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FROM SEMI-ORTHOGONAL DECOMPOSITIONS

TO POLARIZED INTERMEDIATE JACOBIANS

VIA JACOBIANS OF NONCOMMUTATIVE MOTIVES

MARCELLO BERNARDARA AND GONÇALO TABUADA

Abstract. Let X and Y be complex smooth projective varieties, and
Db(X) and Db(Y ) the associated bounded derived categories of coher-
ent sheaves. Assume the existence of a triangulated category T which
is admissible both in Db(X) as in Db(Y ). Making use of the recent
theory of Jacobians of noncommutative motives, we construct out of
this categorical data a morphism τ of abelian varieties (up to isogeny)
from the product of the intermediate algebraic Jacobians of X to the
product of the intermediate algebraic Jacobians of Y . Our construc-
tion is conditional on a conjecture of Kuznetsov concerning functors of
Fourier–Mukai type and on a conjecture concerning intersection bilinear
pairings (which follows from Grothendieck’s standard conjecture of Lef-
schetz type). We describe several examples where these conjectures hold
and also some conditional examples. When the orthogonal complement
T ⊥ of T ⊂ Db(X) has a trivial Jacobian (e.g., when T ⊥ is generated by
exceptional objects), the morphism τ is split injective. When this also
holds for the orthogonal complement T ⊥ of T ⊂ Db(Y ), τ becomes an
isomorphism. Furthermore, in the case where X and Y have a unique
principally polarized intermediate Jacobian, we prove that τ preserves
the principal polarization.

As an application, we obtain categorical Torelli theorems, an incom-
patibility between two conjectures of Kuznetsov (one concerning func-
tors of Fourier–Mukai type and another one concerning Fano threefolds),
and also several new results on quadric fibrations and intersections of
quadrics.
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1. Introduction and Statement of Results

In their ICM address [13], Bondal and Orlov suggested that classical birational
geometry could be studied using bounded derived categories of coherent sheaves
and their semi-orthogonal decompositions. This motivates the general question:

Question: Does the bounded derived category Db(X) of a complex smooth projective
variety X carry information about the intermediate Jacobians and their polariza-
tions? If so, how can they be “extracted” from Db(X)?

In the case of cubic threefolds, conic bundles, and more generally rationally rep-
resentable Fano threefolds, some partial answers are known; see [9], [7], [6]. The
goal of this article is to show that if one replaces Db(X) by its unique differential
graded enhancement and considers differential graded semi-orthogonal decomposi-
tions, then the above general question admits a precise affirmative answer.

(Polarized) intermediate Jacobians. Given an irreducible smooth projective
C-scheme X of dimension dX , Griffiths introduced in [27] the associated Jacobians
J i(X), 0 6 i 6 dX − 1. In contrast with the Picard J0(X) = Pic0(X) and the
Albanese JdX−1(X) = Alb(X) varieties, the intermediate Jacobians are not alge-
braic. Nevertheless, they contain an algebraic torus J ia(X) ⊆ J i(X) defined by the
image of the Abel–Jacobi map

AJ i : Ai+1
Z (X)→ J i(X), 0 6 i 6 dX − 1, (1.1)

where Ai+1
Z (X) stands for the group of algebraically trivial cycles of codimension

i+ 1; consult Vial [69, Section 2.3] for further details. The map (1.1) is surjective
when i = 0 and i = dX − 1 and so J0

a(X) = Pic0(X) and JdX−1
a (X) = Alb(X).

In general, the abelian varieties J ia(X) are only well-defined up to isogeny. How-
ever, in the case of curves, Fano threefolds, even-dimensional quadric fibrations
over P1, odd-dimensional quadric fibrations over rational surfaces, and also in the
case of the intersection of two (resp. three) quadrics of odd (resp. even) dimen-
sion, there is a single non-trivial algebraic Jacobian J(X) := J (dX−1)/2

a (X), which
carries moreover a canonical principal polarization; see Clemens and Griffiths [20].
This extra piece of structure is of major importance. For example, in the case of
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a cubic threefold X the abelian variety J(X) endowed with its canonical principal
polarization contains all the information about the birational class of X.

Jacobians of noncommutative motives. Consult André [2, Section 4] for the
construction of the functor MQ(−) : SmProj(C)op → Chow(C)Q, from smooth pro-
jective C-schemes to Chow motives, and for the fact that de Rham cohomology
H∗dR(−) factors through Chow(C)Q. Given a smooth projective C-scheme X of
dimension dX , one can then consider the Q-vector spaces

NH2i+1
dR (X) : =

∑
C,γi

Im
(
H1

dR(C)
H1

dR(γi)−−−−−→ H2i+1
dR (X)

)
, 0 6 i 6 dX − 1, (1.2)

where C is a smooth projective curve and γi : MQ(C) → MQ(X)(i) a morphism
in Chow(C)Q. Intuitively speaking, (1.2) are the odd pieces of de Rham cohomol-
ogy that are generated by curves. By restricting the classical intersection bilinear
pairings on de Rham cohomology (see [2, Section 3.3]) to these pieces one obtains

〈−, −〉 : NH2dX−2i−1
dR (X)×NH2i+1

dR (X)→ C, 0 6 i 6 dX − 1. (1.3)

Recall from Section 2 the construction of the category NChow(C)Q of noncommu-
tative Chow motives. Examples of noncommutative Chow motives include finite-
dimensional C-algebras of finite global dimension as well as the unique dg enhance-
ments perfdg(X) (see Lunts–Orlov [51]) of the derived categories perf(X) of perfect
complexes1. Now, consult [52] for the construction of the Jacobian functor

J(−) : NChow(C)Q → Ab(C)Q

with values in the category of abelian C-varieties up to isogeny. Among other

properties, one has an isomorphism J(perfdg(X)) '
∏dX−1
i=0 J ia(X) whenever the

above pairings (1.3) are non-degenerate. As explained in loc. cit., this is always the
case for i = 0 and i = dX − 1 and the remaining cases follow from Grothendieck’s
standard conjecture of Lefschetz type. This latter conjecture holds for curves,
surfaces, abelian varieties, complete intersections, uniruled threefolds, rationally
connected fourfolds, and for any smooth hypersurface section, product, or finite
quotient thereof.

Statement of results. Let X and Y be two irreducible smooth projective C-
schemes of dimensions dX and dY , respectively, and perf(X) and perf(Y ) the asso-
ciated derived categories of perfect complexes. Assume that X and Y are related
by the following categorical data:

There exist semi-orthogonal decompositions (see [29, Section 4]) perf(X) =
〈TX , T ⊥X 〉 and perf(Y ) = 〈TY , T ⊥Y 〉 and an equivalence φ : TX ' TY of triangu-
lated categories.

In what follows, Φ denotes the composition perf(X) → TX
φ
' TY ↪→ perf(Y ),

where the first functor is the projection. Our first main result is the following:

1Since X is smooth, every complex of coherent sheaves is perfect (up to quasi-isomorphism).

Consequently, the canonical inclusion perf(X) ↪→ Db(X) is an equivalence of categories.
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Theorem 1.4. Let X and Y be two C-schemes as above. Assume that Φ is of
Fourier–Mukai type, i.e., there exists a perfect complex E ∈ perf(X × Y ) such that
Φ is isomorphic to the Fourier–Mukai functor ΦE(−) := Rq∗(p

∗(−) ⊗L E), where
p : X × Y → X and q : X × Y → Y are the projection morphisms. Assume also
that the above bilinear pairings (1.3) (associated to X and Y ) are non-degenerate.
Under these assumptions, the following holds:

(i) There exists a well-defined morphism τ :
∏dX−1
i=0 J ia(X)→

∏dY −1
i=0 J ia(Y ) in

Ab(C)Q.

(ii) Assume moreover that J(T ⊥,dg
X ) = 0 (e.g., T ⊥X admits a full exceptional

collection). Under this extra assumption, the morphism τ is split injective.

(iii) Assume furthermore that J(T ⊥,dg
Y ) = 0. Under this extra assumption, the

morphism τ becomes an isomorphism.

Remark 1.5. By construction, the morphism τ factors through J(T dg
X ). Therefore,

whenever J(T dg
X ) = 0 (e.g., TX admits a full exceptional collection), we have τ = 0.

Remark 1.6. Theorem 1.4 was used by the authors in [10] to give a new proof of
the Beilinson–Bloch type conjectures in the case of a complete intersection of either
two quadrics or three odd-dimensional quadrics.

Theorem 1.4 holds (unconditionally) in the following cases:

Example 1.7. LetX be a C-scheme satisfying the Grothendieck’s standard con-
jecture of Lefschetz type, TX := perf(X), and let Y such that TY := perf(Y ) is
equivalent to perf(X). In these cases the orthogonal complements T ⊥X and T ⊥Y are
trivial and so item (iii) of Theorem 1.4 applies. Thanks to the work of Bondal and
Orlov, Bridgeland, and Mukai (see [12], [14], [55] and also [29, Section 11.4]), this

holds for example when X is an abelian variety and Y is its dual X̂, when X and
Y are two crepant resolutions of a threefold Z with terminal singularities and X is
either uniruled or a complete intersection, when X and Y are related by a Mukai
flop and X is either a complete intersection, a uniruled threefold, or a rationally
connected fourfold, etc.

Example 1.8. Let X be as in Example 1.7 (e.g., a complete intersection, a unir-
uled threefold, or a rationally connected fourfold), TX := perf(X), and Y the
C-scheme obtained from X by a standard flip (resp. a blow-up) along a smooth
irreducible subscheme Z ⊆ X; see Orlov [58]. In all these cases the orthogonal
complement T ⊥X is trivial. When Y is obtained from X by a standard flip (resp.

when J(perfdg(Z)) = 0), then J(T ⊥Y ) = 0. Hence, case (iii) of Theorem 1.4 ap-
plies in the case of standard flips or in the case of the blow-up of a Z such that
J(perfdg(Z)) = 0. For other blow-ups, case (ii) of Theorem 1.4 applies.

Example 1.9. Let X be a hyperelliptic curve, TX := perf(X), Y a complete
intersection of two even-dimensional quadrics, and TY the orthogonal complement
of an exceptional collection; see Bondal and Orlov [12]. In the same vein, let X be
a hyperelliptic or a trigonal curve, TX := perf(X), Y a rational conic bundle over a
Hirzebruch surface or a rational del Pezzo fibration of degree 4 over P1, and TY the
orthogonal complement of an exceptional collection; see [3], [7]. Similarly, let X ⊂
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P3 be a smooth curve of genus 5 and degree 7 (or a smooth curve of genus 2), TX :=
perf(X), Y a rational conic bundle over P2, and TY the orthogonal complement of
an exceptional collection; see [7]. In all the above cases the orthogonal complement

T ⊥X is trivial and J(T ⊥,dg
Y ) = 0. Therefore, item (iii) of Theorem 1.4 applies.

Example 1.10. Let X (resp. Y ) be a Fano threefold of index 2 (resp. 1) and
degree d > 3 (resp. 4d + 2), and TX (resp. TY ) the orthogonal complement of an
exceptional collection of objects in perf(X) (resp. in perf(Y )); see Kuznetsov [46].
In these cases the orthogonal complements T ⊥X and T ⊥Y are generated by exceptional
objects. Therefore, item (iii) of Theorem 1.4 applies.

Example 1.11. Let X be the intersection of two (resp. three odd-dimensional)
quadrics, TX the orthogonal complement of an exceptional collection of objects, Y
the fibration generated by the family of quadrics, and TY the derived category of
perfect complexes over the Clifford algebra associated to the span of the quadrics;
see Kuznetsov [45]. In these cases the orthogonal complements T ⊥X and T ⊥Y are
generated by exceptional objects. Therefore, item (iii) of Theorem 1.4 applies.

Example 1.12. Let X be an elliptic curve (resp. a curve of degree 42), TX :=
perf(X), and Y a 5-dimensional linear section of the Grassmannian Gr(2, 6) (resp.
Gr(2, 7)). A similar example can be obtained by replacing 42 with 14 and Gr(2, 7)
with the Pfaffian Pf(4, 7); see Kuznetsov [43, Section 10–11]. In these cases the
orthogonal complement T ⊥X (resp. T ⊥Y ) is trivial (resp. is generated by exceptional
objects). Therefore, item (iii) of Theorem 1.4 applies.

Remark 1.13 (Homological Projective Duality). The above Examples 1.10 (for
d = 3) and 1.11–1.12 arise from Kuznetsov’s Homological Projective Duality; see
[44]. This theory has the potential to provide many more examples in the future.

Remark 1.14 (Conditional examples). If one assumes that the above bilinear pair-
ings (1.3) (associated to X and Y ) are non-degenerate, then Theorem 1.4 also holds
in the following cases:

(i) Let X be a quadric fibration (over a smooth projective C-scheme S) endowed
with a regular section, Y the C-scheme obtained from X by hyperbolic reduction,
and TX and TY the derived categories of perfect complexes over the sheaves of even
parts of Clifford algebras on S; see [3]. In these cases the orthogonal complements
T ⊥X and T ⊥Y are generated by a finite number of copies of perf(S). Therefore, item

(iii) of Theorem 1.4 applies when J(perfdg(S)) = 0.
(ii) Let X be an arbitrary C-scheme, TX := perf(X), p : Y → X a flat fibration

for which Y can be embedded in a projective bundle P(E)→ X such that ωY/X =
OP(E)/X(−l)|X with l > 0, and TY := p∗(perf(X)); see [3]. This example is inspired

by Orlov’s pioneering work [58]. In these cases the orthogonal complement T ⊥X is
trivial and so item (ii) of Theorem 1.4 applies.

Now, consider the following notion:

Definition 1.15. An irreducible smooth projective C-scheme X of odd dimension
dX = 2n+ 1 is called verepresentable2 if:

2The fusion of the words “very” and “representable”.



210 M. BERNARDARA AND G. TABUADA

(i) the group of algebraically trivial cycles Ai+1
Z (X) is trivial for i 6= n;

(ii) the group An+1
Z (X) admits an algebraic representative carrying an incidence

polarization; see Section 3.
(iii) the Abel–Jacobi map AJn(X) : An+1

Z (X)� Jna (X) gives rise to an isomor-

phism An+1
Q (X) ' Jna (X)Q.

Example 1.16. Every C-scheme for which Ai(X) = 0, i > 0 (e.g., projective
spaces and smooth quadrics), is verepresentable. Other examples of verepresentable
C-schemes include smooth curves, many Fano threefolds of Picard rank 1, many
conic bundles over rational surfaces, many del Pezzo fibrations over P1, and also
smooth complete intersections of two even-dimensional (or three odd-dimensional)
quadrics. For a detailed list of Examples please consult Section 3.3.

By combining the above definition (1.1) of J ia(X) with Definition 1.15(i) one
observes that whenever X is verepresentable, J ia(X) = 0 for i 6= n. Consequently,
there is a single non-trivial algebraic Jacobian J(X) := Jna (X) which, thanks to
Definition 1.15(ii), carries a canonical principal polarization. Moreover, Defini-
tion 1.15(iii) implies that this principally polarized abelian variety is isomorphic,
up to isogeny, to An+1

Z (X). Our second main result is the following:

Theorem 1.17. Let X and Y be two irreducible smooth projective C-schemes as
in Theorem 1.4(i)–(ii). Assume that X and Y are verepresentable. Under these
assumptions, the split injective morphism τ : J(X)→ J(Y ) preserves the principal

polarization. When J(T ⊥,dg
Y ) = 0 the morphism τ becomes an isomorphism.

Thanks to Example 1.16, Theorem 1.17 holds (unconditionally) in the above
Examples 1.9–1.11. If one assumes that X and Y (and Z) are verepresentable,
then Theorem 1.17 also holds in the above Examples 1.7–1.8.

Remark 1.18 (Conditional example). In the above Example 1.12 the only missing
assumption for Theorem 1.17 to hold is the verepresentability of Y . Similar cases
occur whenever Homological Projective Duality gives rise to a fully faithful functor
perf(X) → perf(Y ) with X verepresentable (e.g., a curve) and T ⊥Y generated by
exceptional objects; see [8] for some recent examples.

The assumption that Φ is of Fourier–Mukai type goes back to Kuznetsov:

Conjecture 1.19 (Kuznetsov [44, Conjecture 3.7]). Φ is of Fourier–Mukai type.

As mentioned above, perf(X) and perf(Y ) admit (unique) dg enhancements

perfdg(X) and perfdg(Y ). Let us denote by T dg
X , T ⊥,dg

X , T dg
Y , T ⊥,dg

Y the inherited
dg enhancements. Making use of them, we explain in Lemma 4.4 that Φ is of
Fourier–Mukai type if and only if it admits a dg enhancement Φdg : perfdg(X) →
perfdg(Y ). If one assumes the existence of this dg enhancement, then Theorems
1.4(i)–(iii) and 1.17 also hold in the following case:

Example 1.20. Let X = Y be a Fano threefold, or a conic bundle over a rational
surface, or a del Pezzo fibration over P1, and TX and TY the orthogonal complement
of exceptional collections; see [46], [45], and [3], respectively. In the particular cases
where there exists a C-scheme Z and a Brauer class α such that TX ' perf(Z, α),
the equivalence φ : TX ' TY is known to be of Fourier–Mukai type; see [16].
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We conclude this section with some comments on the above Conjecture 1.19.
Firstly, it holds in all the cases arising from Homological Projective Duality. Cur-
rently, this is the most useful tool to construct C-schemes X and Y satisfying the
above categorical data. Secondly, in order to establish the equivalence φ : TX ' TY ,
one has in some cases to construct first the kernel of Φ. This strongly suggests the
correctness of Conjecture 1.19 and also that instead of triangulated categories one
should work with their differential graded enhancements. For a survey article on
functors of Fourier–Mukai type we invite the reader to consult [17].

Finally, for applications of the above Theorems 1.4 and 1.17 please consult Sec-
tions 6–9.

Notations: Throughout the article we will always work over the field C of complex
numbers. All C-schemes will be assumed to be smooth, proper, and irreducible.

Acknowledgments: The authors are very grateful to Thomas Dedieu, Valery
Lunts, Alexander Polishchuk, Paolo Stellari, Michel Vaquié, and Charles Vial, for
useful discussions, e-mail exchanges, and motivating questions. They are also very
grateful to the anonymous referee for his/her comments and suggestions that greatly
allowed the improvement of the article. Finally, G. Tabuada would also like to thank
the MSRI, Berkeley, for its hospitality and excellent working conditions.

2. Background on dg Categories and Noncommutative Motives

DG categories. Let C(C) be the category of cochain complexes of C-vector spaces;
we use cohomological notation. A differential graded (= dg) category A is a category
enriched over C(C) (morphism sets A(x, y) are complexes) in such a way that the
composition law satisfies the Leibniz rule d(f ◦ g) = d(f) ◦ g + (−1)deg(f)f ◦ d(g).
A dg functor F : A → B is a functor enriched over C(C); consult Keller’s ICM
address [38] for further details. In what follows we will write dgcat(C) for the
category of (small) dg categories and dg functors. The tensor product A ⊗ B of
two dg categories A and B is defined as follows: the set of objects is the cartesian
product of the sets of objects of A and B and the complexes of morphisms are given
by (A⊗ B)((x, w), (y, z)) := A(x, y)⊗ B(w, z).

(Bi)modules. Let A be a dg category. Its opposite dg category Aop has the same
objects and complexes of morphisms given by Aop(x, y) := A(y, x). A right A-
module is a dg functor M : Aop → Cdg(C) with values in the dg category Cdg(C)
of cochain complexes of C-vector spaces; see [38, Section 2.3]. We will write C(A)
for the category of right A-modules. The derived category D(A) of A is defined as
the localization of C(A) with respect to the class of objectwise quasi-isomorphisms;
see [38, Section 3.2]. This is a triangulated category with arbitrary sums. Let us
denote by Dc(A) the full triangulated subcategory of compact objects.

Given dg categories A and B, an A-B-bimodule is a right (Aop⊗B)-module, i.e.,
a dg functor B : A⊗ Bop → Cdg(C). A standard example is the A-A-bimodule

A⊗Aop −→ Cdg(C), (x, y) 7→ A(y, x). (2.1)
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Let rep(A, B) be the full triangulated subcategory of D(Aop⊗B) consisting of those
A-B-bimodules B such that for every object x ∈ A the right B-module B(x, −) be-
longs to Dc(B). Note that every dg functor F : A → B gives rise to anA-B-bimodule

FB : A⊗ Bop → Cdg(C), (x, w) 7→ B(w, F (x)), which belongs to rep(A, B).

Morita equivalences. A dg functor F : A → B is called a Morita equivalence if
the restriction of scalars functor D(B) → D(A) is an equivalence of (triangulated)
categories; see [38, Section 4.6]. As proved in [62, Theorem 5.3], the category
dgcat(C) carries a Quillen model category whose weak equivalences are the Morita
equivalences. Let us write Hmo(C) for the associated homotopy category. As proved
in loc. cit., the assignment F 7→ FB gives rise to a bijection

HomHmo(C)(A, B) ' Iso rep(A, B), (2.2)

where Iso stands for the set of isomorphism classes. Moreover, under (2.2) the com-
position law in Hmo(C) corresponds to the (derived) tensor product of bimodules.

Pretriangulated dg categories. Let A be a dg category. The C-linear category H0(A)
has the same objects as A and morphisms given by H0(A)(x, y) := H0(A(x, y)),
where H0(−) is the 0th cohomology group functor. The dg category A is called
pretriangulated if H0(A) is a triangulated category; see [38, Section 4.5].

Noncommutative Chow motives. As explained above, we have the functor

dgcat(C)→ Hmo(C), A 7→ A, F 7→ FB. (2.3)

The additivization of Hmo(C) is the additive category Hmo0(C) with the same ob-
jects as Hmo(C) and morphisms HomHmo0(C)(A, B) := K0 rep(A, B), where K0

stands for the Grothendieck group of the triangulated category rep(A, B). The
composition law is induced by the tensor product of bimodules; consult [62, Sec-
tion 6] for further details. Note that we have the canonical functor

Hmo(C)→ Hmo0(C), A 7→ A, B 7→ [B]. (2.4)

The Q-linearization of Hmo0(C) is the Q-linear additive category Hmo0(C)Q ob-
tained by tensoring each abelian group of morphisms of Hmo0(C) with Q. By
construction, it comes equipped with the following functor

Hmo0(C)→ Hmo0(C)Q, A 7→ A, [B] 7→ [B]Q. (2.5)

Since the above functors (2.3)-(2.5) are the identity on objects we will make no
notational distinction between a dg category and its image in Hmo0(C)Q.

Now, recall from Kontsevich [39], [40], [41] that a dg category A is called smooth
if the above A-A-bimodule (2.1) belongs to Dc(Aop ⊗ A) and proper if for each
ordered pair of objects (x, y) we have

∑
i dimCH

iA(x, y) < ∞. The category
NChow(C)Q of noncommutative Chow motives (with rational coefficients) is defined
as the pseudo-abelian envelope of the full subcategory of Hmo0(C)Q consisting of
the smooth and proper dg categories. For a survey article on noncommutative
(Chow) motives we invite the reader to consult [63].

3. Background on Principal and Incidence Polarizations

In this section we collection the necessary background for Definition 1.15.
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3.1. Algebraic and rational representability. Given a C-scheme X of dimen-
sion dX , let CHi

Q(X) (resp. CHi
Z(X)) denote the rational (resp. integral) Chow

group of cycles of codimension i. We will write AiQ(X) (resp. AiZ(X)) for the sub-
group of algebraically trivial cycles. Let A be a complex abelian variety. A group
homomorphism g : AiZ(X)→ A is called a regular map if for every C-scheme T and
for every algebraic map f : T → AiZ(X) (i.e., there is an algebraic cycle z on X ×T
such that f(t) = zt) the composite g ◦ f : T → A is a morphism of C-schemes.

Definition 3.1. (see Beauville [4, Définition 3.2.3]) A complex abelian variety A
is called an algebraic representative of AiZ(X) if there exists a universal regular
map G : AiZ(X) → A, i.e., if for every regular map g : AiZ(X) → B, there is a
unique morphism of abelian varieties u : A → B such that u ◦ G = g. In this case
one says that AiZ(X) is algebraically representable. As explained by Beauville in
loc. cit., whenever it exists the algebraic representative is unique up to isomorphism.
The standard examples of algebraic representatives are the Picard variety Pic0(X)
(when i = 1) and the Albanese variety Alb(X) (when i = dX).

Definition 3.2 (see Vial [69, Corollary 3.6]). A C-scheme X is called rationally
representable if for every integer i there exists a curve Γ and a surjective map
A1

Q(Γ)� Ai+1
Q (X) induced by a cycle in Γ×X. In this case the Abel–Jacobi maps

AJ i : Ai+1
Z (X) → J ia(X) give rise to isomorphisms Ai+1

Q (X) ' J ia(X)Q for every
0 6 i 6 dX − 1.

3.2. Principal and incidence polarizations. From now on, and until the end
of Section 3, we will assume that X is of odd dimension dX = 2n+ 1.

Definition 3.3. (see Beauville [4, Section 3.4]) Let T be a C-scheme. We denote
by p : X × T × T → X × T (resp. q : X × T × T → X × T ) the projection onto the
first (resp. second) copy of T , and r : X×T ×T → T ×T the projection morphism.

(i) The (rational) divisorial self correspondences of T are defined as CorrQ(T ) :=
Corr(T )⊗Q, where Corr(T ) := Pic(T × T )/(Pic(T )� Pic(T )), and Pic stands for
the Picard group.

(ii) Let z be a cycle in CHn+1
Q (X × T ). The incidence correspondence I(z)

associated to z is the equivalence class of the cycle r∗(p
∗(z) · q∗(z)) ∈ CH1

Q(T × T )
considered as an element in CorrQ(T ).

Definition 3.4. Let A be a complex abelian variety.
(i) A polarization of A is the first Chern character ΘA := c1(L) of a positive

definite line bundle. Equivalently, a polarization of A is a divisorial rational self
correspondence θA ∈ CorrQ(A) corresponding to an isogeny A→ Â; see Birkenhake
and Lange [48, Section 4.1], Mumford [57, Section 8] and [4, Section 0.2 and 3.4].

(ii) A polarization θA is called principal if it gives rise to an isomorphism A '
Â; see Beauville [4, Section 0.2]. A principally polarized abelian variety consists
of a pair (A, θA), where θA ∈ CorrQ(A) is a principal polarization of A. Every
polarization is obtained from a principal one via an isogeny; see [48, Proposition
4.1.2]. Consequently, a principal polarization is unique up to an isomorphism of A.

(iii) A morphism f : A → B of complex tori is a morphism of principally po-
larized abelian varieties if the divisorial self correspondence f∗θB gives rise to an
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isomorphism A ' Â. Indeed, f∗θB is a polarization of A which is principal if and
only if it gives rise to such an isomorphism. This is the case if f∗θB equals θA up
to an isomorphism of A.

Recall that Ab(C)Q stands for the category of abelian varieties up to isogeny.

Lemma 3.5. Let (A, θA) and (B, θB) be two complex polarized abelian varieties,
and AQ and BQ the classes of A and B in Ab(C)Q. Given a morphism λQ : AQ →
BQ, there exists a morphism of complex abelian varieties λ : A→ B whose class in
Ab(C)Q is λQ. Moreover, whenever λQ is split injective, λ : A → B is an isogeny
onto a polarized abelian subvariety of B.

Proof. Without loss of generality one can assume that λQ is surjective. In fact, since
(B, θB) is a polarized abelian variety, every algebraic subtorus of B is an abelian
variety for which the restriction of θB is a polarization; see Birkenhake and Lange
[48, Proposition 4.1.1]. Now, note that λQ is an element of HomAb(C)(A, B)⊗Q and
hence can be written as a finite sum

∑
i fi⊗

pi
qi

. By first choosing a representative A

of the class AQ and then by applying the morphism λQ to A we obtain an algebraic
complex torus B′ as λ(A)Q. The isogeny class B′Q of B′ is the same as the isogeny
class of λQ(AQ) = BQ. In particular, B′ is an abelian variety isogenous to B. As
a consequence, one can take for λ : A→ B the morphism of complex tori obtained
by composing λQ with the isogeny B′ → B. Finally, the last claim follows from
the above construction of λ. Whenever λQ is split injective, the kernel ker(λ) is
torsion. �

Definition 3.6. (see Beauville [4, Définition 3.4.2]) Assume that An+1
Z (X) admits

an algebraic representative G : An+1
Z (X)→ A. In this case, a principal polarization

(A, θA) is called the incidence polarization with respect to X if for all algebraic maps
f : T → An+1

Z (X) defined by a cycle z ∈ CHn+1
Q (T×X) the equality (G◦f)∗(θA) =

(−1)n+1I(z) holds.

3.3. Verepresentability. Recall from Definition 1.15 the notion of verepresent-
ability. Here is a detailed list of examples:

Example 3.7. (Curves) Every curve C is verepresentable. This follows automati-
cally from the fact that there is a single group A1

Z(C) of algebraically trivial cycles

and that A1
Z(C) = Pic0(C) = J(C).

Lemma 3.8. Let X be a verepresentable threefold. In this case the above bilinear
pairings (1.3) are non-degenerate.

Proof. By definition, one has A3
Q(X) = 0. Hence, A3

Q(X) is rationally representable,

i.e., there exists a curve Γ and a surjective algebraic morphism A1
Q(Γ) � A3

Q(X).
Gorchinskiy and Guletskii [25, Theorem 5.1] proved that the rational representabil-
ity of A3

Q(X) is enough to describe a Chow–Künneth decomposition of the Chow
motive M(X)Q. As explained by Vial in [69, Theorem 4], this is equivalent to the
rational representability of all the Q-vector spaces AiQ(X). This implies that X
satisfies the standard conjecture of Lefschetz type (see Vial [69, Theorem 4.10])
and consequently that the above bilinear pairings (1.3) are non-degenerate. �
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Thanks to the work of Gorchinskiy and Guletskii [25], whenever X is a Fano
threefold, a conic bundle over a rational surface, or a del Pezzo fibration over P1,
X is rationally representable and J ia(X) is trivial for i 6= 1 (we have Pic0(X) = 0).
Hence, a proof similar to the one of Lemma 3.8 allows us to conclude that the
bilinear pairings (1.3) are non-degenerate. In all these cases, the verepresentability
of X depends only on the existence of an incidence polarization. Therefore, we
obtain the following list of verepresentable threefolds:

Example 3.9 (Threefolds). (i) Trivial Jacobian: assume that X is P3, a quadric
threefold, a Fano threefold of index 2 and degree 5, or a Fano threefold of index 1 and
degree 22. In all these cases the verepresentability follows easily from the triviality
of J(X). In fact, h1,2(X) = 0; see Iskovskikh and Prokhorov [35, Section 12.2].

(ii) Fano threefolds of index 2: Let X be a cubic threefold (see Clemens and
Griffiths [20]), a quartic double solid (see Tihomirov [65] and Voisin [70]), the
intersection of two quadrics in P5 (see Donagi[24] and Reid [61]), or a Fano threefold
of index 2 and degree 5 (see item (i)). In all these cases there is an incidence
polarization.

(iii) Fano threefolds of index 1: Let X be a general sextic double solid (see Ceresa
and Verra [18]), a quartic in P4 (see Bloch and Murre [11]), the intersection of a
cubic with a quadric in P5 (see Bloch and Murre [11]), the intersection of three
quadrics in P6 (see Beauville [4] and also Bloch and Murre [11]), a Fano threefold
of index 1 and degree 10 (see Iliev [30] and Logachëv [50]) or of degree 14 (see Iliev
and Markushevich [33]), a general Fano threefold of index 1 and degree 12 (see Iliev
and Markushevich [34]), degree 16 (see Iliev [31] and Mukai [56]), or degree 18 (see
Iliev and Manivel [32] and also Iskovskikh and Prokhorov [35]), or a Fano threefold
of index 1 and degree 22 (see item (i)). In all these cases there is an incidence
polarization.

(iv) Conic bundles: Let X → S be a standard conic bundle over a rational
surface. In this case there is an incidence polarization; see Beauville [4] and Bel-
trametti [5].

(v) del Pezzo fibrations: Let X → P1 be a del Pezzo fibration of degree d with
d = 2, 3, 4, 5. In this case there is an incidence polarization; see Kanev [36], [37].

For Fano threefolds of higher Picard rank we invite the interested reader to
consult the exhaustive treatment of Iskovskikh and Prokhorov [35].

Example 3.10. (Higher dimensions) When dX > 5, only a few examples of verep-
resentable C-schemes are currently known.

(i) If X is the intersection of two even-dimensional quadrics, then X is verep-
resentable. Thanks to [10, Theorem 1.5] and to the work of Reid [61] and Donagi
[24], the only non-trivial Jacobian is the intermediate one. Moreover, this Jacobian
carries an incidence polarization.

(i′) If X is the intersection of three odd-dimensional quadrics, then X is also
verepresentable. Once again, thanks to [10, Theorem 1.5] and to the work of
Beauville [4, Section 6], the only non-trivial Jacobian is the intermediate one. More-
over, this Jacobian carries an incidence polarization.
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(ii) If X is an even-dimensional quadric fibration over P1, then X is verep-
resentable. This follows from the combination of Vial’s motivic description [68,
Section 4] with Reid’s work on the intermediate Jacobian [61]; see also Donagi [24].

(ii′) If X is a odd-dimensional quadric fibration over P2, then X is verepre-
sentable. Thanks to the work of Beauville [4, Section 4], the only non-trivial
Jacobian is the intermediate one. Moreover, this Jacobian carries an incidence
polarization. As in the 3-dimensional case, it is natural to expect that P2 can be
replaced by any rational surface; see Beltrametti [5].

4. Proof of Theorem 1.4

By assumption there exist semi-orthogonal decompositions perf(X) = 〈TX , T ⊥X 〉
and perf(Y ) = 〈TY , T ⊥Y 〉 and an equivalence φ : TX ' TY of triangulated categories.
Out of this data one constructs the composed functor

Φ: perf(X)
πX−−→ TX

φ
' TY

iY−→ perf(Y ), (4.1)

where πX stands for the projection and iY for the inclusion. Once again by as-
sumption, Φ is of Fourier–Mukai type, i.e., Φ is isomorphic to the Fourier–Mukai
functor ΦE := Rq∗(p

∗(−) ⊗L E); the complex E is usually called the kernel of ΦE .
As proved by Huybrechts in [29, Proposition 5.9], the right adjoint of ΦE is also of
Fourier–Mukai type and its kernel is given by ER := E∨ ⊗L p∗ωX [dX ], where E∨ is
the dual of E and ωX [dX ] the canonical line bundle of X shifted by the dimension
of X. Moreover, the unit γ : Id ⇒ ΦER ◦ ΦE of this adjunction is an isomorphism
when evaluated at any object of TX ⊂ perf(X); see Kuznetsov [44, Theorem 3.3].

Now, recall that the triangulated categories perf(X) and perf(Y ) admit unique

dg enhancements perfdg(X) and perfdg(Y ). As proved by Toën [66, Section 8.3],
every perfect complex E ∈ perf(X × Y ) gives rise to a dg functor

Φdg
E : perfdg(X)→ perfdg(Y ), F 7→ Rq∗(p

∗(F)⊗L E) (4.2)

such that H0(Φdg
E ) ' ΦE . Moreover, one has the following bijection

Iso perf(X × Y )
'−→ HomHmo(C)(perfdg(X), perfdg(Y )), E 7→ Φdg

E . (4.3)

We record the following easy result:

Lemma 4.4. The following conditions are equivalent :

(i) (Kuznetsov’s conjecture 1.19) the functor (4.1) is of Fourier–Mukai type;
(ii) the functor (4.1) admits a dg enhancement, i.e., there exists a dg functor

Φdg : perfdg(X)→ perfdg(Y ) such that H0(Φdg) ' Φ.

Proof. If Φ is of Fourier–Mukai type, with kernel E , then we can take for Φdg the
dg functor (4.2). This shows the implication (i)⇒ (ii). Assume now that Φ admits

a dg enhancement Φdg. Thanks to bijection (4.3), Φdg is of the form Φdg
E for some

perfect complex E ∈ perf(X × Y ). Using the equivalence H0(Φdg) ' Φ, one then
concludes that Φ is of the form ΦE (and hence of Fourier–Mukai type). This shows
the implication (ii)⇒ (i). �
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Let us denote by idg
X the inclusion of dg categories T dg

X → perfdg(X). The above
projection functor πX : perf(X)→ TX also admits a dg enhancement:

Lemma 4.5. There exists a well-defined morphism πdg
X : perfdg(X) → T dg

X in

Hmo(C) such that πdg
X ◦ i

dg
X = Id.

Proof. Recall first that we have the following inclusions of dg categories

idg
X : T dg

X → perfdg(X), i⊥,dg
X : T ⊥,dg

X → perfdg(X). (4.6)

Their intersection in perfdg(X) is the zero object. Hence, let us denote by T the full

dg subcategory of perfdg(X) consisting of those objects that belong to T dg
X or to

T ⊥,dg
X . Note that the dg functor idg

X factors through the inclusion T ⊂ perfdg(X).
Since by hypothesis one has a semi-orthogonal decomposition perf(X) = 〈TX , T ⊥X 〉,
the objects of H0(T ) form a set of generators of perf(X). Consequently, the inclusion

of dg categories T ⊂ perfdg(X) is a Morita equivalence (see Keller [38, Lemma 3.10])

and hence an isomorphism in Hmo(C). Consider then the dg functor πdg
X : T → T dg

X

that is the identity of T dg
X and which sends all the remaining objects to zero. �

Notation 4.7. Given two dg functors F, G : A → B, the complex of morphisms
Hom(F, G) has as its nth component the C-vector space formed by the families of
morphisms φx ∈ B(F (x), G(x))n of degree n such that G(f)◦φx = φx ◦F (f) for all
f ∈ A(x, y) and x, y ∈ A; see Keller [38, Section 2.3]. The differential is induced
by that of B(F (x), G(x)). The set of morphisms ν from F to G is by definition in
bijection with Z0Hom(F, G), where Z0(−) denotes the degree zero cycles functor.

Lemma 4.8. Let F, G : A → B be two dg functors between pretriangulated dg cat-
egories and ν : F ⇒ G a morphism from F to G. This data naturally give rise to
a morphism between A-B-bimodules νB : FB ⇒ GB and to a natural transforma-
tion H0(ν) : H0(F ) ⇒ H0(G) between triangulated functors. With these notations,
whenever H0(ν) is an isomorphism, νB is a quasi-isomorphism.

Proof. Let x ∈ A and w ∈ B. One needs to prove that the induced homomorphisms

(νx)∗ : HiB(w, F (x))→ HiB(w, G(x)), i ∈ Z, (4.9)

are isomorphisms. By assumption, A and B are pretriangulated. Therefore, (4.9)
identifies with the induced homomorphisms

(H0(ν)x)∗ : HomH0(B)(w[i], F (x))→ HomH0(B)(w[i], G(x)), i ∈ Z, (4.10)

where w[i] is the ith suspension of w in the triangulated category H0(B). Since
by hypothesis H0(ν) is an isomorphism, one then concludes that (4.10) (and hence
(4.9)) is an isomorphism. This completes the proof. �
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Proposition 4.11. Assume that Φ is of Fourier–Mukai type with kernel E. In this
case we have the following commutative diagram

perfdg(X)
Φdg
E // perfdg(Y )

Φdg
ER // perfdg(X)

T dg
X

idg
X

OO

T dg
X

idg
X

OO
(4.12)

in the homotopy category Hmo(C).

Proof. Consult Caldararu and Willerton [15] for the construction of the 2-category
Var(C) of integral kernels. The objects are the smooth projective C-schemes, the
categories of morphisms are given by HomVar(C)(X, Y ) := perf(X×Y ), the compo-
sition law is induced by the convolution of kernels, and the identity of every object
X is the structure sheaf R∆∗(OX) ∈ perf(X ×X) of the diagonal ∆ ⊂ X ×X.

Let E be a perfect complex of OX×Y -modules, i.e., a morphism in Var(C) from X
to Y . As explained by Caldararu and Willerton [15, Section 3.2 and Appendix], its
right adjoint in the 2-category Var(C) is given by ΣX ◦E∨, where E∨ ∈ perf(Y ×X)
is the dual of E and ΣX ∈ perf(X×X) is the Serre kernel R∆∗(ωX [dX ]). Since the
composition of Fourier–Mukai functors corresponds to the convolution of kernels
(see Huybrechts [29, Proposition 5.10]), and R∆∗(ωX) is mapped to p∗ωX (via
pull-back push-forward), we conclude that ΣX ◦ E∨ ' ER := E∨ ⊗L p∗ωX [dX ].
In particular, we have a well-defined unit morphism Γ: R∆∗(OX) → ER ◦ E in
perf(X×X). Now, as explained by Caldararu and Willerton in [15, Section 1.2], one
has a well-defined 2-functor perf(−) : Var(C) → Cat with values in the 2-category
of categories. A C-scheme X is mapped to the derived category perf(X) of perfect
complexes, a kernel E ∈ perf(X ×Y ) to the Fourier–Mukai functor ΦE : perf(X)→
perf(Y ), and a morphism µ : E ⇒ E ′ in perf(X × Y ) to a natural transformation
Φµ : ΦE ⇒ ΦE′ . In particular, the above adjunction (E , ER) in Var(C) gives rise to
the classical adjunction of categories

perf(Y )

ΦER
��

perf(X),

ΦE

OO

with unit morphism γ = ΦΓ : Id⇒ ΦER ◦ΦE . Now, choose a representative Γ (i.e., a
morphism of complexes of OX×X -modules) for the unit morphism Γ: R∆∗(OX)→
ER ◦ E . As proved by Toën [66, Section 8.3], the composition law in Hmo(C)
corresponds under the above bijection (4.3) to the convolution of kernels. Hence,
Γ naturally gives rise to a morphism

Φdg

Γ
: Id = Φdg

R∆∗(OX) ⇒ Φdg
ER◦E = Φdg

ER ◦ Φdg
E

between dg functors. By precomposing all this data with the inclusion idg
X : T dg

X →
perfdg(X) one then obtains a well-defined morphism Φdg

Γ
◦ idg
X from the dg functor
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idg
X : T dg

X → perfdg(X) to the composed dg functor

T dg
X

idg
X−→ perfdg(X)

Φdg
E−−→ perfdg(Y )

Φdg
ER−−−→ perfdg(X). (4.13)

We now claim that this data satisfies the conditions of the general Lemma 4.8 (with

ν = Φdg

Γ
◦idg
X ). This follows from the equalities H0(Φdg

ER) = ΦER , H0(Φdg
E ) = ΦE , and

H0(Φdg

Γ
) = ΦΓ = γ, and from the fact that the unit morphism η : Id ⇒ ΦER ◦ ΦE

of the adjunction (ΦE , ΦER) is an isomorphism when evaluated at any object of
TX ⊂ perf(X). Consequently, Lemma 4.8 furnishes us with a quasi-isomorphism

(Φdg

Γ
◦idg

X )B : idg
X
B ⇒ (Φdg

ER
◦Φdg
E ◦i

dg
X )B (4.14)

between two bimodules which belong to rep(T dg
X , perfdg(X)). Making use of the

bijection (2.2), one then concludes that diagram (4.12) is commutative. �

We now have all the necessary ingredients for the conclusion of the proof of The-
orem 1.4. By assumption, Kuznetsov’s conjecture 1.19 holds. Therefore, item (ii) of

Lemma 4.4 furnishes us with a well-defined dg functor Φdg
E : perfdg(X)→ perfdg(Y ).

By applying to it the Jacobian functor J(−) one then obtains a morphism of com-
plex abelian varieties up to isogeny

J(Φdg
E ) : J(perfdg(X))→ J(perfdg(Y )). (4.15)

Since by assumption the bilinear pairings (1.3) (associated to X and Y ) are non-

degenerate, (4.15) identifies with a well-defined morphism τ :
∏dX−1
i=0 J ia(X) →∏dY −1

i=0 J ia(Y ) in Ab(C)Q. This proves item (i).
Let us now prove item (ii). Thanks to Lemma 4.5, there exists a morphism

πdg
X : perfdg(X) → T dg

X in Hmo(C) such that πdg
X ◦ i

dg
X = Id. This implies in par-

ticular that T dg
X belongs to the category NChow(C)Q of noncommutative Chow

motives. By applying the Jacobian functor J(−) to (4.12) one then obtains the
following commutative diagram of complex abelian varieties up to isogeny

J(perfdg(X))
J(Φdg
E ) // J(perfdg(Y ))

J(Φdg
ER

)
// J(perfdg(X))

J(T dg
X )

J(idg
X )

OO

J(T dg
X ).

J(idg
X )

OO
(4.16)

Since by assumption J(T ⊥,dg
X ) = 0, Lemma 4.17 below implies that J(idg

X ) is an
isomorphism. Using the commutativity of diagram (4.16) one then concludes that

J(Φdg
ER) is a retraction of J(Φdg

E ) ' τ or equivalently that τ is split injective. This
concludes the proof of item (ii).

Lemma 4.17. The morphism of complex abelian varieties up to isogeny

J(idg
X ) : J(T dg

X )→ J(perfdg(X))

is an isomorphism if and only if J(T ⊥,dg
X ) = 0.
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Proof. Since by hypothesis one has a semi-orthogonal decomposition perf(X) =

〈TX , T ⊥X 〉, the inclusions of dg categories idg
X : T dg

X ↪→ perfdg(X) and i⊥,dg
X : T ⊥,dg

X ↪→
perfdg(X) give rise to an isomorphism T dg

X ⊕T
⊥,dg
X

'−→ perfdg(X) in Hmo0(C) (and
hence in NChow(C)Q); see [62, Theorem 6.3]. Therefore, by applying to it the
additive Jacobian functor J(−) one then obtains the following isomorphism

[J(idg
X ), J(i⊥,dg

X )] : J(T dg
X )⊕ J(T ⊥,dg

X )
'−→ J(perfdg(X))

in Ab(C)Q. This isomorphism clearly implies our claim. �

Let us now prove item (iii). From the above arguments and constructions, one
has a commutative diagram

perfdg(X)
Φdg
E // perfdg(Y )

T dg
X

idg
X

OO

'
// T dg
Y

idg
Y

OO

in the homotopy category Hmo(C). By applying to it the Jacobian functor J(−)
one then obtains a commutative diagram of complex abelian varieties up to isogeny

J(perfdg(X))
J(Φdg
E )// J(perfdg(Y ))

J(T dg
X )

J(idg
X )

OO

'
// J(T dg

Y ).

J(idg
Y )

OO
(4.18)

Since by assumption J(T ⊥,dg
Y ) = 0, one concludes from Lemma 4.17 that the vertical

morphisms in (4.18) are isomorphisms. This implies that J(Φdg
E ) is an isomorphism

and so the proof of Theorem 1.4 is finished.

5. Proof of Theorem 1.17

By assumption, the C-schemes X and Y satisfy all the assumptions of items
(i)–(ii) of Theorem 1.4 and are moreover verepresentable. In particular, X (resp. Y )
is irreducible of odd dimension dX := 2n+ 1 (resp. dY := 2m+ 1). Moreover, there
is a single non-trivial algebraic Jacobian J(X) := Jna (X) (resp. J(Y ) := Jma (Y )),
which via a universal regular map

GX : An+1
Z (X)� J(X) (resp. GY : Am+1

Z (Y )� J(Y )),

is the algebraic representative of An+1
Z (X) (resp. of Am+1

Z (Y )); see Section 3.1. A
proof of the surjectivity of GX (resp. GY ) can be found in Beauville’s work [4,
Remark 3.2.4(ii)]. Furthermore, we have induced isomorphisms

AJnQ : An+1
Q (X)

'→ J(X)Q, AJmQ : Am+1
Q (Y )

'→ J(Y )Q,

where J(X)Q (resp. J(Y )Q) stands for J(X) (resp. J(Y )) considered as an abelian
variety up to isogeny.
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Now, recall from the proof of Theorem 1.4 that there exists a perfect complex
E ∈ perf(X × Y ) such that the split injective morphism τ : J(X)Q → J(Y )Q is
obtained by applying the Jacobian functor J(−) to the Fourier–Mukai dg functor

Φdg
E : perfdg(X)→ perfdg(Y ). Consider the following homomorphism

em+n+1 : CHn+1
Q (X)→ CHm+1

Q (Y ), z 7→ q∗(p
∗(z) · ch(E)m+n+1), (5.1)

where ch(E)m+n+1 ∈ CHm+n+1
Q (X × Y ) is the (m + n + 1)th component of the

Chern character ch(E) of E , and p : X × Y → X and q : X × Y → Y are the
projection morphisms. Algebraic equivalence is an adequate equivalence relation
on cycles; see André [2, Définition 3.1.1.1, Section 3.2.1]. This, together with the
fact that q : X × Y → Y is equidimensional, implies that (5.1) gives rise to a map
τ : An+1

Q (X) → Am+1
Q (Y ), which is still the correspondence given by ch(E)m+n+1;

see André [2, Section 3.1.2].

Lemma 5.2. One has the following commutative diagram

An+1
Q (X)

'AJn
Q

��

τ // Am+1
Q (Y )

' AJm
Q

��
J(X)Q τ

// J(Y )Q.

Proof. Let us denote by Chow∗(C)Q (resp. by Num∗(C)Q) the category of Chow
(resp. numerical) motives where the morphisms are the graded correspondences. As
proved in [53, Theorem 1.9], the category Num∗(C)Q (denoted by Num(C)Q/−⊗Q(1)

in loc. cit.) is abelian semi-simple. As explained in [52, Section 4], one has a well-
defined inclusion Ab(C)Q ⊂ Num∗(C)Q of abelian semi-simple categories. Now,
consider the following graded correspondence

e := ch(E) · p∗Td(X) ∈
⊕
i

CHi
Q(X × Y ),

where Td(X) is the Todd class of X. As proved in [52, Section 4] (see also [64,
Section 8]), J(X)Q (resp. J(Y )Q) is the largest direct summand of MQ(X) ∈
Num∗(C)Q (resp. of MQ(Y )) which belongs to Ab(C)Q. Moreover, the morphism

τ = J(Φdg
E ) : J(X)Q → J(Y )Q is the largest direct summand of the graded cor-

respondence e (considered as a morphism in Num∗(C)Q from MQ(X) to MQ(Y ))
which belongs to Ab(C)Q. The correspondence e is a mixed cycle. Let us now
show that the only degree that contributes to τ is em+n+1; note that this automati-
cally completes the proof. Since the relative dimension of the projection morphism
q : X × Y → Y is equal to the dimension of X, i.e., 2n+ 1, we have a well-defined
graded homomorphism

q∗ : CH∗Q(X × Y )→ CH∗−2n−1
Q (Y )

and consequently we obtain the equality

(q∗(p
∗(z) · e))m+1 = q∗((p

∗(z) · ch(E) · p∗Td(X))m+2n+2).
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Moreover, since p∗ is a morphism of commutative rings, i.e., it respects the com-
mutative intersection pairing (see [28, A1-2, page 426]), we also have the equality

p∗(z) · ch(E) · p∗Td(X) = p∗(z · Td(X)) · ch(E).

Now, recall from Pappas [60, Section 1] that the Todd class Td(X) is given by∑
i>0

Di

Ti
. Here, Di is a polynomial with integral coefficients in the Chern classes and

Ti is the product
∏
p p

[ i
p−1 ] taken over all the prime numbers; the symbol [−] stands

for the integral part. Note that D0 = 1 since the degree zero component of the Todd
class of any vector bundle is 1; [28, Appendix A, Section 4]. Moreover, recall that
algebraically trivial cycles form an ideal under intersection, see André [2, Définition
3.1.1.1(3)]. Since by assumption X is verepresentable, we have AiZ(X) = 0 for all
i 6= n+ 1. Therefore, in the following intersection product

z · Td(X) = z ·
∑
i>0

Di

Ti
=
∑
i>0

(
z · Di

Ti

)
,

all the components of degree 6= n+1 are trivial. Since z has degree n+1, z ·Td(X) =
z · D0

T0
= z, and therefore p∗(z · Td(X)) = p∗(z) is a purely n + 1-codimensional

cycle. We obtain in this way the following equality

(q∗(p
∗(z) · e))m+1 = q∗(p

∗(z) · ch(E)m+n+1),

which completes the proof. �

We now record the following simple result:

Lemma 5.3. Let X be a verepresentable variety, L a line bundle on X and Ψdg

the associated Morita equivalence − ⊗ L : perfdg(X) → perfdg(X). In this case,
Ψdg induces the identity map An+1

Q (X)→ An+1
Q (X).

Proof. Note first that the Grothendieck–Riemann–Roch theorem implies that the
map CH∗Q(X) → CH∗Q(X) induced by Ψdg is given by z 7→ ψ(z) := z · ch(L).

Let z ∈ An+1
Q (X). Since z is of codimension n + 1, ψ(z) has components only in

codimensions > n + 1. Moreover, since algebraically trivial cycles form an ideal
under intersection, ψ(z) is algebraically trivial. Now, recall that by assumption X
is verepresentable. In particular, AiQ(X) = 0 for every i 6= n+1. This hence implies
that ψ(z) is pure of codimension n+ 1 and consequently that ψ(z) = z · ch0(L) = z
for any z ∈ An+1

Q (X). �

Consider the following homomorphism:

σ : Am+1
Q (Y )→ An+1

Q (X), w 7→ p∗(q
∗(w) · (−1)m+nch(E)m+n+1). (5.4)

Let us denote by σ : J(Y )Q → J(X)Q the unique morphism induced by σ via the
Abel–Jacobi map AJQ.

Lemma 5.5. The map σ : J(Y )Q → J(X)Q is a retraction of τ : J(X)Q → J(Y )Q.

Proof. As shown in the proof of Theorem 1.4, a retraction of τ is obtained by

applying the Jacobian functor J(−) to the Fourier–Mukai dg functor Φdg
ER , where

ER = E∨ ⊗ p∗ωX [dX ]. Let us denote by E! the perfect complex E∨[dX ] and by Ψdg

the Morita equivalence − ⊗ ωX : perfdg(X) → perfdg(X). Since ER = E! ⊗ p∗ωX ,
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we have Φdg
ER = Ψdg ◦ Φdg

E! . By applying the Jacobian functor J(−) to the latter

equality, we hence conclude from Lemma 5.3 (with L = ωX) that Φdg
E! and Φdg

ER
induce the same map on An+1

Q (X).

We claim that the map σ is the unique map induced by Φdg
E! . Indeed, the same

calculations as in Lemma 5.2 show that σ is given by the cycle chm+n+1(E!) on
X × Y . Since dX = 2n + 1 is odd we have ch(E∨[2n + 1]) = −ch(E∨). Moreover,
chi(E∨) = (−1)ichi(E). This follows from the fact that the Chern polynomial
ct(E∨) is obtained from ct(E) by alternating signs; see Hartshorne [28, A.3]. We
hence obtain the following equalities:

chm+n+1(E∨[2n+ 1]) = −chm+n+1(E∨) = (−1)m+nchm+n+1(E),

This implies that σ is a retraction of τ . By functoriality of the Abel–Jacobi map,
we hence conclude that σ is a retraction of τ . �

We now have all the necessary ingredients for the conclusion of the proof of The-
orem 1.17. Since by hypothesis X (resp. Y ) is verepresentable, the non-trivial alge-
braic Jacobian J(X) (resp. J(Y )) is an abelian variety endowed with the incidence
polarization θX (resp. θY ) with respect to X (resp. to Y ). In particular, this allows
one to consider J(X) and J(Y ) as canonical representatives of J(X) ' J(X)Q and
J(Y ) ' J(Y )Q, respectively. Thanks to Lemma 3.5, having a canonical choice of
(principally polarized) abelian varieties representing J(X)Q and J(Y )Q, the split
injective map τ : J(X)Q → J(Y )Q can be seen as an isogeny τ : J(X) → J(Y ).
Clearly, this isogeny is described by the algebraic cycle chm+n+1(E); see Lemma
5.2. On the other hand, Lemma 3.5 furnishes us with a morphism of algebraic
tori σ : J(Y ) → J(X) and Lemma 5.5 shows that σ is described by the cycle
(−1)m+nchm+n+1(E).

Let us now show that the isogeny τ : J(X)→ J(Y ), considered as a morphism of
abelian varieties, pulls-back the principal polarization to a principal polarization.
In order to achieve this, we will use the incidence property of θY . By hypothesis,
J(Y ) is the algebraic representative of Am+1

Z (Y ) and the principal polarization θY
of J(Y ) is the incidence polarization with respect to Y . If f : T → Am+1

Z (Y ) is

an algebraic map defined by a cycle z in CHm+1
Q (T × Y ), then (as explained in

Section 3.2) we have the following equality

(G ◦ f)∗θY = (−1)m+1I(z), (5.6)

of divisorial self correspondences on T ; see Definition 3.3(ii). Note that f is not
necessarily surjective. Set T = J(X) and consider the cycle chm+n+1(E) as giving
rise to an algebraic map τ̃ : J(X) → Am+1

Z (Y ). Indeed, from the surjectivity of

GX : An+1
Z (X) � J(X), for any α in J(X), we can choose a representative in

An+1
Z (X). Since the map τ is induced by such a correspondence, the choice of a

representative becomes irrelevant as soon as we consider the map GY : Am+1
Z (Y )�

J(Y ). In particular, we have GY ◦ τ̃ = τ . By applying the incidence property (5.6)
to the algebraic map τ̃ we then obtain the following equality

τ∗θY = (GY ◦ τ̃)∗θY = (−1)m+1i, (5.7)
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where i := I(chm+n+1(E)) is the incidence correspondence of chm+n+1(E); see Def-
inition 3.3. The principal polarization θX allows to identify J(X) with its dual; see
Definition 3.4. In order to conclude the proof it remains only to show that i is iso-
morphic, up to a sign, to the identity correspondence (here we identify J(X) with
its dual). Thanks to Lemmas 5.2–5.5, we have id = σ ◦ τ = (−1)m+ni. This con-
cludes the proof of the first claim of Theorem 1.17. The proof of the second claim
follows automatically from the arguments above and from item (iii) of Theorem 1.4.

6. Application I: Categorical Torelli

Let X and Y be two verepresentable C-schemes. The (generalized) Torelli the-
orem claims that X ' Y if and only if J(X) ' J(Y ) as principally polarized
abelian varieties. The particular case of curves (i.e., the classical Torelli theo-
rem) was proved by Torelli [67] one hundred years ago. Thanks to the work
of Clemens and Griffiths, Debarre, Donagi, Laszlo, Mérindol, and Voisin (see
[20], [21], [22], [24], [49], [54], [70]), this also holds in the case of cubic threefolds,
quartic double solids, and intersections of two (resp. three) quadrics of even (resp.
odd) dimension. Theorem 1.17 furnishes us automatically with the following cate-
gorification:

Corollary 6.1 (Categorical Torelli). Let X and Y be two C-schemes as in Theo-

rem 1.17 with J(T ⊥,dg
Y ) = 0. Assuming the (generalized) Torelli theorem holds for

X and Y , the C-schemes X and Y are isomorphic.

Intuitively speaking, Corollary 6.1 shows that the Morita equivalence class of

the dg category T dg
X determines the isomorphism class of the C-scheme X. Let us

now explain how Corollary 6.1 gives rise to the implications (6.3), (6.5), (6.8), and
(6.11) below.

Example 6.2 (Intersections of two even-dimensional quadrics). Let X and Y be
intersections of two even-dimensional quadrics, and CX and CY the associated hy-
perelliptic curves. Recall from Examples 1.9 and 3.10 that one has fully faithful
functors TX := perf(CX) → perf(X) and TY := perf(CY ) → perf(Y ) whose or-
thogonal complements are generated by the exceptional objects O, . . . , O(n − 1),
where n = dim(X) = dim(Y ). Now, suppose that there exists an equivalence of
triangulated categories φ : perf(CX) ' perf(CY ). Under this assumption, all the
conditions of Theorem 1.17 are satisfied; see Example 1.9. The associated functor Φ
is of Fourier–Mukai type since it is a composition of functors of Fourier–Mukai type;
see Kuznetsov [47, Thm. 7.1] for the projection perf(X)→ perf(CX), Orlov [59] for
the equivalence φ, and Bondal and Orlov [12] for the inclusion perf(CY ) ↪→ perf(Y ).
By combining Corollary 6.1 with the (generalized) Torelli theorem (see Donagi [24]),
we hence obtain the following implication:

perf(CX) ' perf(CY )⇒ X ' Y. (6.3)

Example 6.4 (Intersections of three odd-dimensional quadrics). Let X and Y be
intersections of three odd-dimensional quadrics of Fano type, and C0,X and C0,Y
the sheaves of even parts of the Clifford algebras associated to the quadric spans
QX → P2 and QY → P2. Recall from Examples 1.10 and 3.10 that one has fully
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faithful functors TX := perf(P2, C0,X) → perf(X) and TY := perf(P2, C0,Y ) →
perf(Y ) whose orthogonal complements are generated by the exceptional objects
O, . . . , O(n − 2), where n = dim(X) = dim(Y ). Now, suppose that there ex-
ists a Fourier–Mukai equivalence of triangulated categories φ : perf(P2, C0,X) '
perf(P2, C0,Y ). Under this assumption, all the conditions of Theorem 1.17 are veri-
fied; see Example 1.10. The associated functor Φ is of Fourier–Mukai type since the
projection perf(X)→ perf(P2, C0,X) and the embedding perf(P2, C0,Y ) ↪→ perf(Y )
are known to be of Fourier–Mukai type; see Kuznetsov [47, Theorem 7.1][45]. By
combining Corollary 6.1 with the (generalized) Torelli theorem (see Laszlo [49]), we
hence obtain the following implication:

perf(P2, C0,X) Fourier–Mukai equivalent to perf(P2, C0,Y )⇒ X ' Y . (6.5)

Example 6.6 (Quartic double solids). Let X and Y be quartic double solids.
As proved by Kuznetsov [46, Section 3], one has the following semi-orthogonal
decompositions

perf(X) = 〈TX , 〈OX , OX(1)〉〉, perf(Y ) = 〈TY , 〈OY , OY (1)〉〉. (6.7)

Suppose that there exists an equivalence of triangulated categories φ : TX ' TY
and that the composed functor Φ: perf(X) → perf(Y ) is of Fourier–Mukai type.
Under these assumptions, all the conditions of Theorem 1.17 are verified. For the
verepresentability of X and Y see Clemens [19] or Tihomirov [65]. By combining
Corollary 6.1 with the (generalized) Torelli theorem (see Debarre [22] and Voisin
[70]), we hence obtain the following implication:

TX ' TY and Φ of Fourier–Mukai type⇒ X ' Y. (6.8)

Example 6.9 (Cubic threefolds). Let X and Y be cubic threefolds. As proved by
Kuznetsov [42], one has the following semi-orthogonal decompositions

perf(X) = 〈TX , 〈OX , OX(1)〉〉, perf(Y ) = 〈TY , 〈OY , OY (1)〉〉. (6.10)

Similarly to Example 6.6, suppose that there exists an equivalence of triangulated
category φ : TX ' TY and that the composed functor Φ: perf(X) → perf(Y ) is
of Fourier–Mukai type. Under these assumptions, all the conditions of Theorem
1.17 are verified. For the verepresentability of X and Y see Clemens and Griffiths
[20]. By combining Corollary 6.1 with the (generalized) Torelli theorem (see again
Clemens and Griffiths [20]), we hence obtain the following implication:

TX ' TY and Φ of Fourier–Mukai type⇒ X ' Y. (6.11)

The above implication (6.3), (6.5), (6.8), and (6.11) give rise to the following
categorical Torelli-type result(s):

Proposition 6.12. Consider the following three cases:

(i) let X and Y be complete intersections of two even-dimensional quadrics,
TX := perf(P1, C0,X) ' perf(CX), and TY := perf(P1, C0,Y ) ' perf(CY );

(ii) let X and Y be complete intersections of three odd-dimensional quadrics of
Fano type, TX := perf(P2, C0,X), and TY := perf(P2, C0,Y );

(iii) let X and Y be quartic double solids (resp. cubic threefolds) and TX and
TY as in (6.7) (resp. as in (6.10)).
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In each one of the above cases, the C-schemes X and Y are isomorphic if and only

if the dg-categories T dg
X and T dg

Y are Morita equivalent. In case (i), T dg
X is Morita

equivalent to T dg
Y if and only if TX ' TY . In cases (ii)–(iii), assuming Kuznetsov’s

Conjecture 1.19, T dg
X is Morita equivalent to T dg

Y if and only if TX ' TY .

Proof. As explained in Examples 6.2–6.9, the (generalized) Torelli theorem holds in
each one of the cases (i)–(iii). Therefore, the implication (⇐) follows automatically
from Corollary 6.1. Let us now prove the converse implication. Suppose that the

C-schemes X and Y are isomorphic via an isomorphism f : X
'→ Y . Clearly, the

inverse image functor gives rise to an equivalence f∗ : perf(Y )
'→ perf(X) which is

of Fourier–Mukai type with kernel OΓf
, where Γf is the graph of f ; see Huybrechts

[29, Example 5.4], It remains then only to show that f∗ restricts to an equivalence
TX ' TY . Note that since f∗ is of Fourier–Mukai type, the equivalence TX ' TY
will admit a dg enhancement T dg

X ' T dg
Y .

In the above case (i) with dX = 1, the C-schemes X and Y are elliptic curves
and CX ' X (resp. CY ' Y ). It is clear then that f∗ yields an equivalence
of categories TY = perf(CY ) ' perf(CX) = TX . In all the remaining cases,
X and Y are Fano varieties of Picard rank one and of the same index i. Let
OX(1) and OY (1) be the effective generators of Pic(X) and Pic(Y ), respectively.
Using the fact that f∗ : Pic(Y ) → Pic(X) is an isomorphism, one observes that
f∗OY (1) is an effective generator and consequently that f∗OY (1) = OX(1). Since
the triangulated category TX (resp. TY ) is defined as the left orthogonal comple-
ment of 〈OX , . . . , OX(i−1)〉 (resp. 〈OY , . . . , OY (i−1)〉, one hence concludes that
TX ' TY . �

Remark 6.13. Assuming Kuznetsov’s Conjecture 1.19, the above Proposition 6.12
generalizes both implications of the (unconditional) main result of [9].

7. Application II: Kuznetsov’s Conjecture on Fano Threefolds

Let Xd′ and Yd be two Fano threefolds of Picard number one, indexes 1 and 2,
and degrees d′ and d, respectively. As proved by Kuznetsov [46, Corollary 3.5 and
Lemma 3.6], whenever d′ ≡ 2 modulo 4, one has the following semi-orthogonal
decompositions

perf(Xd′) = 〈TXd′ , 〈EXd′ , OXd′ 〉〉, perf(Yd) = 〈TYd
, 〈OYd

, OYd
(1)〉〉,

where EXd′ is an exceptional vector bundle of rank 2.

Conjecture 7.1 (Kuznetsov [46, Conjecture 3.7]). Let MF id be the moduli space
of Fano threefolds with Picard number one, index i and degree d. Under these
notations, there exists a correspondence Zd ⊂MF2

d ×MF1
4d+2 which is dominant

over each factor. Moreover, at each point (Yd, X4d+2) of this correspondence Zd
one has an equivalence TX4d+2

' TYd
of triangulated categories.

Kuznetsov proved in loc. cit. this conjecture for d = 3, 4, 5. Making use of
Theorem 1.17, we show that the case d = 2 is not true in the differential graded
setting:
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Theorem 7.2. The case d = 2 of Conjecture 7.1 does not hold if instead of the

equivalence TX4d+2
' TYd

one requires that the dg categories T dg
X4d+2

and T dg
Yd

are

Morita equivalent. This implies that Conjecture 7.1 is not compatible with Conjec-
ture 1.19.

Proof. The second claim follows from the combination of Conjecture 1.19 with
Lemma 4.4. Let us then prove the first claim.

Recall from Debarre, Iliev and Manivel [23, Section 4.1] that when d = 2, Y2

is a quartic double solid and that the generic X10 is a linear section of a quadric
hypersurface inside Gr(2, C5). Thanks to the work of Clemens, Iliev, Logachëv and
Tihomirov (see [19], [30], [50], [65]), Y2 and X10 have only one non-trivial principally
polarized intermediate Jacobian carrying an incidence polarization. Hence, under

the assumption that the dg categories T dg
X4d+2

and T dg
Yd

are Morita equivalent, these

schemes satisfy all the assumptions of Theorem 1.17; see Lemma 3.8 and Example
3.9. One would then conclude that J(X10) ' J(Y2) as principally polarized abelian
varieties. The key point now is that this isomorphism does not exist in full gener-
ality. As explained by Debarre, Iliev and Manivel [23, Corollary 5.4], varying X10

in MF1
10 gives rise to a 20-dimensional family of intermediate Jacobians J(X10);

consult also [23, Theorem 5.1]. However, MF2
2 is only 19-dimensional. Therefore,

under the assumption that the dg categories T dg
X4d+2

and T dg
Yd

are Morita equivalent,

one would then conclude that the correspondence Z2 (whose existence is part of
Conjecture 7.1) cannot be dominant onto MF1

10. �

Remark 7.3. As the proof of Theorem 7.2 suggests, the assumption in Conjecture
7.1 that the correspondence Zd is dominant over each factor should be removed.

8. Application III: Quadric Fibrations and Intersection of Quadrics

Let S be a C-scheme and Q → S a flat quadric fibration of relative dimen-
sion n. Out of this data, we can construct the sheaf C0 on S of the even parts
of Clifford algebras and the derived category perf(S, C0) of perfect complexes of
C0-algebras; consult Kuznetsov [45, Section 3] for details. As proved by Kuznetsov
[45, Theorem 4.2], we have the following semi-orthogonal decomposition

perf(Q) = 〈perf(S, C0), 〈perf(S), . . . , perf(S)︸ ︷︷ ︸
n-factors

〉〉. (8.1)

Now, let T be a C-scheme, X → T a generic relative complete intersection of
r+ 1 quadric hypersurfaces of dimension n, and Q→ S the associated linear span;
consult [3]. As proved in loc. cit., the following holds:

(i) when 2r < n, the fibers of X are of Fano type and, thanks to homological
projective duality, we have the following semi-orthogonal decomposition

perf(X) = 〈perf(S, C0), 〈perf(T ), . . . , perf(T )︸ ︷︷ ︸
(n−2r)-factors

〉〉 ; (8.2)

(ii) when 2r = n, the fibers of X are generically of Calabi–Yau type and,
thanks once again to homological projective duality, we have perf(X) '
perf(S, C0);
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(iii) when 2r > n, the fibers of X are generically of general type and there exists
a fully faithful functor perf(X) ↪→ perf(S, C0).

In what follows, we will treat separately the cases (i)–(ii) from (iii). In cases
(i)–(ii), the orthogonal complement of perf(S, C0) is well understood. Moreover,
all the known examples where X and Q are verepresentable are of this form; see
Section 8.3. In case (iii), the orthogonal complement of perf(S, C0) in perf(X) is
less well-understood, and we will only briefly study it in Section 8.4.

8.1. Reduction by hyperbolic splitting. Let S be a C-scheme and Q → S a
flat quadric fibration of relative dimension n > 2. Whenever such fibration admits a
regular section, i.e., a section cutting a regular point at each fiber, one can perform
its reduction by hyperbolic splitting (along this regular section); consult [3, Section 1]
for details. Roughly speaking, one takes the base of the cone given (fiberwise) by
the intersection of the quadric with the tangent space at the section. We obtain in
this way another quadric fibration Q′ → S of relative dimension n−2, and another
sheaf C′0 on S of the even parts of Clifford algebras. As proved in [3, Theorem 1.26],
one has an equivalence of categories perf(S, C0) ' perf(S, C′0) (given by a Fourier–
Mukai functor) whenever Q → S is a generic quadric fibration and Q is smooth.
Making use of Theorem 1.4 one obtains the following (conditional) result:

Corollary 8.3. Let Q → S and Q′ → S be quadric fibrations as above. Assume
that the bilinear pairings (1.3) (associated to Q and Q′) are non-degenerate and

that J(perfdg(S)) = 0. Under these assumptions, there exists an isomorphism

τ :
∏dQ−1
i=0 J ia(Q)→

∏dQ′−1

i=0 J ia(Q′) of abelian varieties up to isogeny.

Proof. Thanks to the work of Kuznetsov and others (see [47, Theorem 7.1][45] and
[3]), the composed functor Φ: perf(Q) → perf(S, C0) ' perf(S, C′0) ↪→ perf(Q′) is
of Fourier–Mukai type. Moreover, we have the semi-orthogonal decompositions

perf(Q) = 〈perf(S, C0), 〈perf(S), . . . , perf(S)︸ ︷︷ ︸
n-factors

〉〉,

perf(Q′) = 〈perf(S, C′0), 〈perf(S), . . . , perf(S)︸ ︷︷ ︸
(n−2)-factors

〉〉.

Therefore, the proof follows from the combination of Theorem 1.4 with the assump-
tion J(perfdg(S)) = 0. �

Example 8.4. The bilinear pairings (1.3) (associated to Q) are known to be non-
degenerate whenever dim(S) 6 2; see Vial [68, Theorem 7.4]. When dim(S) 6
2 and S is the projective space or a rational surface, the triangulated category
perf(S) admits a full exceptional collection; see [6, Section 4-4.1]. Consequently,

J(perfdg(S)) = 0.

By combining Theorem 1.17 and Corollary 8.3, one then obtains the following
result (whose applications will be discussed in Section 8.3):

Corollary 8.5. Let Q → S and Q′ → S be quadric fibrations as in Corollary 8.3
with J(perfdg(S)) = 0. Assume moreover that Q and Q′ are verepresentable. Under
these extra assumptions, J(Q) ' J(Q′) as principally polarized abelian varieties.
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8.2. Complete intersections of Fano and Calabi–Yau type. Let T be a
C-scheme, X → T a generic relative complete intersection of r + 1 quadric hyper-
surfaces of dimension n, and Q → S the associated linear span; see [3]. Suppose
that 2r 6 n. This implies that the fibers of X are either of Fano (2r < n) or
Calabi–Yau (2r = n) type. By combining (relative) homological projective duality
with Theorem 1.4 one obtains the following (conditional) result:

Corollary 8.6. Let X → T be a relative complete intersection as above (with 2r 6
n) and Q → S the associated linear span. Assume that the bilinear pairings (1.3)

(associated to X and Q) are non-degenerate, and that J(perfdg(T )) = 0. Under

these assumptions, there exists an isomorphism τ :
∏dX−1
i=0 J ia(X) →

∏dQ−1
i=0 J ia(Q)

of abelian varieties up to isogeny.

Proof. Thanks to relative homological projective duality (see [3] and Kuznetsov [44,
Section 6.1]), the composed functor Φ: perf(X) → perf(S, C0) ' perf(S, C0) ↪→
perf(Q) is of Fourier–Mukai type. By applying the Jacobian functor J(−) to the
(unique) differential graded enhancement of the above semi-orthogonal decomposi-
tions (8.1)-(8.2), one obtains the following isomorphisms of abelian varieties up to
isogeny:

J(perfdg(Q)) ' J(perfdg(S, C0))×
n∏
i=0

J(perfdg(S)),

J(perfdg(X)) ' J(perfdg(S, C0))×
n−2r∏
i=0

J(perfdg(T )).

Since S → T is a Pr-bundle, the triangulated category perf(S) admits a semi-
orthogonal decomposition 〈perf(T ), . . . , perf(T )〉; see Orlov [58]. Since by hypoth-

esis J(perfdg(T )) = 0, we conclude that J(perfdg(Q)) ' J(perfdg(X)). The proof
follows now from Theorem 1.4. �

Example 8.7. The bilinear pairings (1.3) (associated to X and Q) are known
to be non-degenerate when r = 0 and dim(S) 6 2 (see Vial [68, Theorem 7.4]),
when r = 1, dim(S) 6 2, and dX 6 6 (see Vial [68, Theorem 7.6]), and when
r is arbitrary and S is a point. Note that since S → T is a projective bundle,
J(perfdg(T )) = 0⇒ J(perfdg(S)) = 0.

8.3. Verepresentability of quadrics, intersections, and their fibrations.
Let X → T be a fibration in complete intersections of r + 1 quadrics of relative
dimension n. In the following three cases X is verepresentable; see Examples 3.9–
3.10 also.

(i) (T = point). In this case X is the intersection of r+1 quadric hypersurfaces
in Pn+1. When r = 0, X is just a quadric. Hence, it is known to be
verepresentable for all n. When r = 1, X is verepresentable for n even (see
[10, Theorem 1.5] and Reid [61]). When r = 2, X is verepresentable for
n > 3 odd (see [10, Theorem 1.5] and Beauville [4, Section 6]). When r =
n > 3, X is a curve of genus g > 1 in Pn+1. Therefore, it is verepresentable.

(ii) (T = P1). When r = 0, X → P1 is a quadric fibration. If n is odd,
then X is verepresentable; see Vial [68, Section 4]. If n is even, then
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X is also verepresentable. This follows from the combination of Vial’s
motivic description [68, Section 4] with Reid’s work [61] on the intermediate
Jacobian. When r = 1 and n = 3, X → P1 is a fibration in del Pezzo
surfaces of degree 4. Thanks to the work of Gorchinskiy and Guletskii [25]
and Kanev [36], X is also verepresentable.

(iii) (T = rational surface). When r = 0 and n = 1, X is a conic bundle over
T . Hence, it is verepresentable; see Beauville and others [4], [5], [7]. When
r = 0, n is odd, and T = P2, X is also verepresentable; see Beauville [4].
One could fairly expect that a similar proof should work for every rational
surface.

Now, let Q → S be the linear span associated to the above fibration X → T .
Assume that r 6= 0 (otherwise X ' Q). In the following cases Q is verepresentable:

(i′) (T = point, r = 1, n even). In this case, X is the intersection of two
even-dimensional quadrics and Q → P1 is an even-dimensional fibration.
Therefore, making use of the above item (ii), one concludes that Q is verep-
resentable.

(ii′) (T = point, r = 2, n odd). In this case, X is the intersection of three
odd-dimensional quadrics and Q → P2 is an odd-dimensional fibration.
Therefore, making use of the above item (iii), one concludes that Q is
verepresentable.

(iii′) (T = P1, r = 1, n = 3). In this case X → P1 is a del Pezzo fibration
of degree 4 and Q → S is a quadric fibration over a Hirzebruch surface.
Therefore, making use of the above (conditional) item (iii), one concludes
that Q is verepresentable.

By combining Corollary 8.6 with Theorem 1.17 one obtains the following (condi-
tional) result:

Corollary 8.8. Let X→T and Q→S be as in Corollary 8.6 with J(perfdg(T )) = 0.
Assume moreover that X and Q are verepresentable. This holds for example in
the above cases (i′)–(iii′). Under these assumptions, J(X) ' J(Q) as principally
polarized abelian varieties.

Suppose now that Q→ S admits a regular section. Let us write Q′ → S for its
reduction by hyperbolic splitting. If Q belongs to one of the above cases (i′)–(iii′),
then so does Q′. Moreover, when S = P1 and the fiber is of Fano type, such a
section exists thanks to the work of Graber, Harris and Starr; see [26].

Corollary 8.9. Let X→T and Q→S be as in Corollary 8.6 with J(perfdg(T )) = 0.
Assume that X and Q are verepresentable. Assume moreover that Q→ S admits a
regular section, and let Q′→ S be its reduction by hyperbolic splitting. Under these
assumptions, J(X) ' J(Q′) as principally polarized abelian varieties.

Example 8.10. When T = P1, consider X → P1 as a del Pezzo fibration of
degree 4, i.e., r = 1 and n = 3. Let Y → S be the conic bundle (birational to X)
introduced by Alexeev [1]. Using Corollary 8.9 we hence recover the isomorphism
J(X) ' J(Q′) of principally polarized abelian varieties described by Alexeev in [1].
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8.4. Complete intersections of general type. Let T be a C-scheme, X → T a
generic relative complete intersection of r+1 quadric hypersurfaces of dimension n,
and Q→ S the associated linear span; consult [3] for details. Assume that 2r > n.
In this case the fibers of X are of general type. Recall from above that we have a
fully faithful functor perf(X) → perf(S, C0,X) of Fourier–Mukai type. Thanks to
Kuznetsov and others (see [3], [45]) the orthogonal complement can be described in
terms of higher Clifford modules. By combining (relative) homological projective
duality results with Theorem 1.4 one obtains the following (conditional) result:

Corollary 8.11. Let X → T be a relative complete intersection as above (with 2r >
n) and Q → S the associated linear span. Assume that the bilinear pairings (1.3)
(associated to X and Q) are non-degenerate. Under these assumptions, there exists

a split injective morphism τ :
∏dX−1
i=0 J ia(X)→

∏dQ−1
i=0 J ia(Q) of abelian varieties up

to isogeny.

Proof. The composition Φ: perf(X) ' perf(S, C0) ↪→ perf(Q) is fully faithful.
Therefore, it is of Fourier–Mukai type; see Orlov [59]. Let TX := perf(X). Since the
orthogonal complement of TX is trivial, the proof follows then from items (i)–(ii)
of Theorem 1.4. �

To the best of the authors’ knowledge, X is known to be verepresentable only
when T is a point and r = n− 1 > 2. In this particular case, X is curve (obtained
as a complete intersection of r + 1 quadrics in Pr+2) and Q → Pr is a quadric
fibration of relative dimension r+ 1. In contrast with X, very little is known about
Q. For instance, it is neither known if Q is verepresentable nor whether the bilinear
pairings (1.3) are non-degenerate. Nevertheless, by combining Kuznetsov’s results
[45, Theorems 4.2 and 5.5] with the fact that perf(Pr) is generated by exceptional
objects, we obtain the following semi-orthogonal decomposition

perf(Q) = 〈C−r+1, . . . C−1, perf(X), E1, . . . , E(r+1)2〉,

where the Ei’s are exceptional objects and the C−i’s are the Clifford modules intro-
duced by Kuznetsov in [45, Section 3]. By combining Corollary 8.11 with Theorem
1.17 one obtains the following (conditional) result:

Corollary 8.12. Let X be a curve, complete intersection of r + 1 quadrics in
Pr+1, and Q → Pr the associated linear span. Assume that the pairings (1.3)
(associated to Q) are non-degenerate and that the modules C−i are exceptional ob-
jects in perf(Pr, C0). Under these assumptions, there is a morphism τ : J(X) →∏dQ−1
i=0 J ia(Q) of abelian varieties up to isogeny. Assume moreover that Q is verep-

resentable. Under this extra assumption, the morphism τ : J(X)→ J(Q) preserves
the principal polarization. Furthermore, if the modules C−i are exceptional objects
in perf(Pr, C0), then τ becomes an isomorphism J(X) ' J(Q) of principally polar-
ized abelian varieties.

9. Application IV: Blow-Ups

Theorem 1.17 gives rise to the following (conditional) result:
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Corollary 9.1. Let X be a verepresentable C-scheme for which the bilinear pairings
(1.3) are nondegenerate, Z ⊂ X a verepresentable subscheme of codimension 2
(resp. a smooth subscheme such that J(Z) = 0), and Y → X be the blow-up of X
along Z. If Y is verepresentable, then J(Y ) ' J(X) ⊕ J(Z) (resp. J(Y ) ' J(X))
as principally polarized abelian varieties.

Proof. If Y → X is the blow-up of X along a smooth subscheme Z ⊂ X of codi-
mension d, then we have a semi-orthogonal decomposition (see Orlov [58])

perf(Y ) = 〈perf(X), perf(Z)1, . . . , perf(Z)d−1〉, (9.2)

where perf(Z)i is equivalent to perf(Z) for all i. Let TX := perf(X). If J(Z) = 0,
then the isomorphism J(Y ) ' J(X) of principally polarized abelian varieties follows
from Theorem 1.17. Let us then assume that Z is verepresentable of codimension 2.
By applying Theorem 1.17 first to TX := perf(X) and then to TZ := perf(Z),
one obtains an injective morphism J(X) ⊕ J(Z) ↪→ J(Y ) preserving the principal
polarizations. This gives rise to a decomposition J(Y ) = J(X)⊕J(Z)⊕A for some
abelian variety A. We need to show that A = 0. By applying the functor J(−)

to the semi-orthogonal decomposition (9.2), we obtain an isogeny
∏dY −1
i=0 J ia(Y ) =

J(Y ) ' J(X)⊕ J(Z). This implies that A is isogenous to 0 and consequently that
A = 0. �

Remark 9.3. Let X be a verepresentable threefold and Z either a smooth curve
or a set of points. If the blow-up Y is verepresentable, then Corollary 9.1 give an
alternative (conditional) proof of a classical result of Clemens and Griffiths [20,
Section 3]. This result allowed Clemens and Griffiths to construct a birational
invariant of X, namely the “Clemens–Griffiths component”.
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Synthèses, vol. 17, Société Mathématique de France, Paris, 2004. MR 2115000
[3] A. Auel, M. Bernardara, and M. Bolognesi, Fibrations in complete intersections of quadrics,

Clifford algebras, derived categories, and rationality problems, J. Math. Pures Appl. (9) 102

(2014), no. 1, 249–291. MR 3212256
[4] A. Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup.
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