Derived categories and rationality of conic bundles

Marcello Bernardara, Michele Bolognesi

Classical setting and the main results

Let \(\pi : X \to S \) be a smooth standard conic bundle over a smooth projective surface, and \(\mathcal{C} \to C \) the associated double cover of the discriminant curve given by connected components of singular conics. A classical question in algebraic geometry is to determine the rationality of \(X \). Necessary conditions: \(S \) is rational, \(C \) is connected and the intermediate Jacobian \(J(X) \) is isomorphic to the direct sum of Jacobians of smooth projective curves.

Consequence [Clemens-Griffiths]. Any smooth cubic threelfold in \(\mathbb{P}^3 \) is not rational.

[Beauville] \(J(Y) \) is isomorphic to the Prym variety \(P(C/C) \).

[Beauville, Shklovskii] If \(S \) is minimal \(X \) is rational if and only if \(J(X) \) splits as the sum of Jacobians of curves. The only possible cases are: \(S = \mathbb{P}^2 \) and \(C = \mathbb{P}^2 \) and \(C \) is a quartic, \(S = \mathbb{P}^3 \) and \(C \) is a quintic. \(\mathbb{P}^3 \) and \(C \) is an even \(\mathcal{C} \)-characteristic, \(S = \mathbb{P}^3 \) and \(C \) is either trigonal or hyperelliptic and the \(\mathcal{C} \) is induced by the ruling.

Question. Can we relate the derived category \(D^b(X) \) and the rationality of \(X \)? The most promising way is looking at semiorthogonal decompositions of \(D^b(X) \).

Example [BMMMS]. If \(X \) is a smooth cubic threefold

\[D^b(X) = \langle T, C_0, C_1(1) \rangle, \]

and the equivalence class of the category \(\mathcal{C} \) corresponds to the isomorphism class of \(J(X) \).

Main Results. Let \(\pi : X \to S \) be a smooth standard conic bundle over a smooth rational surface and \(D^b(S, R) \) the derived category of \(R \)-sheaves.

Theorem 1. If there are smooth projective curves \(\Gamma_j \) with fully faithful functors \(\Phi_j : D^b(\Gamma_j) \to D^b(S, R) \), exceptional objects \(E_j \) in \(D^b(S, R) \) and semiorthogonal decomposition

\[D^b(S, R) = \langle \Phi_1(\Gamma_1), \ldots, \Phi_n(\Gamma_n), E_1, \ldots, E_t \rangle, \]

then \(J(X) \cong \oplus_j J(\Gamma_j) \).

Theorem 2. If \(S \) is minimal, then \(X \) is rational and \(J(X) \cong \oplus_j J(\Gamma_j) \) if and only if \(D^b(S, R) \) decomposes like (1).

Remark. We work exclusively with varieties defined over \(\mathbb{C} \).

From semiorthogonal decomposition to rationality

The key of the proof of Theorem 1 is the study of the map induced by a fully faithful functor \(\Phi : D^b(\Gamma) \to D^b(X) \) on the motive \(h(\Gamma) \), where \(\Gamma \) is a smooth projective curve and \(\chi(\Gamma) > 0 \).

If \(\Phi : D^b(\Gamma) \to D^b(X) \) is fully faithful, then it is a Fourier-Mukai functor. Moreover, it admits a right adjoint \(\Psi_0 \), also a FM. Let \(E \) be the kernels of \(\Phi \) and \(\Psi_0 \), respectively. Then \(\Phi \circ \Psi_0 = D_{\mathbb{Q}(\Gamma)} \).

Define \(c \) to be the fixed point \(c_\mathbb{Q}(\Gamma) \). Then, \(c \) is not reduced to \(\mathbb{Q}(\Gamma) \), mixed cycles in \(C(\Gamma) \), and is given by Gotzmann’s Riemann-Roch theorem \(c = c_\mathbb{Q}(\Gamma) \).

By the decomposition of \(b(\Gamma, \{x, x+y, x+2y\}) \) we are reduced to \(D^b(\mathbb{Z}(W)) \). If \(D^b(W) \) is the derived category of \(X \), we have an isomorphism \(c_\mathbb{Q}(\Gamma) \to c_\mathbb{Q}_\mathbb{C}(\Gamma) \), where \(X \) is the algebraic morphism \(J(\Gamma) \to J(X) \) given by the cycle \(c_\mathbb{Q}(\Gamma) \).

The Prym variety \(V(C/C) \) is the algebraic representative of the algebraically trivial part \(A^1(X) \) of the Chow group. The polarization \(b(\Gamma) \) is an equivalence with respect to \(X \). In particular \(\mathbb{Q}(\Gamma) = \mathbb{Q}(\mathbb{C}) \), where \(\mathbb{Q}(\mathbb{C}) \) is an isomorphism between \(J(\Gamma) \) and a principally polarized abelian variety of \(J(X) \).

Consider a semiorthogonal decomposition like (1). Since \(S \) is rational, we get

\[D^b(X) = \langle \Phi_1(\Gamma_1), \ldots, \Phi_n(\Gamma_n), E_1, \ldots, E_t \rangle. \]

Each \(\Phi_i \) gives a morphism \(c_i \). Moreover

\[CH^1(X) = \bigoplus_i CH^1(\Gamma_i) \oplus \mathbb{Q} \subset \bigoplus_i CH^1(\Gamma_i) \oplus \mathbb{Q} \]

The cokernel of \(c_i \) is a finite \(\mathbb{Q} \)-vector space. Since \(\mathbb{Q}(\Gamma_1) \to J(X) \) is a morphism of abelian varieties, such cokernel is trivial. Then, \(c_i \) is an isomorphism of principally polarized abelian varieties.

Corollary If \(S \) is minimal and \(D^b(S, R) \) admits a decomposition like (1), then \(X \) is rational and \(J(X) \cong \oplus_j J(\Gamma_j) \).

From rationality to semiorthogonal decomposition

Let \(\pi : X \to S \) be a rational standard conic bundle over a minimal rational surface. \(S \) is isomorphic over the generic point to a quaternion algebra. Since \(Br(S) = 0 \) the double cover \(\mathcal{C} \to C \) determines a unique quaternion algebra in \(Br(K(S)) \) [Artin-Mumford]. Then the category \(D^b(S, R) \) is fixed by \(\mathcal{C} \). Theorem 2 is proved providing an example for each possible case.

In each case we provide an explicit construction as follows:

\[X \leftarrow S \]

\[Z \]

\[\mathcal{C} \] is a smooth projective rational variety with known semiorthogonal decomposition, \(\pi : X \to S \) is induced by an explicit linear system on \(S \), and \(\chi \) is the blow-up of the smooth curve \(S \) in the base locus.

The decompositions are obtained comparing, via mutations, the decompositions induced respectively by the blow-up and by the conic bundle structure:

\[(A) \]

\[D^b(X) = \langle \Phi_1(\Gamma_1), \ldots, \Phi_n(\Gamma_n) \rangle. \]

\[(B) \]

\[D^b(X) = \langle \Phi_0(S, R), \ast \mathcal{D}(S) \rangle. \]

Here is a table summarizing the different four cases:

<table>
<thead>
<tr>
<th>(C \subset S)</th>
<th>(D^b(S))</th>
<th>(T)</th>
<th>(D^b(T))</th>
<th>(D^b(S, R))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane curve in (\mathbb{P}^2)</td>
<td>3 exc.</td>
<td>Quadric genus 2</td>
<td>4 exc.</td>
<td>(D^b(T)), 1 exc.</td>
</tr>
<tr>
<td>Sm. curve in (\mathbb{P}^3)</td>
<td>3exc.</td>
<td>(\mathbb{P}^1)-bd. over (\mathbb{P}^1)</td>
<td>4 exc.</td>
<td>(D^b(T)), 2 exc.</td>
</tr>
<tr>
<td>Trigonal in (E)</td>
<td>4 exc.</td>
<td>Quadric bd. over (\mathbb{P}^1)</td>
<td>4 exc.</td>
<td>(D^b(T)), 4 exc.</td>
</tr>
</tbody>
</table>

References

The Essen Seminar on Algebraic Geometry and Arithmetic, Universität Duisburg-Essen

marcello.bernardara@uni-due.de