbf{b}}(W), \chi^* \mathbf{D}^{\mathbf{b}}(Z) \rangle,$$

[Kuznetsov]. If $\pi : X \to S$ is a conic bundle, let \mathcal{B}_0 be the sheaf of even parts of the Clifford algebra

$$\mathrm{D}^{\mathrm{b}}(X) = \langle \Phi \mathrm{D}^{\mathrm{b}}(S, \mathcal{B}_0), \pi^* \mathrm{D}^{\mathrm{b}}(S) \rangle,$$

If S is rational, $D^{b}(S)$ is generated by exceptional objects and then the only nontrivial component in the semiorthogonal decomposition of $D^{b}(X)$ is $D^{b}(S, \mathcal{B}_{0})$ (the Kuznetsov component).

Remark. We work exclusively with varieties defined over \mathbb{C} .

like (1).

From semiorthogonal decomposition to rationality

The key of the proof of Theorem 1 is the study of the map induced by a fully faithful functor $\Psi : D^{b}(\Gamma) \to D^{b}(\Gamma)$ $D^{b}(X)$ on the motive $h^{1}(\Gamma)$, where Γ is a smooth projective curve and $g(\Gamma) > 0$.

If $\Psi: D^{b}(\Gamma) \to D^{b}(X)$ is fully faithful, then it is a Fourier–Mukai functor. Moreover, it admits a right adjoint Ψ_R , also a FM. Let \mathcal{E} and \mathcal{F} in $D^{\mathrm{b}}(\Gamma \times X)$ be the kernels of Ψ and Ψ_R respectively. Then $\Psi \circ \Psi_R = Id_{D^{\mathrm{b}}(\Gamma)}$. Define $e := ch(\mathcal{E}).Td(X)$ and $f := ch(\mathcal{F}).Td(\Gamma)$, mixed cycles in $CH^*_{\mathbb{O}}(X \times \Gamma)$. By Grothendieck-Riemann-Roch the composition $f \cdot e = Id_{h(\Gamma)}$.

By the decomposition of h(X), $(f_i \cdot e_{4-i})_{|h^1(\Gamma)}$ is zero unless i = 2. Then $h^1(\Gamma)$ is a direct summand $h^{3}(X)(-1) = Prym(\tilde{C}/C)(-1)$ and we have an isogeny $\psi_{\mathbb{Q}}$ between $J(\Gamma)$ and a subvariety of J(X). This isogeny is the algebraic morphism $\psi: J(\Gamma) \to J(X)$ given by the cycle $ch_2(\mathcal{E})$. The cycle $-ch_2(\mathcal{E})$ gives its inverse.

The Prym variety $P(\tilde{C}/C)$ is the algebraic representative of the algebraically trivial part $A^2(X)$ of the Chow group. The polarization θ_P is the incidence polarization with respect to X. In particular $\psi^* \theta_{J(X)} = \theta_{J(\Gamma)}$ and then ψ is an isomorphism between $J(\Gamma)$ and a principally polarized abelian subvariety of J(X).

Consider a semiorthogonal decomposition like (1). Since S is rational, we get

$$D^{\mathbf{b}}(X) = \langle \Psi_1 D^{\mathbf{b}}(\Gamma_1), \dots \Psi_k D^{\mathbf{b}}(\Gamma_k), E_1, \dots, E_r \rangle$$

Each Ψ_i gives a morphism ψ_i . Let $\psi = \oplus \psi_i$. Moreover

$$CH^*_{\mathbb{Q}}(X) = \bigoplus_{i=1}^k CH^*_{\mathbb{Q}}(\Gamma^i) \oplus \mathbb{Q}^r = \bigoplus_{i=1}^k Pic_{\mathbb{Q}}(\Gamma_i) \oplus \mathbb{Q}^{r+k}.$$

The cokernel of $\psi_{\mathbb{Q}}$ is a finite Q-vector space. Since $\psi : \oplus J(\Gamma_i) \to J(X)$ is a morphism of abelian varieties, such cokernel is trivial. Then ψ is an isomorphism of principally polarized abelian varieties.

Corollary 3 If S is minimal and $D^{b}(S, \mathcal{B}_{0})$ admits a decomposition like (1), then X is rational and $J(X) \cong \oplus J(\Gamma_i).$

From rationality to semiorthogonal decomposition

Let $\pi: X \to S$ be a rational standard conic bundle over a minimal rational surface.

 \mathcal{B}_0 is isomorphic over the generic point to a quaternion algebra. Since Br(S) = 0 the double cover $C \to C$ determines a unique quaternion algebra in Br(K(S)) [Artin-Mumford]. Then the category $D^{b}(S, \mathcal{B}_{0})$ is fixed by $\tilde{C} \to C$. Theorem 2 is proved providing an example for each possible case.

In each case we provide an explicit construction as follows:

Z is a smooth projective rational threefold with known semiorthogonal decomposition, $\pi: X \to S$ is induced by an explicit linear system on Z, and χ is the blow up of the smooth curve Γ in the base locus.

The decompositions are obtained comparing, via mutations, the decompositions induced respectively by the blow-up and by the conic bundle structure:

(A)
$$D^{b}(X) = \langle \Psi D^{b}(\Gamma), \chi^{*} D^{b}(Z) \rangle,$$

(B) $D^{b}(X) = \langle \Phi D^{b}(S, \mathcal{B}_{0}), \pi^{*} D^{b}(S) \rangle.$

Here is a table summarizing the four different cases

	$C \subset S$	$D^{b}(S)$	Z	Γ	$D^{b}(Z)$	$\mathrm{D^b}(S, \mathcal{B}_0)$
	quintic in \mathbb{P}^2	3 exc.	\mathbb{P}^3	genus 5	4 exc.	$D^{b}(\Gamma), 1 \text{ exc.}$
	quartic in \mathbb{P}^2	$3 \mathrm{exc.}$	Quadric	genus 2	4 exc.	$D^{b}(\Gamma), 1$ exc.
SI	m. cubic in \mathbb{P}^2	3 exc.	\mathbb{P}^1 -bd. over \mathbb{P}^2	Ø	6 exc.	3 exc.
t	trigonal in \mathbb{F}_n	$4 \mathrm{exc.}$	\mathbb{P}^2 -bd. over \mathbb{P}^1	tetragonal	6 exc.	$D^{b}(\Gamma), 2 \text{ exc.}$
h	nyperell. in \mathbb{F}_n	4 exc.	Quadr. bd. over \mathbb{P}^1	hyperell.	$D^{b}(\Gamma'), 4 \text{ exc.}$	$D^{b}(\Gamma), D^{b}(\Gamma')$

References

[Artin-Mumford] M. Artin, and D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London math. soc. (3) 25 (1972), 75–95. [Beauville] A. Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. scient. ENS 10 (1977), 309–391. [BMMS] M. Bernardara, E. Macrí, S. Mehrotra, and P. Stellari A categorical invariant for cubic threefolds, preprint arXiv:0903.4414. [Clemens-Griffiths] C.H. Clemens, P. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. Math. 95 (1972), 281–356. [Kuznetsov] A. Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics, Adv. Math. 218 (2008), no. 5, 1340–1369. [Nagel-Saito] J. Nagel, and M. Saito, Relative Chow-Künneth decomposition for conic bundles and Prym varieties, Int. Math. Res. Not. 2009 (2009), 2978–3001. [Shokurov] V.V. Shokurov, Prym varieties: theory and applications, Math. USSR-Izv. 23 (1984), 83–147.

The Essen Seminar on Algebraic Geometry and Arithmetic, Universität Duisburg-Essen

marcello.bernardara@uni-due.de