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Semiorthogonal decompositions and birational geometry
of del Pezzo surfaces over arbitrary fields

Asher Auel and Marcello Bernardara

Abstract

We study the birational properties of geometrically rational surfaces from a derived categorical
perspective. In particular, we give a criterion for the rationality of a del Pezzo surface S
over an arbitrary field, namely, that its derived category decomposes into zero-dimensional
components. When S has degree at least 5 we construct explicit semiorthogonal decompositions
by subcategories of modules over semisimple algebras arising as endomorphism algebras of vector
bundles and we show how to retrieve information about the index of S from Brauer classes and
Chern classes associated to these vector bundles.
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Introduction

In their address to the 2002 International Congress of Mathematicians in Beijing, Bondal
and Orlov [36] suggest that the bounded derived category Db(X) of coherent sheaves on a
smooth projective variety X could provide new tools to explore the birational geometry of X,
in particular via semiorthogonal decompositions. The work of many authors [1, 13, 23, 77, 80]
now provides evidence for the usefulness of semiorthogonal decompositions in the birational
study of complex projective varieties of dimension at most 4. A survey can be found in [84].
At the same time, the relevance of semiorthogonal decompositions to other areas of algebraic
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and noncommutative geometry has been growing rapidly, as Kuznetsov [83] points out in his
address to the 2014 ICM in Seoul.

In this context, based on the classical notion of representability for Chow groups and motives,
Bolognesi and the second author [22] proposed the notion of categorical representability (see
Definition 1.15), and formulated the following question.

Question 1. Is a rational variety always categorically representable in codimension 2?

When the base field k is not algebraically closed, the existence of k-rational points on X
(being a necessary condition for rationality) is a major open question in arithmetic geometry.
We are indebted to H. Esnault, who posed the following question to us in 2009.

Question 2. Can Db(X) detect the existence of a k-rational point on X? More generally,
how can one extract information about rational points from Db(X)?

This question, which was the original motivation for the current work, is now central to
a growing body of research into arithmetic aspects of the theory of derived categories, see
[3, 8, 11, 13, 14, 59, 86, 117]. As an example, if S is a smooth projective surface, Hassett
and Tschinkel [59, Lemma 8] prove that the index of S can be recovered from Db(S) as the
greatest common divisor of the second Chern classes of objects. Recall that the index ind(S)
of a variety S over k is the greatest common divisor of the degrees of closed points of S.

One particularly relevant case is when X is a smooth projective variety with ample or
anti-ample canonical class. Then, by the reconstruction theorem of Bondal and Orlov [35], X
(hence its rational points) can be reconstructed from Db(X). Moreover, one can homologically
characterize the structure sheaves of closed points on X (see [32] or [61, Chapter 4]). In this
case, a natural approach to Questions 1 and 2 is via semiorthogonal decompositions.

These questions also intertwine with concurrent developments in equivariant and descent
aspects of triangulated and dg-categories in the context of noncommutative geometry, see
[7, 51, 81, 104, 114].

In the present text, we study these two questions for geometrically rational surfaces over an
arbitrary field k, with special attention paid to the case of del Pezzo surfaces of Picard rank 1.
The k-birational classification of such surfaces was achieved by Enriques and Manin [89], and
Iskovskikh [62]; the study of arithmetic properties (for example, existence of rational points,
stable rationality, Hasse principle, Chow groups) has been an active area of research since the
1970s, see [43] for a survey.

One of the most important invariants of a geometrically rational surface S over k is the
Néron–Severi lattice NS(Sks ) = Pic(Sks ) of Sks = S ×k ks as a module over the absolute Galois
group Gk = Gal(ks/k), where ks is a fixed separable closure of k. The structure of this Galois
lattice controls the exceptional lines on S, and hence the possible birational contractions. As the
canonical bundle ωS is always defined over k, one often considers the orthogonal complement
ω⊥
S . For del Pezzo surfaces, this lattice is a twist of a semisimple root lattice with the Galois

action factoring through the Weyl group, see [76, Theorem 2.12]. Vial [117] has recently studied
how one can, given a k-exceptional collection on a surface S, obtain information on the Néron–
Severi lattice. In particular, he shows that a geometrically rational surface with an exceptional
collection of maximal length is rational. See also previous work by Hille and Perling [60]. In
this paper, we deal with the opposite extreme, of surfaces of small Picard rank.

Even when S has Picard rank 1, and there are no exceptional curves on S defined over k,
our perspective is that the missing information concerning the birational geometry of S can be
filled in, to some extent, by considering higher rank vector bundles on S that are generators
of canonical components of Db(S).
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For example, let S be a smooth quadric surface with Pic(S) generated by the hyperplane
section OS(1) of degree 2. It is well known that the rationality of S is equivalent to the existence
of a rational point, via projection from that point. By a result in the theory of quadratic
forms, cf. [74, Theorem 6.3], a quadric surface having a rational point is equivalent to the
corresponding even Clifford algebra C0 (a quaternion algebra over the quadratic extension
defining the rulings of the quadric) being split over its center. Given a rational point x ∈ S(k),
the Serre construction yields a rank 2 vector bundle W as an extension of Ix by OS(−1). On
the other hand, the surface Sks = P1

ks × P1
ks carries two rank 1 spinor bundles, corresponding

to O(1, 0) and O(0, 1) (see, for example, [94]). The vector bundle Wks is isomorphic to the
direct sum O(1, 0) ⊕ O(0, 1), as the point x is the complete intersection of lines in two different
rulings. Not assuming the existence of a rational point, such rank 2 vector bundles are only
defined étale locally; the obstruction to their existence is the Brauer class of C0. There do,
however, exist naturally defined vector bundles V of rank 4 on S, via descent of W ⊕W , and
satisfying End(V ) = C0. One could say that V ‘controls’ the birational geometry of S in a
noncommutative way.

Derived categories and their semiorthogonal decompositions provide a natural setting for
a noncommutative counterpart of the Néron–Severi lattice with its Galois action. One can
consider the Euler form χ(A,B) =

∑2
i=0 dim Exti(A,B) on the derived category, and the χ-

semiorthogonal systems of simple generators, the so-called exceptional collections. Over ks ,
these are known to exist and have interesting properties for rational surfaces. In this paper, we
consider the descent properties of such collections and show how they indeed give a complete
way to interpret the link between vector bundles, semisimple algebras, rationality, and rational
points. In particular, on a geometrically rational surface S, the canonical line bundle ωS is
naturally an element of such a system. Then one can consider the subcategory 〈ωS〉⊥ whose
object are χ-semiorthogonal to ωS . In practice, it can be more natural to consider the category
AS = 〈OS〉⊥, which is equivalent to 〈ωS〉⊥. We describe decompositions (or indecomposability)
of this subcategory by explicit descent methods for vector bundles. In this context, certain
semisimple k-algebras naturally arise and control the birational geometry of S. These algebras
also provide a presentation of the K-theory of S.

A sample result of this kind, which does not seem to be contained in the literature, is as
follows. Let S be a del Pezzo surface of degree 5, and arbitrary Picard rank, over a field k.
It is known that S is uniquely determined by an étale algebra l of degree 5 over k, see [103,
Theorem 3.1.3]. We prove a k-equivalence Db(S) = Db(A), where A is a finite-dimensional
algebra whose semisimplification is k × k × l. In particular, there is an isomorphism

Ki(S) ∼= Ki(k) ×Ki(k) ×Ki(l)

in algebraic K-theory, for all i � 0. In the context of computing the algebraic K-theory of
geometrically rational surfaces, this adds to the work of Quillen [98] for Severi–Brauer surfaces
(that is, del Pezzo surfaces of degree 9), Swan [106] and Panin [95] for quadric surfaces and
involution surfaces (that is, minimal del Pezzo surfaces of degree 8), and Blunk [28] for del
Pezzo surfaces of degree 6. Our method provides a uniform way to compute the algebraic
K-theory of all del Pezzo surfaces of degree at least 5.

Gille [53] recently studied the Chow motive with integer coefficients of a geometrically
rational surface, showing that they are zero-dimensional if and only if the surface has a 0-cycle
of degree 1 and the Chow group of 0-cycles is torsion-free after base-changing to the function
field. Tabuada (cf. [109]) has shown how the Morita equivalence class of the derived category
of a smooth projective variety (with its canonical dg-enhancement) gives the noncommutative
motive of the variety. We refrain here from defining the additive, monoidal, and idempotent
complete category of noncommutative motives whose objects are smooth and proper dg-
categories up to Morita equivalence; the interested reader can refer to [109]. We recall only that
any semiorthogonal decomposition gives a splitting of the noncommutative motive (see [108])
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and that, as well as Chow motives, noncommutative motives can be defined with coefficients
in any ring R. Working with Q-coefficients, there is a well-established correspondence between
noncommutative and Chow motives, see [110]. Roughly speaking, the category of Chow motives
embeds fully and faithfully into the category of noncommutative motives, if one ‘forgets’ the
Tate motive. As pointed out in [24], this relation does not hold in general for integer coefficients.
In particular, for surfaces, one has to invert 2 and 3 in the coefficient ring to have such a direct
comparison (see [24, Corollary 1.6]). We think that a comparison between Gille’s results and
those of the present paper could lead to a deep understanding of the different types of geometric
information encoded by Chow and noncommutative motives.

By a del Pezzo surface S over a field k, we mean a smooth, projective, and geometrically
integral surface over k with ample anticanonical class. The degree of S is the self-intersection
number of the canonical class ωS . Our main result is the following.

Theorem 1. A del Pezzo surface S of Picard rank 1 over a field k is k-rational if and only
if S is categorically representable in dimension 0.

Moreover, if S has degree d � 5 and any Picard rank, the following are equivalent:

(i) S is k-rational.
(ii) S has a k-rational point.
(iii) S is categorically representable in dimension 0.
(iv) AS � 〈ωS〉⊥ is representable in dimension 0.

The equivalence of (i) and (ii) for del Pezzo surfaces of degree at least 5 is a result due
to Manin [89, Theorem 29.4]. Our work is a detailed analysis of how birational properties
interact with certain semiorthogonal decompositions. In particular, we study collections
(so-called blocks) of completely orthogonal exceptional vector bundles on Sks and their descent
to S. The theory of 3-block decompositions due to Karpov and Nogin [70] is indispensable for
our work.

In our results for del Pezzo surfaces of higher Picard rank, the bound on the degree is
quite important. This is not surprising, as del Pezzo surfaces of degree d � 5 have a much
simpler geometry and arithmetic than those of lower degree. For example, in smaller degree
the existence of a rational point only implies unirationality [89, Theorem 29.4]. On the other
hand, the following succinct corollary of Theorem 1 gives a positive answer to Question 1 for
all del Pezzo surfaces.

Corollary 1. Any rational del Pezzo surface is categorically representable in
dimension 0.

This relies on the fact that there is no minimal k-rational del Pezzo surface of degree d � 4
(see [90, Theorem 3.3.1]). So Question 2 in smaller degrees, where the existence of a k-point
is weaker than categorical representability in dimension 0, remains open.

One of the ingredients in the proof of Theorem 1 is the description of semiorthogonal
decompositions of minimal del Pezzo surfaces of degree at least 5. This relies on, and extends,
the special cases established by Kuznetsov [79], Blunk [27], Blunk, Sierra, and Smith [29], and
the second author [21]. In these cases, it always turns out that there are semisimple k-algebras
A1 and A2, Azumaya over their centers, and a semiorthogonal decomposition

AS � 〈ωS〉⊥ =
〈
Db(k,A1),Db(k,A2)

〉
(0.1)

over k. The algebras Ai arise as endomorphism algebras of vector bundles with special
homological features. In particular, over ks , these bundles split into a sum of completely
orthogonal exceptional bundles whose existence was proved by Rudakov and Gorodentsev
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[56, 99], and by Karpov and Nogin [70]. This generalizes the example of quadric surfaces
explained above.

Theorem 2. Let S be a del Pezzo surface of degree d � 5. There exist vector bundles V1

and V2 and a semiorthogonal decomposition

AS = 〈V1, V2〉 =
〈
Db(k,A1),Db(k,A2)

〉
=

〈
Db(l1/k, α1),Db(l2/k, α2)

〉
, (0.2)

where Ai = End(Vi) are semisimple k-algebras with centers li, and αi is the class of Ai in
Br(li). Finally, S has Picard rank 1 if and only if the vector bundles Vi are indecomposable or,
equivalently, the algebras Ai are simple.

One of our main technical results is that such a decomposition of AS � 〈ωS〉⊥ can never
occur if S has Picard rank 1 and degree at most 4, see Theorem 5.1. In fact, in this case one
should expect AS to have a very complicated algebraic description, but not much is known
(see Theorems 5.7 and 5.8).

A feature of these semiorthogonal decompositions is that the k-birational class of S is
determined by the unordered pair of semisimple algebras (A1, A2) up to pairwise Morita
equivalence. As pointed out by Kuznetsov [84, § 3], one of the most tempting ideas in the
theory of semiorthogonal decompositions with a view toward rationality is to define, in any
dimension and independently of the base field, a categorical analog of the Griffiths component of
the intermediate Jacobian of a complex threefold. Such an analog would be the best candidate
for a birational invariant. It turns out that such a component is not well defined in general;
this is due to the failure of the Jordan–Hölder property for semiorthogonal decompositions,
see [30, 82]. However, we can define the Griffiths–Kuznetsov component GKS of a del Pezzo
surface S as follows.

Definition 1. Let S be a minimal del Pezzo surface over k. We define the Griffiths–
Kuznetsov component GKS of S as follows: if AS is representable in dimension 0, set GKS = 0.
If not, GKS is either the product of all indecomposable components of AS of the form Db(l, α)
with l/k a field extension and α ∈ Br(l) nontrivial or else GKS = AS .

If S is not minimal, then we set GKS = GKS′ for a minimal model S → S′.

Definition 1 may appear ad hoc, but it can roughly be rephrased by saying that the Griffiths–
Kuznetsov component is the product of all components of AS which are not representable
in dimension 0. If deg(S) � 5, then GKS is determined up to equivalence by Brauer classes
related to the algebras A1 and A2. If deg(S) � 4 and S has Picard rank 1, we conjecture its
indecomposability (see Conjecture 5.6).

Theorem 3. Let S be a del Pezzo surface of degree d over k. The Griffiths–Kuznetsov
component GKS is well defined, unless deg(S) = 4 and ind(S) = 1, or deg(S) = 8 and
ind(S) = 2. Moreover, if S′ ��� S is a birational map, then GKS = GKS′ .

We note that the two ‘bad’ cases, of degree 4 and index 1 or degree 8 and index 2, are
birational to conic bundles that are not forms of Hirzebruch surfaces. The question of defining
a Griffiths–Kuznetsov component for conic bundles is still open, and not treated here. In the
Appendix, we show how AS can be interpreted in the case of conic bundle. We do not know
whether in these cases, the Griffiths–Kuznetsov component is well defined.

Theorem 3 could be considered as an analogue of Amitsur’s theorem that k-birational Severi–
Brauer varieties have Brauer classes that generate the same subgroup of Br(k).

In the case where d � 5, we push this further to analyze how the algebras Ai obstruct the
existence of closed points of given degree. The index ind(A) of a central simple k-algebra A is
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the greatest common divisor of the degrees of all central simple k-algebras Morita equivalent
to A. We extend this definition to finite-dimensional semisimple algebras by taking the least
common multiple of the indices of simple components considered over their centers.

Theorem 4. Let S be a non-k-rational del Pezzo surface of degree d � 5, and A1, A2 the
associated semisimple algebras. If Ai has index di then ind(S) = d1d2/gcd(d1, d2). In particular

• if d = 9, then d1 = d2 is either 1 if S � P2
k or 3 if S(k) 	= ∅;

• if d = 8 and S is an involution surface, then (up to renumbering) A1 is a central simple
k-algebra, d1|4 and d2|2, and d1 = 1 if and only if S is a quadric in P3

k while d2 = 1 if and only
S is rational;
• if d = 6, then (up to renumbering) d1|3 and d2|2, with S birationally rigid if di > 1;
• in all other cases, d1 = d2 = 1 and S is rational.

The key of the proof of Theorem 4 is the explicit description of the vector bundles generating
the exceptional blocks of S, together with an analysis of all possible Sarkisov links, cf. [63].

For del Pezzo surfaces of Picard rank 1 and degree at least 5, a consequence of our results is
that the index of S can be calculated only in terms of the second Chern classes of generators of
the three blocks, improving upon, in this case, a result of Hassett and Tschinkel [59, Lemma 8].

Theorem 5. Let S be a del Pezzo surface of degree d � 5. There exist generators Vi for
the three blocks such that

ind(S) = gcd{c2(V0), c2(V1), c2(V2)}.
Moreover, unless d = 5, d = ind(S) = 6, or S is an anisotropic quadric surface in P3 then

ind(S) = gcd{c2(V1), c2(V2)}
for indecomposable generators of the blocks of AS .

Note that more precise and detailed statements can be given in each specific case. Consult
Sections 6–10 and Tables 2–5 for details.

In summary, our results establish a complete understanding of the relationship between
birational geometry, derived categories, and vector bundles on del Pezzo surfaces of degree at
least 5.

Structure

The paper is organized as follows. Part 1 organizes the necessary algebraic and geometric
background. In Section 1 we treat semiorthogonal decompositions and a generalized notion
of exceptional objects whose descent is treated in Section 2. Section 3 collects useful results
on geometrically rational surfaces. Part 2 is dedicated to a detailed statement and proof of
the main results. Before proceeding to the proofs, we recall the exceptional block theory in
Section 4. Section 5 proves the main results for surfaces of low degree, while the higher degree
cases are treated separately in Sections 6–10. Part 3 consists of three appendices containing
useful calculations related to elementary links.

Notations

Fix an arbitrary field k. If X is a k-scheme, we will denote by Db(X) the bounded derived
category of complexes of coherent sheaves on X, considered as a k-linear category. If B is
an OX -algebra, we will denote by Db(X,B) the bounded derived category of complexes of
B-modules, considered as a k-linear category. If X = Spec(K) is an affine k-scheme and B is
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associated to a K-algebra, we will write Db(K/k,B) as shorthand. If B is Morita equivalent to
K, then we will write Db(K/k) := Db(K/k,B). Also Db(K,A) is shorthand for Db(K/K,A).
If A is the restriction of scalars of B down to k, we remark that Db(K/k,B) is k-equivalent to
Db(k,A). Finally, if B is Azumaya with class β in Br(X), by abuse of notation, we will write
Db(X,β) for Db(X,B). The latter is indeed equivalent to the derived category of bounded
complexes of β-twisted coherent sheaves on X.

Triangulated categories will be commonly denoted with sans serif font, finite-dimensional
k-algebras with upper case Roman letters near the beginning of the alphabet, finite products
of field extensions of k with l; vector bundles with upper case Roman letters, and Brauer classes
as lower case Greek letters.

Part I. Background on derived categories and geometrically rational surfaces

1. Semiorthogonal decompositions and categorical representability

We start by recalling the categorical notions that play the main role in this paper. Let k be
an arbitrary field. The theory of exceptional objects and semiorthogonal decompositions in the
case where k is algebraically closed and of characteristic 0 was studied in the Rudakov seminar
at the end of the 80s, and developed by Rudakov, Gorodentsev, Bondal, Kapranov, and Orlov
among others, see [31, 32, 34, 56, 100]. As noted in [13], most fundamental properties persist
over any base field k.

1.1. Semiorthogonal decompositions and their mutations

Let T be a k-linear triangulated category. A full triangulated subcategory A of T is called
admissible if the embedding functor admits a left and a right adjoint.

Definition 1.1 [32]. A semiorthogonal decomposition of T is a sequence of admissible
subcategories A1, . . . ,An of T such that

• HomT(Ai, Aj) = 0 for all i > j and any Ai in Ai and Aj in Aj ;
• for all objects Ai in Ai and Aj in Aj , and for every object T of T, there is a chain of

morphisms 0 = Tn → Tn−1 → · · · → T1 → T0 = T such that the cone of Tk → Tk−1 is an
object of Ak for all k = 1, . . . , n.

Such a decomposition will be written

T = 〈A1, . . . ,An〉.

If A ⊂ T is admissible, define A⊥ and ⊥A, respectively, to be the left and right orthogonal
complement of A in T. Here, A⊥ is the full subcategory of objects B such that HomT(A,B) = 0
for any object A of T; the right orthogonal is defined similarly. Then we have two semi-
orthogonal decompositions

T = 〈A⊥,A〉 = 〈A,⊥A〉,
see [32, § 3].

Given a semiorthogonal decomposition T = 〈A,B〉, Bondal [31, § 3] defines left and right
mutations LA(B) and RB(A) of this pair. In particular, there are equivalences LA(B) � B and
RB(A) � A, and semiorthogonal decompositions

T = 〈LA(B),A〉, T = 〈B, RB(A)〉.
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We refrain from giving an explicit definition for the mutation functors in general, which can
be found in [31, § 3]. In § 1.2 we will give an explicit formula in the case where A and B are
generated by exceptional objects.

1.2. Exceptional objects, blocks, and mutations

Very special examples of admissible subcategories, semiorthogonal decompositions, and their
mutations are provided by the theory of exceptional objects and blocks. These constructions
appear naturally on Fano varieties, and especially on geometrically rational surfaces, and they
play a central role in our study. We provide here a detailed treatment, generalizing to any field
notions usually studied over algebraically closed fields.

Let T be a k-linear triangulated category. The triangulated category 〈{Vi}i∈I〉 generated by
a class of objects {Vi}i∈I of T is the smallest thick (that is, closed under direct summands) full
triangulated subcategory of T containing the class. For objects V and W of T, we will write
ExtrT(V,W ) = HomT(V,W [r]).

Definition 1.2. Let A be a division (not necessarily central) k-algebra (that is, the center
of A could be a field extension of k). An object V of T is called A-exceptional if

HomT(V, V ) = A and ExtrT(V, V ) = 0 for r 	= 0.

An exceptional object in the classical sense [55, Definition 3.2] of the term is a k-exceptional
object. By exceptional object, we mean A-exceptional for some division k-algebra A.

A totally ordered set {V1, . . . , Vn} of exceptional objects is called an exceptional collection if
ExtrT(Vj , Vi) = 0 for all integers r whenever j > i. An exceptional collection is full if it generates
T, equivalently, if for an object W of T, the vanishing HomT(W,Vi) = 0 for all i implies W = 0.
An exceptional collection is strong if ExtrT(Vi, Vj) = 0 whenever r 	= 0.

As an example, if Hi(X,OX) = 0 for all i > 0, for example, if X is (geometrically) rationally
connected, then any line bundle on X is k-exceptional.

Remark 1.3. The extension of scalars of an exceptional object (in this generalized sense)
need not be exceptional, see Remark 2.1 for more details. However, if k is algebraically closed,
then all exceptional objects are automatically k-exceptional, hence remain exceptional under
any extension of scalars.

Exceptional collections provide examples of semiorthogonal decompositions when T is the
bounded derived category of a smooth projective scheme.

Proposition 1.4 [31, Theorem 3.2]. Let {V1, . . . , Vn} be an exceptional collection on
the bounded derived category Db(X) of a smooth projective k-scheme X. Then there is a
semiorthogonal decomposition

Db(X) = 〈V1, . . . , Vn,A〉,
where A is the full subcategory of objects W such that HomT(W,Vi) = 0. In particular, the
sequence if full if and only if A = 0.

Given an exceptional pair {V1, V2} with Vi being Ai-exceptional, consider the admissible
subcategories 〈Vi〉, forming a semiorthogonal pair. We can hence perform right and left
mutations, which provide equivalent admissible subcategories.

Recall that mutations provide equivalent admissible subcategories and flip the semiorthogo-
nality condition. It easily follows that the object RV2(V1) is A1-exceptional, the object LV1(V2)
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is A2-exceptional, and the pairs {LV1(V2), V1} and {V2, RV2(V1)} are exceptional. We call
RV2(V1) the right mutation of V1 through V2 and LV1(V2) the left mutation of V2 through V1.

In the case of k-exceptional objects, mutations can be explicitly computed.

Definition 1.5 [55, § 3.4]. Given a k-exceptional pair {V1, V2} in T, the left mutation of
V2 with respect to V1 is the object LV1(V2) defined by the distinguished triangle

HomT(V1, V2) ⊗ V1
ev−−→ V2 −→ LV1(V2), (1.1)

where ev is the canonical evaluation morphism. The right mutation of V1 with respect to V2 is
the object RV2(V1) defined by the distinguished triangle

RV2(V1) −→ V1
coev−−−→ HomT(V1, V2) ⊗ V2,

where coev is the canonical coevaluation morphism.

In the second part of the paper, we will need to calculate explicit mutations on del Pezzo
surfaces. Let us recall two very useful formulae that will be extensively used later when
computing mutations.

Lemma 1.6. Let X be a smooth projective variety over a field.

(i) If there is a semiorthogonal decomposition Db(X) = 〈A,B〉, then

LAB = B ⊗ ωX .

In particular, there is a semiorthogonal decomposition Db(X) = 〈B ⊗ ωX ,A〉.
(ii) Let Z ⊂ X be a smooth subvariety and assume Hi(X,OX) = 0 and Hi(Z,OZ) = 0 for

all i > 0. If η : Y → X is the blow-up along Z, with exceptional divisor E ⊂ Y , and O(F ) is
the pull-back of a line bundle on X, then the pair (O(F ),OE) is exceptional and

LO(F )OE = O(F − E)[1].

In particular, the pair (O(F − E),O(F )) is exceptional.

Proof. Though both facts are standard in the literature, we give a quick proof for the sake
of completeness. Part (i) is an application of Serre duality. For part (ii), the first fact is proved
by Orlov [91] as a part of the blow-up formula for semiorthogonal decompositions. For the
second fact, note that as O(F ) is pulled back from X, the evaluation morphism

HomDb(X)(O(F ),OE) ⊗ O(F ) ev−−→ OE

coincides with the restriction map in the exact sequence

0 −→ O(F − E) −→ O(F ) −→ OE(F ) ∼= OE −→ 0.

Hence LO(F )OE , the cone of the evaluation map, is O(F − E)[1]. Finally, note that taking shifts
of generators does not affect the definition of an exceptional pair or the category generated. �

Given an exceptional collection {V1, . . . , Vn}, one can consider any exceptional pair {Vi, Vi+1}
and perform either right or left mutation to get a new exceptional collection.

Exceptional collections provide an algebraic description of admissible subcategories of T.
Indeed, if V is an A-exceptional object in T, the triangulated subcategory 〈V 〉 ⊂ T is
equivalent to Db(k,A). The equivalence Db(k,A) → 〈V 〉 is obtained by sending the complex
A concentrated in degree 0 to V . Moreover, as shown by Bondal [31] and Bondal–Kapranov
[33], full exceptional collections give an algebraic description of a triangulated category.
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Proposition 1.7 [31, Theorem 6.2]. Suppose that T is the bounded derived category
of either a smooth projective k-scheme or a k-linear abelian category with enough injective
objects. Let {V1, . . . , Vn} be a full strong exceptional collection on T, and consider the object
V =

⊕n
i=1 Vi and the k-algebra A = EndT(V ). Then RHomT(V,−) : T → Db(k,A) is a k-linear

equivalence.

Remark 1.8. The assumption on the category T and on the strongness of the exceptional
sequence may seem rather restrictive, and both find a natural solution when triangulated
categories are enriched with a dg-category structure. The first assumption can be indeed
replaced by considering a dg-enhancement of T (see [33, Theorem 1]). When the exceptional
collection is not strong, dg-algebras are required. See § 1.3 for details.

We remark that the k-algebras A appearing in Proposition 1.7 are finite-dimensional, hence
Artinian. The semisimplification of A is its maximal semisimple quotient; since A is Artinian,
this coincides with the quotient of A by its Jacobson radical, which is a nilpotent ideal.

Example 1.9. The full strong k-exceptional collection {O,O(1), . . . ,O(n)} on Db(Pn
k ) is due

to Beilinson [19, 20] and Bernštĕın–Gelfand–Gelfand [26]. In this case A = End
(⊕n

i=0 O(i)
)

is
isomorphic to the path algebra of the Beilinson quiver with n + 1 vertices, see [31, Example 6.4].
We remark that A is Artinian with semisimplification the étale algebra kn+1.

Proposition 1.7 provides an alternative approach to exceptional collections and semiorthogo-
nal decompositions by considering tilting objects. In this paper, we will not use this approach,
but we find the language convenient at times, especially in relation to issues of Galois
descent.

Definition 1.10. Given a strong exceptional collection {V1, . . . , Vm} of a k-linear trian-
gulated category T, the object V =

⊕m
i=1 Vi is called a tilting object for the subcategory

〈V1, . . . , Vm〉. Recall that Proposition 1.7 implies that 〈V1, . . . , Vm〉 � Db(k,EndT(V )). If the
Vi are vector bundles on a smooth projective variety X, we call V a tilting bundle.

The existence of a tilting bundle also yields, analogously to Proposition 1.7, a presentation
in algebraic K-theory.

Proposition 1.11. Let {V1, . . . , Vn} be a full strong exceptional collection of vector bundles
on a smooth projective k-variety X and let V =

⊕n
i=1 Vi be the associated tilting bundle.

Suppose that Vi is Ai-exceptional. Then HomX(V,−) : Ki(X) → Ki(A1 × · · · ×An) is an
isomorphism for all i � 0.

Proof. Let A = EndDb(X)(V ). Since the exceptional objects are vector bundles, HomX(V,−)
defines a morphism from the category of vector bundles on X to the category of
A-modules. Proposition 1.7 implies that RHomDb(X)(V,−) : Db(X) → Db(k,A) is an equiv-
alence. Applying [115, Theorem 1.9.8, § 3], gives that HomX(V,−) : Ki(X) → Ki(A) is an
isomorphism for all i � 0. If I is the Jacobson radical of A, then A/I ∼= A1 × · · · ×An. Since
A is Artinian, I is a nilpotent ideal and we conclude from the fact that Ki(A) ∼= Ki(A/I). �

Remark 1.12. One can prove the same result for any additive invariant of Db(X) via
noncommutative motives and Tabuada’s universal additive functor (see [108]).
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A special case of an exceptional pair is a completely orthogonal pair {V1, V2}, that is,
an exceptional pair such that {V2, V1} is also exceptional. In this case, RV2(V1) = V1 and
LV1(V2) = V2.

Definition 1.13 [70, 1.5]. An exceptional block in a k-linear triangulated category T is
an exceptional collection {V1, . . . , Vn} such that ExtrT(Vi, Vj) = 0 for every r whenever i 	= j.
Equivalently, every pair of objects in the collection is completely orthogonal. By abuse of
notation, we often denote by E the exceptional block as well as the subcategory that it generates.

If E is an exceptional block, then EndT(
⊕n

i=1 Vi) is isomorphic to the product k-algebra
A1 × · · · ×An, where Vi is Ai-exceptional. Proposition 1.7 then yields a k-equivalence
E � Db(k,A1 × · · · ×An).

Moreover, given an exceptional block, any internal mutation acts by simply permuting the
exceptional objects. Given an exceptional collection {V1, . . . , Vn,W1, . . . ,Wm} consisting of
two blocks E and F, the left mutation LE(F) and the right mutation RF(E) are obtained by
mutating all the objects of one block to the other side of all the objects of the other block, or,
equivalently, as mutations of semiorthogonal admissible subcategories.

1.3. dg-Enhancements

Recall that a k-linear dg-category A is a category enriched over dg-complexes of k-vector
spaces, that is, for any pair of objects x, y in A , the morphism set HomA (x, y) has a functorial
structure of a differential graded complex of vector spaces. The category H0(A ) has the same
objects as A , and HomH0(A )(x, y) = H0(HomA (x, y)), in particular H0(A ) is triangulated.
We will only consider pretriangulated dg-categories (see [72, § 4.5]). A semiorthogonal
decomposition of A = 〈B1, . . . ,Bn〉 is a set of pretriangulated full subcategories such that
〈H0(B1), . . . , H0(Bn)〉 is a semiorthogonal decomposition of H0(A ). Consult [72] for an
introduction to dg-categories.

Let X and Y be a smooth proper k-schemes and pX and pY be the respective projection
maps from X × Y . The Fourier–Mukai functor with kernel P ∈ Db(X × Y ) is the exact functor
Φ : Db(X) → Db(Y ) defined by the formula ΦP (−) = (RpY )∗(p∗X(−) ⊗L P ), see, for example,
[61, § 5].

Considering the bounded derived category Db(X) as a triangulated k-linear category gives
rise to some functorial problems. One of them has a geometric nature: given an exact
functor Φ : Db(X) → Db(Y ) it is not known whether it is isomorphic to a Fourier–Mukai
functor, except in some special cases, see [41]. For example, suppose that AX and AY are
admissible triangulated categories of Db(X) and Db(Y ), respectively, and suppose that there
is a triangulated equivalence AX � AY . The composition functor

Φ : Db(X) � AX � AY ↪→ Db(Y )

is conjectured to be a Fourier–Mukai functor [78, Conjecture 3.7].
As proved by Lunts and Orlov [87], there is a unique functorial enhancement Db(X) for

Db(X), that is a dg-category such that H0(Db(X)) = Db(X). Given X and Y as before,
a functor Φ : Db(X) → Db(Y ) is of Fourier–Mukai type if and only if there is a functor
Φ : Db(X) → Db(Y ) such that H0(Φ) = Φ, see [25, Proposition 9.4] for example, or [88] for a
more general statement.

On the other hand, Kuznetsov [81] has shown that, for any admissible subcategory
AX ⊂ Db(X), the projection functor (that is, the right adjoint to the embedding functor) is
a Fourier–Mukai functor. Hence, the choice of such a functor endows AX with a dg-structure,
which is in principle not unique, but depends on the choice of projection. Hence, when dealing
with a semiorthogonal decomposition

Db(X) = 〈A1, . . . ,An〉,
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one always has a decomposition

Db(X) = 〈A1, . . . ,An〉,
where the dg-category Db(X) is unique, though the dg-enhancements Ai of Ai may not be.

Finally, we recall that if there exists a smooth projective scheme Z and a Brauer class α
in Br(Z) such that Ai � Db(Z,α), then the embedding functor Φ : Db(Z,α) → Db(X) is a
Fourier–Mukai functor [40], and hence the dg-structure Db(Z,α) is unique. From now on,
we assume that all the triangulated categories we consider admit a unique enhancement, and
functors between them to be dg-functors.

1.4. Categorical representability

Using semiorthogonal decompositions, one can define a notion of categorical representability
for a dg-enhanced triangulated category. In the case of smooth projective varieties, this is
inspired by the classical notions of representability of cycles, see [22].

Definition 1.14 [22]. A dg-enhanced k-linear triangulated category T is representable in
dimension m if it admits a semiorthogonal decomposition

T = 〈A1, . . . ,Ar〉,
and for each i = 1, . . . , r there exists a smooth projective connected k-variety Yi with
dimYi � m, such that Ai is equivalent to an admissible subcategory of Db(Yi).

Definition 1.15 [22]. Let X be a projective k-variety of dimension n. We say that X
is categorically representable in dimension m (or equivalently in codimension n−m) if there
exists a categorical resolution of singularities of Db(X) that is representable in dimension m.

The following explains why categorical representability in codimension 2 is conjecturally
related to birational geometry in the spirit of Question 1.

Lemma 1.16. Let X → Y be the blow-up of a smooth projective k-variety along a smooth
center. If Y is categorically representable in codimension 2 then so is X.

Proof. Denote by Z ⊂ Y the center of the blow-up f : X → Y . Then Z has codimension at
least 2 in Y and Orlov’s blow-up formula [91] for the derived category gives a semiorthogonal
decomposition Db(X) = 〈f∗Db(Y ),Db(Z)〉. As X and Y have the same dimension, if Y is
categorically representable in codimension 2, then so is X. �

An additive category T is indecomposable if for any product decomposition T � T1 × T2

into additive categories, we have that T � T1 or T � T2. Equivalently, T has no nontrivial
completely orthogonal decomposition. Remark that if X is a k-scheme then Db(X) is
indecomposable if and only if X is connected (see [37, Example 3.2]). More is known if X
is the spectrum of a field or a product of fields.

Lemma 1.17. Let K be a k-algebra.

(i) If K is a field and A is a nonzero admissible k-linear triangulated subcategory of
Db(k,K), then A = Db(k,K).

(ii) If K ∼= K1 × · · · ×Kn is a product of field extensions of k and A is a nonzero admissible
indecomposable k-linear triangulated subcategory of Db(k,K), then A � Db(k,Ki) for some
i = 1, . . . , n.
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(iii) If K ∼= K1 × · · · ×Kn is a product of field extensions of k and A is a nonzero admissible
k-linear triangulated subcategory of Db(k,K), then A � ∏

j∈I Db(k,Kj) for some nonempty
subset I ⊂ {1, . . . , n}.

Proof. For (i), it suffices to note that any nonzero object A of Db(k,K) is a classical
generator, that is, the vanishing of HomDb(k,K)(B,A[i]) = 0 for all integers i implies that B = 0.
For (ii), with respect to the product decomposition Db(k,K) � Db(k,K1) × · · · × Db(k,Kn),
consider the projections xi to Db(k,Ki) of an object x of A. Any nonzero xi will generate the
respective subcategory Db(k,Ki).

Given a nonzero object x in A, there exists 1 � i � n such that xi 	= 0. If there exists
another object y in A with yj 	= 0 for j 	= i, then the objects xi and yj will generate completely
orthogonal nontrivial subcategories of A. Since A is indecomposable, this is impossible. Hence
for every object x in A, we have that xj = 0 for every j 	= i. In particular, A ⊂ Db(k,Ki), hence
they are equal by (i). For (iii), we apply (ii) to the indecomposable components of A. �

Next, we need the following affine case of a conjecture of Cǎldǎraru [39, Conjecture 4.1].
The simple proof below is taken from the unpublished manuscript [15] as part of a proof of
Cǎldǎraru’s conjecture in the relative case. A proof of the conjecture (using different techniques)
was also obtained by Antieau [4], with the case of arbitrary (possibly nontorsion) classes over
general spaces handled by [38], after progress by [40, 97].

Recall that a central simple k-algebra A is a simple k-algebra whose center is k. More
generally, if X is a scheme, an Azumaya algebra A over X is a locally free OX -algebra of
finite rank such that A⊗OX

Aop is isomorphic to the endomorphism algebra sheaf End(A).
Azumaya algebras A and B over X are Brauer equivalent if there exist locally free OX -modules
P and Q of finite rank such that A⊗ End(P ) ∼= B ⊗ End(Q). More generally, OX -algebras
A and B are Morita X-equivalent if their stacks of coherent modules are OX -equivalent,
for details see [71, § 19.5]. When X = Spec(R) is affine, this notion is equivalent to Morita
R-equivalence, namely, that R-algebras A and B have R-equivalent R-linear categories of
coherent modules. For Azumaya algebras over a scheme X, Brauer equivalence coincides with
Morita X-equivalence (see [71, Proposition 19.5.2]), and the group of equivalence classes under
tensor product is the Brauer group Br(X). We write An for the Azumaya algebra A⊗n when
n � 0 or (Aop)⊗−n when n � 0. The degree deg(A) is the square root of the rank of A as an
OX -module and the period per(A) of A is the order of the class of A in the Brauer group
Br(X). We say that A is split if A is trivial in Br(X). Finally, the index ind(A) of a central
simple k-algebra A is the degree of a division algebra in its Brauer class.

Theorem 1.18. Let R be a noetherian commutative ring, U and V be R-algebras, and
A and B be Azumaya algebras over U and V , respectively. Then A and B are Morita
R-equivalent if and only if there exists an R-algebra isomorphism σ : U → V such that A
and σ∗B are Brauer equivalent over U .

Proof. First suppose that A and σ∗B are Brauer equivalent, where σ : U → V is an
R-algebra isomorphism. Then by Morita theory (cf. [71, Proposition 19.5.2]), there is a
Morita U -equivalence Coh(U,A) → Coh(U, σ∗B), which by restriction of scalars, is a Morita
R-equivalence. Also, (σ−1)∗ : Coh(U, σ∗B) → Coh(V,B) is an R-equivalence. Composing these
yields the required Morita R-equivalence.

Now suppose that F : Coh(U,A) → Coh(V,B) is a Morita R-equivalence. Since F is
essentially surjective, we can choose P ∈ Coh(U,A) such that F (P ) ∼= Bop as B-modules.
Since F is fully faithful, any choice of isomorphism θ : F (P ) ∼= Bop defines a left B-module
structure on P . In this way, P has a B-A-module structure with commuting R-structure. In
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particular, for any A-module P ′, HomA(P, P ′) has a natural right B-module structure via
precomposition.

Since F is an R-equivalence, this yields an induced R-algebra isomorphism

ψ : EndA(P ) = HomA(P, P ) ∼= HomB(F (P ), F (P )) ∼= EndB(Bop) = B.

In particular, ψ restricts to an R-algebra isomorphism σ : U → V of the centers, hence becomes
a U -module isomorphism EndA(P ) → σ∗B = (σ∗B)op, so A is Brauer equivalent to σ∗B. �

Corollary 1.19. Let A and B be finite-dimensional simple k-algebras with respective
centers K and L. Then Db(K/k,A) and Db(L/k,B) are k-equivalent if and only if there exists
some k-automorphism σ : K → L such that A and σ∗B are Brauer equivalent over K.

Proof. By [118, Corollary 2.7], if A or B is either commutative artinian or noncommutative
local artinian, then they are derived k-equivalent if and only if they are Morita k-equivalent.
Then we apply Theorem 1.18. �

Note that, for the categories considered above, any triangulated k-linear equivalence is of
Fourier–Mukai type [40] so that it is uniquely dg-enhanced. We remark that Corollary 1.19 is
also a consequence of the results of [5].

Lemma 1.20. A dg-enhanced k-linear triangulated category T is representable in dimen-
sion 0 if and only if there exists a semiorthogonal decomposition

T = 〈A1, . . . ,Ar〉,
such that for each i, there is a k-linear equivalence Ai � Db(Ki/k) for an étale k-algebra Ki.

Proof. The smooth k-varieties of dimension 0 are precisely the spectra of étale k-algebras.
Hence the semiorthogonal decomposition condition is certainly sufficient for the representability
of T in dimension 0. On the other hand, if T is representable in dimension 0, we have that each
Ai an admissible subcategory of the derived category of an étale k-algebra. By Lemma 1.17(iii),
we have that Ai is thus itself such a category. �

2. Descent for semiorthogonal decompositions

Given a smooth projective variety X over a field k, and fixing a separable closure ks of k,
we are interested in comparing k-linear semiorthogonal decompositions of Db(X) and ks -linear
semiorthogonal decompositions of Db(Xks ). The general question of how derived categories and
semiorthogonal decompositions behave under base field extension has started to be addressed
by several authors [3, § 2; 6, 7, 51, 81, 104, 114]. Galois descent does not generally hold for
objects in a triangulated category, due to the fact that cones are only defined up to quasi-
isomorphism. However, for a linearly reductive algebraic group G acting on a variety X, a
general theory of descent of semiorthogonal decompositions has been developed by Elagin
[49–51]. In the case where K/k is a finite G-Galois extension and we consider G acting on XK

via k-automorphisms, this theory works as long as the characteristic of k does not divide the
order of G.

We are then faced with two main questions. First, given a ks -linear triangulated category
T, what are all the k-linear triangulated categories T such that Tks is equivalent to T? This
first question is very challenging (see [6] for some examples), and we usually restrict ourselves
to consider Tks in a restricted class of categories (for example, those generated by a strong
exceptional collection). Note that we are actually dealing with triangulated categories which
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admit a canonical dg-enhancement, so that the above mentioned technical problems will not
persist in this setting. Second, given a set of (dg-enhanced) admissible subcategories in Db(X),
determine how this can be related to the semiorthogonal decomposition of Db(Xks ).

In our geometric applications, a central rôle is played by descent of exceptional blocks and
vector bundles.

2.1. Scalar extension of triangulated categories

Let X be a k-scheme and V an OX -module. For a ring extension K/k we write
XK = X ×Spec k SpecK and fK : XK → X for the projection and VK = f∗

KV for the extension
of V to K. If K is a finite k-algebra and F is an OXK

-module, we denote by trK/kF = (fK)∗F
the trace of F from K down to k. Similarly, the trace of an object in Db(XK) is its derived
pushforward via fK . If F is locally free of rank r on XK then trK/kF is locally free of rank
r[K : k] on X. We denote by Gk = Gal(ks/k) the absolute Galois group of k.

If T is a k-linear triangulated category with a dg-enhancement and K/k is a field extension,
then denote by TK the K-linear extension of scalars category defined in [104]. As expected,
there is a K-linear equivalence Db(X)K � Db(XK) (see [104, Proposition 4]). If K/k is a
Galois extension, then the Galois group acts by k-linear equivalences on TK . If K/k is a finite
G-Galois extension then G acts on XK as a k-scheme and there is a k-linear equivalence
Db(X) � Db

G(XK) with the bounded derived category of G-equivariant coherent sheaves on
XK considered as a k-scheme.

Given an orthogonal pair of admissible subcategories {A,B} in Db(X), we can perform right
and left mutations. These operations commute with base-change, that is, LA(B)K = LAK

(BK),
for any finite extension K of k, and similarly for the right mutation.

Remark 2.1. Assume that K/k is a finite field extension and that X is a smooth projective
k-variety. For an object V in Db(X), the scalar extension VK in Db(X)K = Db(XK) satisfies
EndDb(X)K (VK) = EndDb(X)(V ) ⊗k K, see [57, § 0.5.4.9, 1.9.3.3]. If A is a division k-algebra,
then A⊗k K may not be. Hence if V is an exceptional object in Db(X), then VK may fail
to be an exceptional object in Db(XK). However, if V is k-exceptional, then VK is always
K-exceptional.

Lemma 2.2. Let T be an admissible k-linear subcategory of Db(X) for a smooth projective
k-variety X and let K be a field extension of k. Then TK is admissible in Db(XK).

Proof. By Kuznetsov [81], the inclusion functor of the admissible subcategory T → Db(X)
has an adjoint ρ : Db(X) → T that is of Fourier–Mukai type with kernel P an object in
Db(X ×X). Taking PK in Db(XK ×Spec(K) XK) as the kernel of a Fourier–Mukai functor,
we obtain an adjoint for TK → Db(XK). �

Based on base-change results for Fourier–Mukai functor due to Orlov (see [92]), the following
statement was proved in [13, Lemma 2.9] (see also [3, Proposition 2.1]).

Lemma 2.3. Let X be a smooth projective variety over k and let K be a finite field
extension of k. Suppose that T1, . . . ,Tn are admissible subcategories of Db(X) such that
Db(XK) = 〈T1K , . . . ,TnK〉. Then Db(X) = 〈T1, . . . ,Tn〉.
2.2. Classical descent theory for vector bundles

For a vector bundle V on a scheme X, denote by A(V ) = End(V )/rad(End(V )) and Z(V ) the
center of A(V ). Assuming that X is a proper k-scheme, then vector bundles on X enjoy a Krull–
Schmidt decomposition (see [12]), hence A(V ) is a semisimple k-algebra. If V =

⊕m
i=1 V

⊕di
i is
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the Krull–Schmidt decomposition of V , then A(V ) is the product of the algebras Mdi
(A(Vi)).

In particular, V is indecomposable on X if and only if A(V ) is a division algebra over k.
If K/k is a field extension and E is a vector bundle, then we have End(VK) = End(V )K (cf.

Remark 2.1), and hence A(VK) = A(V )K if K/k is separable. An extension field K/ksplits a
central simple k-algebra A if A⊗k K is split.

Lemma 2.4 [9, Lemma 1.1]. Let V be an indecomposable vector bundle on X. Let K/k
be a normal field extension containing Z(V ) and splitting A(V ). Write m = [Z(V ) : k]sep and
d = degZ(V )(A(V )). Then VK has a Krull–Schmidt decomposition of the form VK =

⊕m
i=1 V

⊕d
i

where Vi are indecomposable over XK and A(Vi) = K.

Let W be an indecomposable vector bundle on Xks . A vector bundle V on X is pure (of
type W ) if Vks is a direct sum of vector bundles isomorphic to W . By Lemma 2.4, a vector
bundle V on X is pure if and only if A(V ) is a central simple k-algebra.

Proposition 2.5 [9, Proposition 3.4]. Let X be a proper variety over k. If W is a Gk-
invariant indecomposable vector bundle on Xks then there exists a pure indecomposable vector
bundle V on X, unique up to isomorphism, of type W .

Definition 2.6. Given a Gk-invariant indecomposable vector bundle W on Xks , let V be an
indecomposable pure vector bundle on X of type W (which exists by Proposition 2.5). Define
α(W ) ∈ Br(k) to be the Brauer class of A(V ). In fact, α(W ) is the Brauer class of A(V ′) for
any pure vector bundle V ′ on X of type W .

Remark 2.7. Recall the Brauer obstruction for Galois-invariant line bundles on a smooth
proper geometrically integral variety X over k, see [105, § 2]. The sequence of low-degree terms
of the Leray spectral sequence for Gm associated to the structural morphism X → Spec k is

0 → Pic(X) → Pic(Xks )Gk
d−→ Br(k) → Br(X). (2.1)

The differential d is called the Brauer obstruction for a Galois-invariant line bundle; a class
in Pic(Xks )Gk , which we call a Galois-invariant line bundle, descends to a line bundle on X if
and only if it has trivial Brauer obstruction. The cokernel of Pic(X) → Pic(Xks )Gk is torsion
since the Brauer group is. By [105, Proposition 8], if A is a central simple algebra with class
d(L) for a Galois-invariant line bundle L that is globally generated over Xks , then there exists
a morphism f : X → Y , where Y is a Severi–Brauer variety whose associated Brauer class is
d(L) and f is geometrically the morphism induced by the linear system associated to L, see
Example 3.2.

Recall (see [9, Definition 1.2]) that a vector bundle over a k-variety X is absolutely
indecomposable if Vk is indecomposable over Xk. If A is a division k-algebra of degree d,
then A contains a maximal subfield, that is, a subfield K ⊂ A of degree d over k such that K
splits A, and moreover, a maximal subfield can be chosen separable over k.

Theorem 2.8 [9, Theorem 1.8]. Let X be a proper variety over k and V an indecomposable
vector bundle on X. If K is a maximal subfield of A(V ) then there is an absolutely
indecomposable vector bundle W on XK such that V ∼= trK/kW .

Corollary 2.9 [9, Proposition 3.15]. Let X be a proper variety over k, let W be a Gk-
invariant indecomposable vector bundle on Xks , and let V be an indecomposable pure vector
bundle on X of type W . Let r be the index of the Brauer class α(W ) ∈ Br(k). Then Vks ∼= W⊕r,
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and hence c1(Vks ) = rc1(W ) is in the image of Pic(X) → Pic(Xks )Gk . In particular, W descends
to X if and only if α(W ) is trivial.

Definition 2.10. Let V be a vector bundle on a proper smooth scheme X over k. We write
V = V n1

1 ⊕ · · · ⊕ V nr
r for the Krull–Schmidt decomposition, with V1, . . . , Vr indecomposable.

The reduced part of V is defined to be V min = V1 ⊕ · · · ⊕ Vr. We remark that V and V min

generate the same thick subcategory of Db(X).

2.3. Descent of exceptional blocks

If Tks admits a full exceptional block, we wish to classify all the k-linear categories T base-
changing to Tks . In particular, if Tks is generated by an exceptional block of vector bundles
(that is, it admits a tilting bundle) in Db(Xks ) for some smooth proper scheme X, the descent
of Tks to T inside Db(X) can be described by a descent of the tilting bundle.

When Tks is generated by a ks -exceptional object, the descent question has been studied by
Toën [114].

Theorem 2.11 (Toën [114, Corollary 1.15]). If T is a k-linear triangulated category such
that Tks = Db(ks), then there exists a central simple algebra A over k such that T = Db(k,A).
In particular, T is generated by a k-exceptional object if and only if A is trivial in Br(k).

Proof. Since Db(ks) has a compact generator, then so does T by [114, Proposition 3.12].
Then the dg-category T is equivalent to Db(k,A) for some dg-algebra A over k. As Aks is
Morita equivalent to ks and ks/k is faithfully flat, then by [114, Proposition 1.3], A is a
derived Azumaya algebra over k. By [114, Proposition 1.12], A is Morita equivalent to an
Azumaya algebra over k. �

The Brauer group Br(k) of a field k is isomorphic to the étale cohomology group H2
ét(k,Gm).

In particular, any cohomology class in H2
ét(k,Gm) corresponds to the Brauer class of a central

simple k-algebra. More generally, over any quasi-projective scheme X, the torsion subgroup of
H2

ét(X,Gm) is isomorphic to the Brauer group Br(X), a result of Gabber [65].
Over an arbitrary scheme X, Toën defines the notion of a derived Azumaya algebra. We

refrain from giving a precise definition, and we refer to [114] for details. Roughly speaking,
a derived Azumaya algebra over X is an Azumaya algebra object in the derived category of
perfect complexes (equivalently, the derived category of bounded complexes of vector bundles
when X is quasi-separated and quasi-compact). One of Toën’s main results [114, Theorem 0.1]
is a classification of derived Azumaya algebras, up to Morita equivalence, by the cohomology
group H1

ét(X,Z) ×H2
ét(X,Gm). In order to generalize Theorem 2.11, we need to review the

Eilenberg–MacLane stack perspective on Toën’s proof, which involves objects from derived
algebraic geometry.

Let A be a derived group stack on the site Schét of schemes with the étale topology, that
is, A is a sheaf on Schét with values in the category of simplicial groups. (More generally, a
derived stack is a sheaf taking values in a simplicial category). One can define, for any integer
n � 0, the Eilenberg–MacLane derived stack K(A, n), as the stack on Schét associated to the
prestack U �→ K(A(U), n) of simplicial sets. We refrain from giving a precise definition (details
can be found in [112, 114]), but we will need several properties of Eilenberg–MacLane derived
stacks. First, when A is a presheaf of abelian groups, K(A, n) is a derived abelian group stack
on Schét for all n � 0 and we have K(K(A, n), 1) = K(A, n + 1). Second, given a scheme X,
thought of as a constant sheaf of simplicial sets on Schét, and a presheaf A of abelian groups,
we have

π0 Hom(X,K(A, n)) = Hn
ét(X,A),
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for all n � 0, where the left-hand side is the set of connected components of the sheaf of
morphisms between X and K(A, n); and when A is an arbitrary presheaf of groups, an
isomorphism of pointed sets

π0 Hom(X,K(A, 1)) = H1
ét(X,A),

where the right-hand side is the set of isomorphism classes of locally trivial A-torsors for the
étale topology on X. In particular, K(A, 1) should be thought of as the classifying stack of A.
When A is any derived group stack, we write H1

ét(X,A) for the pointed set π0 Hom(X,K(A, 1)).
Finally, for a derived stack F on the site (Sch/k)ét of k-schemes with the étale topology, and

a point x in F(k), we consider the group stack on (Sch/k)ét of autoequivalences Aut(x). Then
the natural functor K(Aut(x), 1) → F is an equivalence if and only if all the objects of F are
locally trivial (that is, π0 F is a point).

Now we remark that any (derived) Azumaya algebra is locally trivial in the étale topology.
This means that there exists an étale covering over which any (derived) Azumaya algebra
is Morita equivalent to O (see [114, Proposition 2.14]). By the previous discussion, the
stack of derived Azumaya algebras is equivalent to K(Aut(A), 1) for any derived Azumaya
algebra A. In particular, writing G for the derived group stack of autoequivalences of the
trivial Azumaya algebra, our aim is to study K(G, 1). It is not difficult to see that G is
the group stack of invertible (with respect to tensor product) perfect complexes, which are
nothing but line bundles, up to shift in cohomology. We thus have a natural equivalence
of derived group stacks G ∼= Z ×K(Gm, 1). Applying the functor K(−, 1), we arrive at
K(G, 1) ∼= K(Z, 1) ×K(Gm, 2). Taking sections over X gives Toën’s cohomological description
of the group of Morita equivalence classes of derived Azumaya algebras over X.

Recall now that K is a finite étale k-algebra if and only if K ⊗k ks ∼= ks × · · · × ks .
Equivalently, K ∼= l1 × · · · × lm where each li/k is a finite separable field extension. The
k-dimension of K is called the degree of K over k. An Azumaya algebra A over an étale
k-algebra K ∼= l1 × · · · × lm is simply a product A ∼= A1 × · · · ×Am where each Ai is a central
simple li-algebra.

The set of k-isomorphism classes of étale k-algebras of degree n is in bijection with the
Galois cohomology set H1(k, Sn). Indeed, the stack of étale algebras of degree n on the étale
site (Spec k)ét is equivalent to K(Sn, 1) for the constant group scheme Sn of the symmetric
group on n objects.

Proposition 2.12. Let T be a k-linear triangulated category such that Tks is ks -equivalent
to Db(ks , (ks)n). Then there exists an étale algebra K of degree n over k, an Azumaya algebra
A over K, and a k-linear equivalence T � Db(K/k,A). In this case, T is an indecomposable
category if and only if K is a field extension of k.

Proof. As above, the derived group stack G of autoequivalences of k over (Spec k)ét is
equivalent to Z ×K(Gm, 1). We claim that the derived group stack Gn of autoequivalences
of the étale k-algebra kn (considered as a dg-k-algebra), is equivalent to the wreath product
G 
 Sn = Gn � Sn, thought of as the stack of n× n generalized permutation matrices filled with
shifts of invertible modules. Indeed, for an étale k-algebra R, any dg-endofunctor of Rn can be
viewed as an n× n matrix M of perfect dg-R-modules by [113, Theorem 8.15]. Considering
the n× n matrix M of ranks of the entries of M , we see that M being invertible implies that
M is invertible and its inverse also consists of nonnegative integers, which is well known to
imply that M is a permutation matrix (that is, GLn(N) = Sn). Hence M has a single nonzero
module in each row and column, which must have rank 1, giving the desired form. Hence, we
have an exact sequence of group stacks

1 → Gn → Gn → Sn → 1, (2.2)
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on the étale site on Spec k, where Sn is the constant group stack of the symmetric group
on n objects. Then as discussed above, K(Gn, 1) is the stack of all dg-algebras étale locally
Morita-equivalent to kn. The exact sequence (2.2) induces a fibration of Eilenberg–MacLane
stacks

(K(Z, 1) ×K(Gm, 2))n → K(Gn, 1) → K(Sn, 1).

Applying π0 Hom(Spec k,−), we find an exact sequence of pointed sets

Br(k)n → H1(k,Gn) z−→ H1(k, Sn) → 1,

where we use the fact that H1(k,Z) = 0. We recall that H1(k,Gn) is shorthand notation for
π0 Hom(Spec k,K(Gn, 1)), the set of Morita k-equivalence classes of dg-algebras étale locally
isomorphic to kn. The map z sends the Morita equivalence class of such an algebra A to the
isomorphism class of its center Z(A), which is an étale algebra of degree n. By a standard
cohomological twisting argument, the fiber of z over an étale algebra K of degree n over k,
is the image of Br(K). This gives the desired description. The final claim follows since for
any field extension K over k, the k-linear category Db(K/k,A) is indecomposable; conversely,
given any decomposition K = K1 ×K2, there is an induced decomposition A = A1 ×A2, with
Ai Azumaya over Ki, and then Db(K/k,A) � Db(K1/k,A1) × Db(K2/k,A2). �

Let us state explicitly the following corollary which will be extensively used in our
applications.

Corollary 2.13. Let X be a smooth projective k-variety and K/k a Galois extension
with Galois group G. Suppose that there is an admissible subcategory T of Db(X) such that
TK = 〈V1, . . . , Vn〉 is an exceptional block of vector bundles on XK . Then for any object A in
T the Chern class c1(A) is a Z-linear combination of the c1(Vi). In particular, there exists a
nonzero G-invariant Z-linear combination of the c1(Vi).

Proof. Proposition 2.12 implies that T has cohomological dimension 0, so that every object
is the direct sum of its cohomologies, and this decomposition is clearly G-invariant. By the
thickness of T, we can then suppose that A is a sheaf. Then AK is a direct sum of the vector
bundles Vi, and is nontrivial if A 	= 0. �

Let us end this section by illustrating Lemma 2.3 by examples known in the literature of
descent of vector bundles.

Example 2.14. Let X be the Severi–Brauer variety associated to a central simple algebra A
of degree n + 1 over k, see Example 3.2 for definitions. Let K/k be a field extension such that
XK � Pn

K . Thanks to Beilinson [19], we have the following semiorthogonal decomposition

Db(Pn
K) =

〈
OPn

K
,OPn

K
(1), . . . ,OPn

K
(n)

〉
. (2.3)

On the other hand, Db(X) admits the following semiorthogonal decomposition† [21, Corol-
lary 4.7]

Db(X) = 〈Db(k),Db(k,A), . . . ,Db(k,An)〉. (2.4)

†In [21], the full and faithful embedding of the subcategory of A−1-modules into Db(X) is given by the
choice of an “étale local form” F of OX(1); an A-module M is sent to M ⊗ F , which can be endowed with the
structure of an OX -module. Note that in [21], A−1 is the algebra obstructing the descent of O(1), so that our
notations are opposite to the ones used there.
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We can see the semiorthogonal decomposition (2.3) as the base-change of (2.4) using descent
of vector bundles as follows. The exceptional line bundle OPn

K
clearly descends to X, and

hence generates an admissible subcategory of Db(X) equivalent to Db(k). Consider now the
exceptional line bundle OPn

K
(1), and consider it as a stand-alone block. Going back to at

least Quillen [98, § 8.4], it was known that OPn
K

(1)⊕n+1 descends to a vector bundle V on X

such that End(V ) = A. Similarly, OPn
K

(i)⊕n+1 descends to a vector bundle Vi on X such that
End(Vi) = Ai. Hence the decomposition (2.4) of Db(X) can be obtained by a descent of the
exceptional collection (2.3) of Db(Pn

K).

Other known (similar) examples include the decomposition of a relative Severi–Brauer variety
[21] whose base-change is the decomposition of a projective bundle given by Orlov [91], the
decomposition of a generalized Severi–Brauer variety given by Blunk [27] whose base-change is
the decomposition of a Grassmannian variety given by Kapranov [66], and the decomposition
of a quadric hypersurface given in [13] (generalizing the work of Kuznetsov [79]) whose base-
change is the decomposition of a quadric given by Kapranov [66].

Remark 2.15. One might wonder, motivated by the previous examples, whether the descent
of an exceptional block E ⊂ Db(Xks ), generated by indecomposable vector bundles Vi can be
realized by the descent of the tilting bundle V =

⊕
i Vi. If V were Galois-invariant, the results

of § 2.2 would produce a vector bundle W on X with Wmin
ks

∼= V min. Moreover, this would
explicitly let us consider the endomorphism algebra End(W ) to obtain an algebraic description
of the descended category. We wonder whether a converse statement holds: if the block E
descends, then is the tilting bundle V Galois-invariant?

3. Geometrically rational surfaces

In this section we collect together some known results on geometrically rational surfaces,
including their classification, Chow groups, and derived categories.

3.1. Classification and first properties

Let k be a field, ks a separable closure, and k̄ an algebraic closure. A smooth projective
geometrically integral surface S over k such that S = S ×k k̄ is k̄-rational is called a
geometrically rational surface. Recall that S is a del Pezzo surface if ω∨

S is ample. The degree
of a geometrically rational surface is the self-intersection number d = ωS · ωS .

We say that a field extension l of k is a splitting field for S if S ×k l is birational to P2
l via

a sequence of monoidal transformations centered at closed l-points. The following important
fact enables one to consider the separable closure ks instead of the algebraic closure k when
working with geometrically rational surfaces.

Proposition 3.1 [46, Theorem 1; 116, Theorem 1.6]. If S is a geometrically rational
surface over a field k, then S is split over ks .

A surface S is minimal over k, or k-minimal, if any birational morphism f : S → S′, defined
over k, is an isomorphism. Over a separably closed field, the only minimal rational surfaces are
the projective plane and projective bundles over the projective line. Over a general field, this
is no longer true. Minimal geometrically rational surfaces have been completely classified, and
they all appear on the following list (see [58, 89]):

(i) S = P2
k is the projective plane, so Pic(S) = Z, generated by the hyperplane O(1);

(ii) S ⊂ P3
k is a smooth quadric and Pic(S) = Z, generated by the hyperplane section O(1);
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(iii) S is a del Pezzo surface with Pic(S) = Z, generated by the canonical class ωS ;
(iv) S is a conic bundle f : S → C over a geometrically rational curve, with Pic(S) � Z ⊕ Z.

Example 3.2. A Severi–Brauer variety is a variety X over k such that X ∼= Pn−1
k̄

for some
n � 2. By descent, a Severi–Brauer variety is a smooth projective variety over k. The set of
isomorphism classes of Severi–Brauer varieties X of dimension n− 1 over k is in bijection with
the set of k-isomorphism classes of central simple algebras A of degree n over k, and we will
write X = SB(A) accordingly. By a theorem of Châtelet, a Severi–Brauer variety X = SB(A) is
k-rational if and only if X is k-isomorphic to projective space if and only if X(k) 	= ∅ if and only
if A splits, cf. [54, Theorem 5.1.3]. In this case, we say that Xsplits and remark that X always
splits after a finite separable field extension. The Galois action on Pic(Xks ) = Pic(Pn−1

ks ) = Z is
trivial since it preserves dimensions of spaces of global sections. It is a theorem of Lichtenbaum
that the Brauer obstruction (see Remark 2.7) for the Galois-invariant line bundle OP2

ks
(1) to

descend to X is precisely the Brauer class of A, cf. [54, Theorem 5.4.10]. The index of the
inclusion Pic(X) ⊂ Pic(Xks ) = Z thus coincides with the period of A (see [10, § 2]). The low
terms of the Leray spectral sequence (see (2.1)) thus show that for a Severi–Brauer variety
X = SB(A), we have that ωX generates Pic(X) if and only if A is a division algebra.

A Severi–Brauer surface S is a Severi–Brauer variety of dimension 2, hence is a minimal del
Pezzo surface. As intersection numbers do not change under scalar extension, S has degree 9.
By the above analysis of the Picard group, a nonsplit Severi–Brauer surface belongs to the case
(iii), while the split Severi–Brauer surface P2

k belongs to case (i).

Example 3.3. An involution variety is a variety X over k such that X is k̄-isomorphic to a
smooth quadric in Pn

k̄
for some n � 2. By descent, an involution variety is a smooth projective

variety over k. The set of isomorphism classes of involution varieties over k is in bijection
with the set of k-isomorphism classes of central simple algebras (A, σ) of degree n + 1 over k
together with a quadratic pair σ.

A quadratic pair on a central simple K-algebra A is the data of a k-linear involution σ
on A together with a linear functional on the subspace of σ-symmetric elements of A and
satisfying certain conditions (see [73, § 5.B]): in characteristic 	= 2, the involution σ must
necessarily be of orthogonal type and the linear functional is uniquely determined by σ,
so a quadratic pair is nothing more than an orthogonal involution; in characteristic 2, the
algebra A must necessarily have even degree and the involution σ must be symplectic. Given
a quadratic form q on a finite-dimensional k-vector space V whose associated bilinear form
is nondegenerate, that is, the map ϕq : V → V ∨ given by v �→ (

w �→ q(v + w) − q(v) − q(w)
)

is an isomorphism (so necessarily V has even dimension in characteristic 2), ones defines an
involution σq on A = End(V ) by f �→ ϕq

−1 ◦ f∨ ◦ ϕq. Furthermore, there exists a unique linear
functional on the σq-symmetric elements defining a quadratic pair on End(V ), which recovers
the quadratic form q up to scaling and is called the quadratic pair adjoint to the quadratic
form q. Moreover, this association defines a bijection between the set of isomorphism classes
of quadratic pairs on End(V ) and the set of isometry classes of quadratic forms on V up to
scaling.

An involution variety X defined by a quadratic pair (A, σ) is a degree 2 hypersurface in
the Severi–Brauer variety SB(A). Attached to an involution variety X is the even Clifford
algebra C0(A, σ), defined by Jacobson [64] via Galois descent in characteristic not 2 and in
[73, § 8] in general. If A is split and the quadratic pair on A is adjoint to a quadratic form,
then X ⊂ SB(A) ∼= Pn

k is the associated quadric hypersurface. We say that X is an anisotropic
quadric if A is split yet X(k) = ∅. Since A carries an involution, it has period dividing 2.

From now on, we assume that X has even dimension 2m. In this case, C0(A, σ) is an Azumaya
algebra over its center l, which is an étale quadratic algebra over k, called the discriminant
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extension of X. The Galois action on the middle-dimensional Chow group CHm(Xks ) ∼= Z2

factors through a permutation of the two families of maximal isotropic subspaces. (In the case
of dimension 2, these are the rulings of Xks , which generate CH1(Xks ) = Pic(Xks ) = Z2.) This
action coincides with the Galois action on the discriminant extension l/k. By a comparison of
the low-degree terms of the Leray spectral sequences (see (2.1)) for X and SB(A), we see that
the Brauer obstruction to the Galois-invariant line bundle of OXks (1) (which, in the case of
dimension 2, is the sum of the two classes of rulings) is precisely the Brauer class of A. When
X has dimension greater than 2, then Pic(X) = Z; when A is not split then ωX is m times a
generator.

An involution surface S is an involution variety of dimension 2, that is, Sks ∼= P1
ks × P1

ks . In
particular, S is a minimal geometrically rational del Pezzo surface. As intersection numbers
do not change under scalar extension, S has degree 8. The set of k-isomorphism classes of
involution surfaces is also in bijection with the set of isomorphism classes of pairs (l, B), where
l is an étale quadratic extension of k and B is a quaternion algebra over l, see, for example,
[73, § 15.B]. Given an involution variety S corresponding to a central simple algebra (A, σ) of
degree 4 with quadratic pair, the even Clifford algebra C0(A, σ) is a quaternion algebra over
the discriminant extension. Conversely, given a pair (l, B), the associated involution variety is
the Weil restriction S = Rl/kSB(B). As far as placing involution surfaces into the classification
of minimal geometrically rational surfaces, there are several cases: If the discriminant extension
is trivial, then S belongs to case (iv). In this case S ∼= C1 × C2 is a product of Severi–Brauer
curves. Writing Ci = SB(Bi) for quaternion algebras Bi over k, then A ∼= B1 ⊗B2. In this
case, the Brauer class of A is trivial if and only if C1

∼= C2. If the discriminant extension is
nontrivial, then S belongs to case (ii) or (iii) depending on whether the Brauer class of A is
trivial or not, respectively.

Example 3.4. Let S be a geometrically rational del Pezzo surface of degree 8 not isomorphic
to an involution variety. The unique exceptional curve on Sks is a Galois-invariant subvariety,
hence can be contracted to arrive at a del Pezzo surface of degree 9 with a rational point, which
is thus P2

k. Thus S → P2
k is the blow-up of P2

k at a single k-rational point. In particular, S is a
rational del Pezzo surface and is never minimal.

Let X be a geometrically rational del Pezzo surface of degree 7. As Sks is the blow-up of P2
ks

at two points, the exceptional divisor consists of a Galois-invariant pair of (−1)-curves, hence
can be contracted to arrive at a del Pezzo surface of degree 9 with a point of degree 2, which
is thus P2

k. Thus S → P2
k is the blow-up of P2

k at a closed point of degree 2. In particular, S is
a rational del Pezzo surface and is never minimal.

Remark 3.5. If S is a minimal del Pezzo surface of degree at most 6, then the map
Pic(S) → Pic(Sks )Gk is an isomorphism, cf. [45, Lemma 2.5, Proposition 5.3].

We continue our general discussion of geometrically rational surfaces. Denote by ρ(S) the
Picard rank of S.

Proposition 3.6. If S is a geometrically rational surface over a field k, then K0(S)Q is a
Q-vector space of dimension 2 + ρ(S). In particular, if S is minimal then K0(S)Q has
dimension 3 or 4, and in the latter case S has a conic bundle structure.

Proof. The Chern character

ch : K0(S) ⊗Z Q →
⊕
i

CHi(S) ⊗Z Q
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is an isomorphism. We have CH0(S) ∼= Z and CH1(S) ∼= Pic(S). Finally, to describe the Chow
group CH2(S) = CH0(S), we have an exact sequence

0 → A0(S) → CH0(S)
deg−−→ Z → Z/i(S)Z → 0,

where A0(S) is defined to be the kernel of the degree map and i(S) is the index, that is,
the greatest common divisor of degrees of closed points on S. Since S is rational after a finite
separable extension (by Proposition 3.1), a restriction–corestriction argument shows that A0(S)
is torsion, cf. [44, Proposition 6.4]. This implies that the degree map becomes an isomorphism
CH0(S) ⊗Z Q

	→ Q after tensoring with Q. This completes the calculation of the dimension. The
final statement is a result of the classification of minimal geometrically rational surfaces. �

Corollary 3.7. Let S be a geometrically rational surface over k. If there exist field
extensions l1, . . . , ln of k and Azumaya algebras Ai over li, such that there is a semiorthogonal
decomposition

Db(S) =
〈
Db(l1/k,A1), . . . ,Db(ln/k,An)

〉
,

then n = 2 + ρ(S). In particular, S is categorically representable in dimension 0 if and only if
there exist field extensions l1, . . . , ln, with n = ρ(S) + 2, and a semiorthogonal decomposition

Db(S) =
〈
Db(l1/k), . . . ,Db(ln/k)

〉
. (3.1)

Proof. The first statement is a corollary of Proposition 3.6, since the semiorthogonal
decomposition gives a splitting

K0(S) =
n⊕

i=1

K0(li, Ai)

and K0(l, A) ∼= Z for any field l and any Azumaya algebra A over l. To prove the second state-
ment note that S is categorically representable in dimension 0 if and only if a semiorthogonal
decomposition like (3.1) exists by Lemma 1.20, and the number of components is given by the
first statement. �

Let us recall a straightforward consequence of Orlov’s result on blow-ups, reducing the
question of being categorically representable in dimension 0 to minimal surfaces.

Lemma 3.8. Let S be a smooth projective nonminimal surface over k. Then there is a
smooth projective minimal surface S′, and a fully faithful functor Φ : Db(S′) → Db(S) such
that the orthogonal complement of Φ(Db(S′)) is representable in dimension 0.

Proof. Since S is not minimal, there exists a k-birational morphism π : S → S′ to a minimal
surface. Then π is the blow-up of a closed zero-dimensional subvariety Z ⊂ S′. The proof follows
from Orlov blow-up formula [91]. �

Manin has proved that, given a (nonnecessarily minimal) del Pezzo surface of degree d � 2,
the existence of a k-rational point (not lying on any exceptional curve if d � 4) implies the
existence of a unirational parametrization, that is, a map P2

k → S of finite degree.

Theorem 3.9 (Manin [89, Theorem 29.4]). Let S be a del Pezzo surface of degree d � 2
over k with S(k) 	= ∅. If d � 4 suppose moreover that the point does not lie on any exceptional
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curve. Then there exists a rational map φ : P2
k → S whose degree δd is given by the following

table

d � 5 4 3 2

δd 1 2 6 24

In particular, if d � 5, the surface S has a k-rational point if and only if it is k-rational.

Minimal del Pezzo surfaces of degree at most 7 can be characterized by the Galois action on
exceptional curves. We say that a del Pezzo surface S over k is totally split if S is k-rational
and all exceptional curves are defined over k. Any field extension of k over which a del Pezzo
surface becomes totally split will be called a total splitting field for S. We can always choose
a finite Galois total splitting field for a del Pezzo surface. We remark that S can be split, but
not necessarily totally split, over a given field.

We end this section by recalling the following classification of birational maps between
nonrational minimal del Pezzo surfaces, which can be proved by classifying all the possible
links in the Sarkisov program (see [63]).

Proposition 3.10 (Iskovskikh [63, Theorems 1.6, 4.5, 4.6]). Let S be a nonrational del
Pezzo surface of Picard rank 1, S′ a minimal surface, and φ : S ��� S′ a k-birational map.

(i) If deg(S) = 1 or if S has no closed point x of degree less than deg(S), then φ is an
isomorphism (that is, S is birationally rigid).

(ii) If deg(S) = 2 and S(k) 	= ∅, or if deg(S) = 3 and S(k) 	= ∅ or if deg(S) = 4 and S has
a point of degree 2 and no point of degree 1 or 3, or if S has degree 8 and a point of degree 4
(but no point of lower degree), then φ can be composed with a birational map S ��� S to give
an isomorphism (that is, S is birationally semirigid).

(iii) If deg(S) = 6 or deg(S) = 9, then deg(S) = deg(S′) (that is, S is deg-rigid).
(iv) If deg(S) = 4 and S has a k-rational point or if deg(S) = 8 and S has a degree 2 point

(but no k-rational point), then the blow-up of S along such a point is a conic bundle of degree
3 or 6, respectively. In particular, S is not deg-rigid.

All nonrational del Pezzo surfaces of Picard rank 1 are covered by one of these cases.

Proof. A proof of all of these results can be found in [63] (some of them were previously
known). Item (i) is [63, Theorem 1.6], while items (ii), (iii), and (iv) are summarized in [63,
Comment 5]. Note that if S has degree 8 and a point of degree 4 but no point of lower degree,
then [63, Theorem 4.4] only says that S is deg-rigid. In this case, S is an involution variety,
for which the birational semirigidity can be proved directly via the theory of quadratic forms,
see Proposition C.3.

Finally, the list is exhaustive since if deg(S) � 6 and S has a closed point of degree less
than deg(S) and coprime with deg(S), then S is rational (for an argument, see [63, p. 624]).
Similarly if S has degree 5 or 7 then it is rational. �

Part II. Del Pezzo surfaces

The plan of this part is as follows. In Section 4 we recall the necessary facts concerning 3-block
decompositions. In Section 5 we consider the case of degree d � 4 and prove Theorems 1 and 3.
The rest of the proofs will be divided into the cases of Severi–Brauer surfaces (Section 6),
involution surfaces (Section 7), del Pezzo surfaces of degree 7 (Section 8), degree 6 (Section 9),
and degree 5 (Section 10).
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4. Exceptional objects and blocks on del Pezzo surfaces

In this section, we assume that k is separably closed. The derived category of a totally split del
Pezzo surface (over an algebraically closed field) has been extensively studied by the Moscow
school in the 1990s (see, for example, [55, 56, 70, 75, 99]), with special attention to the
structure of exceptional collections. In particular, Kuleshov and Orlov [75, Proposition 2.9,2.10]
prove that any exceptional object on a del Pezzo surface is, up to shifts, either a vector bundle or
(the extension by zero of) a line bundle supported on a (−1)-curve. Recall that any line bundle
on a geometrically rational surface is k-exceptional and that the hypotheses of Lemma 1.6(ii)
are satisfied for any blow-up of such a surface.

While these authors restrict to working over algebraically closed fields of characteristic 0,
their proofs are based on properties of vector bundles and on the description of a del Pezzo
surface as a blow-up of P2, hence they actually hold for any totally split del Pezzo surface, in
particular, over any separably closed field.

Let S be a del Pezzo surface over k. Then S is totally split and S is either a quadric surface
and has degree 8, or S is a blow-up of P2 in 9 − d points, for 1 � d � 9, and has degree d. A
3-block decomposition of Db(S) is a semiorthogonal decomposition

Db(S) = 〈E,F,G〉
consisting of exceptional blocks. Gorodentsev–Rudakov, Rudakov, and Karpov–Nogin (see [56,
70, 99]) have proved the existence of 3-block decompositions by exceptional vector bundles with
some unicity property (up to mutations). Indeed, the ranks and degrees of vector bundles are
constant in a block, and there is an algorithm to compute how slopes change under mutations,
as explained in [70]. A 3-block decomposition is minimal if any mutation increases the rank of
one of the blocks. The existence of minimal decomposition is related to solutions of Markov-type
equations.

Proposition 4.1 [56, 70, 99]. Let S be either a quadric surface or a del Pezzo surface of
degree d 	= 7, 8 over a separably closed field k. Set s = max{1, 5 − d}. Then Db(S) has s (up to
tensoring by line bundles and the action of the Weyl group) minimal 3-block decompositions
such that any other 3-block decomposition of Db(S) can be obtained from one of these by a
finite number of mutations.

In all cases, the blocks are generated by a completely orthogonal set of vector bundles, so
that each block has a tilting bundle.

In the cases of degree d = 7, 8 (see Example 3.4), there is always a 4-block decomposition,
but not a 3-block one. On the other hand, del Pezzo surfaces of these degrees are never minimal
(see Example 3.4).

We summarize the possible minimal 3-block decompositions in Table 1. Recall that these
decompositions hold over a separably closed field, or in general for totally split del Pezzo
surfaces, so that S is either P1

k × P1
k or the blow-up of P2 in 9 − d rational points, and

exceptional means k-exceptional. In the first case we use the standard notation O(a, b) for line
bundles of bidegree (a, b). In the latter, we denote by Li (for i = 1, . . . , 9 − d) the exceptional
divisors of S → P2, and by H the pull-back of the hyperplane class in P2. For each block, the
table lists the number n of exceptional bundles, their rank r (which is constant within the
block), and the first Chern class of the tilting bundle of the block (that is, the sum of the first
Chern classes of the bundles in the block).

5. Del Pezzo surfaces of Picard rank 1 and low degree

From now on, let k be an arbitrary field and S be a del Pezzo surface of degree d and
Picard rank 1 over k. Recall that K0(S)Q � Q⊕3, so that we can wonder, according to
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Table 1. Representative sets of exceptional objects generating the various 3-block decompositions of
Db(Sks ), taken up to mutation, tensoring through by a line bundle, and the Weyl group action. For
each block, n = number of bundles in the block and r = rank of these bundles. Here, S → P2

ks is the
blow-up at 9 − deg(S) points, Li the exceptional divisors, H the pull-back of the hyperplane class,
L�4 =

∑
i�4 Li, and L�3 =

∑
i�3 Li. For the higher rank vector bundles, we follow the notation in

Karpov–Nogin [70, § 4].

E F G

deg(S) n r exc. collection n r exc. collection n r exc. collection

9 1 1 O 1 1 O(H) 1 1 O(2H)

8 (inv) 1 1 O 2 1 O(1, 0) 1 1 O(1, 1)
O(0, 1)

8 (dP) No 3-block decomposition
7

6 1 1 O 2 1 O(H) 3 1 O(2H − L1 − L2)
O(2H − L�3) O(2H − L1 − L3)

O(2H − L2 − L3)

5 1 1 O 1 2 F 5 1 O(H)
O(L1 − ω −H)
O(L2 − ω −H)
O(L3 − ω −H)
O(L4 − ω −H)

4 2 1 O(L4) 2 1 O(H) 4 1 −ω
O(L5) O(2H − L�3) O(2H − L1 − L2)

O(2H − L1 − L3)
O(2H − L2 − L3)

3 (i) 3 1 O(L4) 3 1 O(H − L1) 3 1 −ω
O(L5) O(H − L2) O(H)
O(L6) O(H − L3) O(2H − L�3)

3 (ii) 1 2 T6 2 1 O(H) 6 1 O(L1 − ω) O(L2 − ω) O(L3 − ω)
−ω O(L4 − ω) O(L5 − ω) O(L6 − ω)

2 (i) 1 2 E7 1 2 T7 8 1 −ω
O(H − L1) . . . O(H − L7)

2 (ii) 2 2 E7 4 1 O(L4) 4 1 −ω
O(L5) O(H − L1)

E′
7 O(L6) O(H − L2)

O(L7) O(H − L3)

2 (iii) 1 3 E′′
7 3 1 O(H − L1) 6 1 O(H)

O(H − L2) O(2H − L�3)
O(H − L3) O(L4 − ω) . . . O(L7 − ω)

1 (i) 1 3 E8 1 3 F8 9 1 −ω
O(−L1) . . . O(−L8)

1 (ii) 1 4 E′
8 2 2 T8 8 1 O(L4 − ω) . . . O(L8 − ω)

T ′
8 O(H − L1) O(H − L2) O(H − L3)

1 (iii) 2 4 E′′
7 3 2 T8 6 1 O(L4 − ω) O(L5 − ω) O(L6 − ω)

E′′
8 T ′

8 O(H − L1) O(H − L2) O(H − L3)
T ′′
8

1 (iv) 1 5 E′′′
8 5 2 F4,8 . . . F8,8 5 1 O(H)

O(2H − L�3)
O(H − L1 − ω) . . . O(H − L3 − ω)
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Proposition 3.6, whether there is a semiorthogonal decomposition given by three simple
k-algebras. If such a decomposition exists, it must base-change to a 3-block decomposition
of Db(Sks ) by Proposition 2.12. Conversely, if we suppose that there is a semiorthogonal
decomposition

Db(S) = 〈E,F,G〉,
whose base-change is a 3-block decomposition, then Proposition 2.12 guarantees that the three
components are equivalent to derived categories of simple k-algebras.

Combining the explicit description of the vector bundles forming exceptional blocks on Sks ,
together with the previous observations, we gain control over semiorthogonal decompositions
of derived categories of del Pezzo surfaces of Picard rank 1.

Theorem 5.1. Let S be a del Pezzo surface of degree d � 4. Then there is no semiorthogonal
decomposition

Db(S) = 〈Db(l1/k, α1),Db(l2/k, α2),Db(l3/k, α3)〉, (5.1)

with li field extensions of k and αi in Br(li).

Proof. If a decomposition (5.1) exists, then ρ(S) = 1 by Corollary 3.7, hence Pic(S) = Z[ω]
by the classification. Moreover, Proposition 2.12 ensures us that its base-change to ks is a
3-block decomposition. Up to mutating the three blocks, tensoring with line bundles, and the
action of the Weyl group, we can appeal to the Karpov–Nogin classification (cf. Proposition 4.1)
and proceed in a case-by-case analysis. Such exceptional blocks are generated by vector bundles,
so Corollary 2.13 guarantees that a nontrivial Z-linear combination of the first Chern classes
of these vector bundles is a multiple of ω.

First, the Galois action on 〈ω〉⊥ ⊂ Pic(Sks ) factors through the Weyl group of the associated
root system, see [48, Theorem 2]. Hence over ks , there is a choice of 9 − d pairwise disjoint
exceptional lines L1, . . . , L9−d so that the three blocks are described as in Table 1, up to
tensoring all exceptional bundles by the same line bundle O(M) in Pic(Sks ).

Our argument will follow two different paths, depending on the degree and subcase.

(1) Either we show that one of the blocks contains a proper admissible subcategory generated
by ω, and then Lemma 1.17 shows that this contradicts ρ(S) = 1.

(2) Or we show the impossibility of descending a nontrivial generator of one of the blocks,
by proving that its first Chern class could never be a multiple of ω.

In what follows, we will consider a line bundle M on Sks written as M = nH +
∑d

i=1 aiLi.
Tensoring by powers of ω = −3H +

∑d
i=1 Li, we can choose to fix one of the coefficients ai or

a representative of n modulo 3.

Degree 4. In degree 4, E is generated by O(L4) and O(L5) over ks . Let O(M) be a line
bundle on Sks . If there exists a pair of integers a and b such that

a(L4 + M) + b(L5 + M) = rω, (5.2)

then r = 0. Indeed, we make this first calculation explicit: assume that M = nH +
∑5

i=1 aiLi

with a1 = 0. Then it follows that r = 0, in which case, we must also have n = 0 and a2 = a3 = 0.
Of course, we can assume that both a and b are not both zero, otherwise no nontrivial generator
of the block E descends. In fact, since Pic(Sks ) is torsion-free, we can further take a and b to
be coprime.

With this in mind, equation (5.2) yields

a(L4 + a4L4 + a5L5) + b(L5 + a4L4 + a5L5) = 0.
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It follows, looking at the coefficients of L4 and L5, respectively, that{
a + (a + b)a4 = 0
b + (a + b)a5 = 0. (5.3)

Since a and b are coprime, a + b 	= 0 and hence the only integer solutions to this system of
equations has a4 = a5 = 0 (which implies a = b = 0, a contradiction) or a + b = ±1.

Suppose that a + b = 1. From (5.3), we get that a4 = −a and a5 = a− 1, so that the
possibilities to descend the block E are obtained by tensoring the Karpov–Nogin 3-block
decomposition over Sks by M = −aL4 + (a− 1)L5, for some integer a. Now we consider the
block F. After tensoring with O(M), the block F is generated, over ks , by O(H + M) and
O(2H − L1 − L2 − L3 + M). If the block descends to k, we have integers α, β, and ρ such that

α(H + M) + β(2H − L1 − L2 − L3 + M) = ρω. (5.4)

Looking at coefficients of L1 in (5.4), we get β = −ρ. Then considering the coefficient of H
in (5.4) gives α = −ρ. Finally, the coefficients of L4 and L5 give αρ = ρ and (1 − α)ρ = ρ,
respectively. From this, it follows that ρ = 0, so that α = β = 0, hence no nontrivial generator
of the block F can descend.

If we suppose that a + b = −1, then M = aL4 − (a + 1)L5, and similar arguments show that
no nontrivial generator of F can descend. Using Corollary 2.13, this means that there is no way
to descend both the blocks E and F to k at the same time.

Degree 3, case (i). The block E is generated by O(L4), O(L5), and O(L6). We consider the
equation

a(L4 + M) + b(L5 + M) + c(L6 + M) = rω.

As before, up to tensoring by multiples of ω, we can assume M = nH +
∑6

i=1 aiLi with a1 = 0,
from which we similarly conclude that r = 0, hence c1(E) = 0, and n = a1 = a2 = a3 = 0.

The block F is generated by O(H − L1), O(H − L2), O(H − L3), so that we are looking for
nontrivial integers α, β, and γ such that

α(H − L1 + M) + β(H − L2 + M) + γ(H − L3 + M) = ρω,

where M = a4L4 + a5L5 + a6L6, as just shown. From this, we get α = β = γ = −ρ, by
considering the coefficients of L1, L2, and L3. This also matches the coefficients of H. Suppose
that ρ 	= 0, and divide the above equation by ρ. Looking at the coefficients of L4, we get that
3a4 = −1, a contradiction since a4 is integer. It follows that α = β = γ = 0 and we appeal to
Corollary 2.13 to show that E and F cannot simultaneously descend.

Degree 3, case (ii). The block E is generated by a rank 2 vector bundle T6 with c1(T6) = H.
We have c1(T6 ⊗M) = H + 2M , and for the block to descend, we need H + 2M = rω. Taking
M (up to multiples of ω) with a1 = 0, we conclude that r = 0. As a result, ai = 0 for all i, so
that M = nH is a multiple of H, and then H + 2M = (2n + 1)H. We conclude that the only
multiple of T6 that can descend is the trivial one. This contradicts Corollary 2.13.

Degree 2, case (i). This case is very similar to the case of Degree 3, case (ii). Indeed, the
block F is generated by a single rank 2 vector bundle with first Chern class H.

Degree 2, case (ii). In this case, F is generated by O(L4), . . . ,O(L7). Arguing as in the
case of Degree 4, we deduce that if there exists a linear combination of L4 + M, . . . , L7 + M
(a necessary condition for F to descend) then r = 0 and M =

∑7
i=4 aiLi. The block E

is generated by two rank 2 vector bundles of first Chern classes H + ω and −H + L�4,
respectively. As a necessary condition for E to descend, we are looking for a pair of integers a
and b such that

a(H + ω + 2M) + b(−H + L�4 + 2M) = rω.
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Since M = a4L4 + · · · + a7L7, considering the coefficient of L1, we arrive at a = r, from which
it follows that r(H + 2M) + b(−H + L�4 + 2M) = 0, by subtracting rω on both sides. Now,
looking at the coefficient of H, we arrive at b = r, hence we conclude that r(4M + L�4) = 0.
Once again considering the coefficient of H, we see that r 	= 0 is impossible. It follows that
a = 0 and hence b = 0, as well. This contradicts Corollary 2.13.

Degree 2, case (iii). In this case, the block E is generated, over ks , by a rank 3 vector
bundle with first Chern class L�4. A necessary condition for E to descend is that there exists
an integer a such that a(L�4 + 3M) = rω. Taking M with a1 = 0, we easily get r = 0 and
thus M = a4L4 + · · · + a7L7. As in the case of Degree 2, case (ii) we find a contradiction to
Corollary 2.13.

Degree 1, case (i). This case is similar to that of Degree 3, case (ii). Indeed, in both cases the
block E is generated by a single vector bundle. In this case, its first Chern class is −H + 2ω.
Arguing as in the previous case, we arrive at a contradiction to Corollary 2.13.

Degree 1, case (ii). In this case the block E is generated by a single vector bundle of rank 4
and first Chern class 2H − L1 − L2 − L3. Modifying M by multiples of ω, we can choose
a4 = 0, and we can then conclude that a(2H − L1 − L2 − L3 + 4M) = rω implies that r = 0
and M = nH +

∑7
i=4 aiLi. Looking at the coefficients of H, we see that if a 	= 0, there is no n

such that the latter equation holds. Hence a = 0 and we find a contradiction to Corollary 2.13.

Degree 1, case (iii). In this case, the block E is generated by two rank 3 vector bundles with
first Chern classes L4 + L5 + L6 + L7 and L4 + L5 + L6 + L8, respectively. Hence a necessary
condition for E to descend is that there exist integers a and b such that

a(L4 + L5 + L6 + L7 + 3M) + b(L4 + L5 + L6 + L8 + 3M) = rω.

As before, we can assume that a and b are both nonzero and coprime. By choosing
M = nH +

∑8
i=1 aiLi with a1 = 0, we arrive at r = 0 (by considering the coefficient of L1),

and hence also n = a1 = a2 = a3 = 0. Now, looking to the coefficients of L7 and L8, we arrive
at a system of equations {

a + 3(a + b)a7 = 0
b + 3(a + b)a8 = 0.

However, this system has no integer solutions when a and b are coprime, as seen by reducing
modulo 3. This contradicts Corollary 2.13.

Degree 1, case (iv). In this case, E is generated by a single rank 5 vector bundle with
Chern class −2ω + L�4. Similarly as in the case Degree 3, case (ii), the descent of E yields a
contradiction to Corollary 2.13.

Thus in each case of degree at most 4, the assumptions that all three blocks can descend to
simple categories leads to a contradiction and the proof is complete. �

Corollary 5.2. Let S be a del Pezzo surface of degree d � 4 and Picard rank 1. Then S
is not categorically representable in dimension 0.

Proof. By Corollary 3.7, categorical representability of S would be given by a semiorthogonal
decomposition as (5.1) with αi = 0. �

On the other hand, given any geometrically rational surface S, the line bundle OS (or the
line bundle ωS) defines an exceptional object in Db(S), hence we always have a nontrivial
semiorthogonal decomposition.
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Corollary 5.3. Let S be a geometrically rational surface over k. Then there is a
semiorthogonal decomposition

Db(S) = 〈Db(k),AS〉.
If ρ(S) = 1, then K0(AS)Q = Q⊕2. Furthermore, if S is a del Pezzo surface of degree at most
4, then there is no semiorthogonal decomposition

AS =
〈
Db(l1/k, α1),Db(l2/k, α2)

〉
with li fields and αi in Br(li).

Proof. The admissible subcategory Db(k) is generated by the exceptional object OS , hence
the semiorthogonal decomposition exists. The calculation of K0(AS) is straightforward, and
the last statement is a consequence of Theorem 5.1. �

Proposition 5.4. Let S be a del Pezzo surface of degree d � 4 and Picard rank 1,
and suppose that, if d = 4, then ind(S) > 1. Let S′ be birational to S. Then there is a
semiorthogonal decomposition

AS′ = 〈T,AS〉,
where T is representable in dimension 0, and T = 0 if and only if S � S′.

Proof. Under the assumptions, S is birationally rigid. Hence, if S′ is minimal, S′ � S, and
if S′ is not minimal, there is a blow-up S′ → S. Then we conclude by the blow-up formula. �

Remark 5.5. If S is a del Pezzo surface of degree at most 4, note from Table 1 that there is
no 3-block decomposition with a block generated by a single exceptional line bundle. It follows
that the category AS does not base-change to a category generated by two exceptional blocks.

We end this section with a conjecture on the structure of the category AS for a del Pezzo
surface of degree at most 4. The highly nontrivial noncommutative structure of AS should be
a reflection of the more complicated arithmetic behavior of S.

Conjecture 5.6. If S is a del Pezzo surface of degree at most 4 and ρ(S) = 1, then the
category AS has no nontrivial semiorthogonal decomposition.

We now describe the few known facts about AS in degrees 3 and 4. If S has degree 4, then the
anticanonical embedding S → P4

k realizes S as the intersection of two quadric hypersurfaces.
The following result was shown in [13], as a consequence of homological projective duality (see
also [79]). Recall that, to any quadric fibration Q → S over a smooth base, one can associate
an even Clifford algebra C0, see [79] for the definition and [13] for a more general construction.
Roughly speaking, C0 is the sheafification of the classical even Clifford algebra of the quadratic
form underlying the quadric bundle.

Theorem 5.7. Let S be a del Pezzo surface of degree 4 and X → P1 be the associated
pencil of quadrics of P4 containing S, with associated even Clifford algebra C0 over P1. Then
there is a semiorthogonal decomposition

Db(S) =
〈
Db(k),Db(P1, C0)

〉
.

If S(k) 	= ∅ then the quadric threefold fibration X → P1 can be reduced by hyperbolic
splitting (cf. [13, § 1.3]) to a conic bundle Y → P1 with Clifford algebra C ′

0, and there is an
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equivalence between Db(P1, C0) and Db(P1, C ′
0) by [13, Theorem 3]. We will see another (more

explicit) way to describe the orthogonal complement AS via a conic bundle in Appendix B.
If S has degree 3, then the anticanonical embedding S → P3

k realizes S as a cubic
hypersurface, so that we can use Kuznetsov’s semiorthogonal decomposition (see [77]).

Theorem 5.8. If S is a del Pezzo surface of degree 3, there is a semiorthogonal
decomposition

Db(S) =
〈
Db(k),AS

〉
,

with AS a Calabi–Yau category of dimension 4
3 .

The category AS can be described via Matrix Factorization as in [93, Theorem 40] and via
homological projective duality as in [17].

6. Severi–Brauer surfaces (del Pezzo surfaces of degree 9)

If S is a del Pezzo surface of degree 9 over k, then S is the Severi–Brauer surface associated
to a degree 3 central simple algebra A over k. Denote by α ∈ Br(k) the Brauer class of A.

Proposition 6.1. Let S = SB(A) be a Severi–Brauer surface. Then the following are
equivalent:

(i) S has a k-point;
(ii) S is k-rational;
(iii) S is categorically representable in dimension 0;
(iv) AS is categorically representable in dimension 0.

Proof. It’s a result of Châtelet (cf. Example 3.2) that (i) is equivalent to (ii) is equivalent
to S ∼= P2 is equivalent to the triviality of A in the Brauer group. In turn, this implies (iii)
and (iv) by considering the full exceptional collection {O,O(1),O(2)} of Db(P2) described by
Beilinson [19] and Bernštĕın–Gelfand–Gelfand [26]. It then suffices to prove that (iii) implies
that A has trivial Brauer class.

In general, a semiorthogonal decomposition

Db(S) = 〈Db(k),Db(k,A),Db(k,A−1)〉 (6.1)

was constructed in [21], which base-changes to the semiorthogonal decomposition
Db(P2

ks ) = 〈O,O(1),O(2)〉, see Example 2.14.
Assuming (iii), then by Corollary 3.7, there are fields li and a semiorthogonal decomposition

Db(S) = 〈Db(l1/k),Db(l2/k),Db(l3/k)〉, (6.2)

which by Proposition 4.1, base-changes to a 3-block exceptional collection, unique up to
mutation and tensoring by line bundles on S. Hence, up to mutations, the decomposition (6.2)
base-changes to the decomposition Db(P2

ks ) = 〈O(i),O(i + 1),O(i + 2)〉. Twisting by powers
of the canonical bundle and performing one more mutation, we can assume that i = 0. Hence
the decomposition (6.2) is equivalent to the decomposition (6.1). In particular, we get that
Db(k,A) � Db(li/k) for some i = 1, 2, which by Corollary 1.19, implies that li = k and that A
is split (hence A is Morita equivalent to k). �

Now we verify that the Griffiths–Kuznetsov component GKS is well defined.
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Table 2. The invariants of a Severi–Brauer surface S (a del Pezzo surface of degree 9). Here, the
algebras Ai = End(Vi) are listed up to Morita equivalence; Z and ind refer to the center and index of
Ai; and c2 refers to the second Chern class of Vi.

S ind(S) A1 Z ind c2 (V1)ks A2 Z ind c2 (V2)ks

SB(A) 3 A k 3 3 O(1)⊕3 A−1 k 3 12 O(2)⊕3

P2
k 1 k k 1 0 O(1) k k 1 0 O(2)

Proposition 6.2. Let S = SB(A) be a nonrational Severi–Brauer surface. Then the
Griffiths–Kuznetsov component is a well-defined birational invariant in the following sense:
if S1 ��� S is a birational map then there is a semiorthogonal decomposition

Db(S1) =
〈
T,Db(k, α),Db(k, α−1)

〉
,

where T is representable in dimension 0.

Proof. If S1 is minimal then S1 = SB(B) is a Severi–Brauer surface by Proposition 3.10.
Amitsur’s theorem [2] implies that B = A or B = A−1. Indeed, in the Appendix (see
Proposition A.1), we can show how the decomposition of the birational map S1 ��� S gives
either Db(k,A) � Db(k,B) or Db(k,A) � Db(k,B−1) only using the description of tilting
bundles and their behavior under birational maps. Then the statement follows, possibly up
to a mutation, from the semiorthogonal decomposition (6.1). If S1 is not minimal, there is a
minimal model S1 → S0, and we conclude using Lemma 1.16 and the first part of the proof. �

Remark 6.3. Recall the vector bundle V of rank 3 on S constructed by Quillen [98,
§ 8.4] (see Example 2.14) such that Vks = O(1)⊕3. More explicitly, if K/k is a separable
degree 3 extension splitting A, then Vi = trK/kOP2

K
(i) by Theorem 2.8. We set V1 = V min and

V2 = (V ∨ ⊗ ω∨
S )min. Remark that V2,ks is either O(2) or O(2)⊕3. These vector bundles are

tilting bundles for the blocks F and G, respectively, and A1 = End(V1) is Morita equivalent to
A, A2 = End(V2) is Morita equivalent to A−1, and Vi are indecomposable. We list the ranks
and second Chern classes of the vector bundles Vi in Table 2.

The calculation of the second Chern classes of the vector bundles V1 and V2 is easily obtained
by their description over ks . In particular, we note that ind(S) = gcd(c2(V1), c2(V2)) when S
is nonsplit and gcd(c2(V ⊕2

1 ), c2(V ⊕2
2 )) = ind(S).

Remark 6.4. The second Chern classes of the generators of Db(k,A) and Db(k,A−1) are
not stable under mutations. The values 3 and 12 are obtained for the specific choices of bundles
listed in Table 2. This same remark applies to all other degrees.

7. Involution surfaces (del Pezzo surfaces of degree 8)

If the degree of S is 8, either S is an involution surface (cf. Example 3.3), or S is the blow-up
of P2

ks at a k-rational point (cf. Example 3.4). In the latter case, S is rational, not minimal,
and has a semiorthogonal decomposition

Db(S) = 〈O,O(H),O(2H),OL1〉 = 〈Db(k),Db(k),Db(k),Db(k)〉,
where H is the pull-back of the hyperplane class from P2

k to S and L1 is the exceptional divisor
of the blow-up. There is no 3-block decomposition in this case.

So we focus our attention on involution surfaces. In this case, S is associated to a degree 4
central simple k-algebra (A, σ) with quadratic pair, and S ⊂ SB(A) is a hypersurface. The
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even Clifford algebra C0(A, σ) (see Example 3.3) is a quaternion algebra over its center l,
which is the étale quadratic discriminant extension of S. Denote by α the Brauer class of A
and γ the Brauer class of C0(A, σ) over the discriminant extension l. When l = k2, we write
γ = (γ+, γ−) ∈ Br(k2) = Br(k) × Br(k).

The fundamental relations for the Clifford algebra of an algebra with involution [73,
Theorem 9.14] imply that α = corl/kγ ∈ Br(k), where corl/k : Br(l) → Br(k) is the corestriction
map on the Brauer group (cf. [73, § 3.B]). We record another important fact from the algebraic
theory of quadratic forms.

Lemma 7.1. Let S be an involution surface over a field k. Then S(k) 	= ∅ if and only if
γ ∈ Br(l) is trivial.

Proof. If S(k) 	= ∅ then SB(A)(k) 	= ∅, hence α is split. Also, if γ ∈ Br(l) is trivial, then
α ∈ Br(k) is trivial by the fundamental relations. Thus in either case, SB(A) � P3

k, and we
can reduce to the case when (A, σ) is adjoint to a quadratic form q of dimension 4 over k, see
Example 3.3. Moreover, in this case q is isotropic if and only if C0(q) is split over its center,
that is, γ ∈ Br(l) is trivial, by [74, Theorem 6.3] (also see [101, 2 Theorem 14.1, Lemma 14.2]
in characteristic 	= 2 and [16, II Proposition 5.3] in characteristic 2). �

We are now ready to prove our main result linking rationality with categorical representabil-
ity in dimension 0 for involutions surfaces.

Proposition 7.2. Let S be an involution surface over a field k. Then the following are
equivalent:

(i) S has a k-point;
(ii) S is k-rational;
(iii) S is categorically representable in dimension 0;
(iv) AS is categorically representable in dimension 0.

Proof. Our aim is to produce a semiorthogonal decomposition that base-changes to the
3-block decomposition from Table 1. In characteristic 	= 2, this is a result of Blunk [27, § 7],
who works with tilting bundles and does not explicitly mention semiorthogonal decompositions.
We will give a sketch of an alternate proof that works in any characteristic. First, under the
closed embedding S ⊂ SB(A) = X, we get V2 as the pull-back of the indecomposable vector
bundle on X of pure type OP3(1). Then V2 has rank dividing 4 and End(V2) is Morita equivalent
to A. Second, the fully faithful embedding of Db(k,C0) can be seen as the twisted version of
Kuznetsov’s result [79] (see [13, Theorem 2.2.1] for the case of a quadric over a general field).
More explicitly, OSks (1, 0) ⊕ OSks (0, 1) is a Galois-invariant vector bundle, with the Galois
group of l/k acting by switching the factors (when the discriminant is nontrivial), and there
is a unique indecomposable vector bundle V1 of this pure type by § 2.2. Hence over ks , by
comparing with the usual decomposition (cf. [79, Lemma 4.14], which is none other than the
3-block decomposition in Table 1), we find a semiorthogonal decomposition descending to the
following semiorthogonal decomposition over k:

Db(S) = 〈Db(k),Db(k,C0),Db(k,A)〉. (7.1)

The fact that the endomorphism algebra of OSks (1, 0) ⊕ OSks (0, 1) is Morita-equivalent to the
even Clifford algebra C0 goes back to Kapranov [66, § 4.14].

Now we proceed with the proof of the equivalences. It’s a classical result (cf. Example 3.3)
that (i) is equivalent to (ii). By Lemma 7.1, condition (i) is equivalent to the triviality of
γ ∈ Br(l) (and also α ∈ Br(k)). In particular, (i) implies (iii) and (iv), since then the
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semiorthogonal decomposition just constructed is of the form Db(S) = 〈Db(k),Db(l),Db(k)〉,
with the first block generated by OS . Hence both S and AS is categorically representable in
dimension 0 by Lemma 1.20.

Finally, we are left to proving that (iii) or (iv) implies the triviality of γ ∈ Br(l). To this end,
first assume that S has Picard rank 1. If S is categorically representable in dimension 0, then
by Corollary 3.7, there is a semiorthogonal decomposition

Db(S) = 〈Db(l1/k),Db(l2/k),Db(l3/k)〉, (7.2)

which by Proposition 4.1, base-changes to a 3-block exceptional collection. Hence, up to
mutation, tensoring by line bundles on S, and the Weyl group action, we can assume that
Db(l1/k) base-changes to 〈O〉 and Db(l3/k) base-changes to 〈O(1, 1)〉. Hence the decomposition
(7.2) base-changes to the decomposition (7.1). In particular, we get that Db(k,C0) � Db(l2/k)
and Db(k,A) � Db(l3/k), which by Corollary 1.19, implies that l = l2 and C0 is split over l
and that A is split over l3 = k.

Second, assume that S has Picard rank 2. In this case, we have S = C × C ′ for Severi–Brauer
curves C = SB(B) and C ′ = SB(B′), and then C0 = B ×B′ and A = B ⊗B′, cf. Example 3.3.
Hence we have a semiorthogonal decomposition

AS =
〈
Db(k,B),Db(k,B′),Db(k,A)

〉
. (7.3)

If AS is representable in dimension 0, then by Corollary 3.7, there is a semiorthogonal
decomposition

AS =
〈
Db(l1/k),Db(l2/k),Db(l3/k)

〉
, (7.4)

Since the Picard rank of S is stable under base-change, it follows that li = k for i = 1, 2, 3. Thus
AS is generated by three k-exceptional objects, hence Db(S) is generated by four k-exceptional
objects. Over ks , we can appeal to Rudakov [99] to mutate the semiorthogonal decomposition
(7.4) into the decomposition (7.3). Using Theorem 1.18, we deduce that the Brauer classes of
A, B, B′, and hence also C0, are trivial. �

We now want to show that the Griffiths–Kuznetsov component is well defined, except possibly
when S has index 2 and Picard rank 1. In Appendix B, we will see how this case should be
thought of as a conic bundle of degree 6 from the categorical point of view.

Proposition 7.3. Let S be an involution surface. Then the Griffiths–Kuznetsov component
GKS is well defined as a birational invariant in the following cases. Letting S1 ��� S be a
birational map, we have

• ind(S) = 4 if and only if α ∈ Br(k) has index 4; there is a semiorthogonal decomposition
AS1 = 〈T,Db(l, γ),Db(k, α)〉,

• ind(S) = 2 and ρ(S) = 2 then γ is never trivial; if α is trivial then there is a semiorthogonal
decomposition AS1 = 〈T,Db(l, γ)〉 and if α is nontrivial then there is a semiorthogonal
decomposition AS1 = 〈T,Db(l, γ),Db(k, α)〉,

where T always denotes a category representable in dimension 0.

Proof. By Lemma 7.1, γ is trivial if and only if S(k) 	= ∅. Furthermore, we can always find
a quadratic extension l′/l that splits C0 over l. Hence S(l′) 	= ∅. Since l′/k has degree 4, it
follows that S has a closed point of degree 4 so that ind(S) divides 4.

Since S ⊂ SB(A), we have that ind(S) must be a multiple of ind(SB(A)) = ind(A). In
particular, ind(A) = 4 if and only if ind(S) = 4. Also if ind(A) = 2, then a generalization of
Albert’s result on common splitting fields for quaternion algebras, cf. [73, Corollary 16.28],
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Table 3. The invariants of an involution surface S (a minimal del Pezzo of degree 8). Here, the
algebras End(V1) and End(V2) are Morita equivalent to A1 = C0 and A2 = A; also Z, per, and ind
refer to the center, period, and index of Ai; and c2 and rk refer to the second Chern class and rank
of Vi. Note that (V1)ks is a direct sum of spinor bundles while (V2)ks is a direct sum of hyperplane
classes. Also l stands for the separable quadratic discriminant extension of k. Recall that S is rational
if and only if ind(S) = 1. In all these cases, S is minimal. We give a brief geometric description of all
cases in Remark 7.4.

S ind(S) ρ(S) A1 Z ind c2 rk A2 Z per ind c2 rk

8.1 S ⊂ SB(A) 4 1 C0 l 2 4 4 A k 2 4 12 4

8.2 SB(B) × SB(B′) 4 2 B ×B′ k2 2 4 4 B ⊗B′ k 2 4 12 4

8.3 S ⊂ SB(A) 2 1 C0 l 2 4 4 A k 2 2 2 2

8.4 S ⊂ P3
k 2 1 C0 l 2 4 4 k k 1 1 0 1

8.5 SB(B) × SB(B′) 2 2 B ×B′ k2 2 4 4 B ⊗B′ k 2 2 2 2

8.6 SB(B) × SB(B) 2 2 B ×B k2 2 4 4 k k 1 1 0 1

8.7 SB(B) × P1 2 2 B × k k2 2 4 4 B k 2 2 2 2

8.8 S ⊂ P3
k 1 1 l l 1 1 2 k k 1 1 0 1

8.9 P1 × P1 1 2 k2 k2 1 1 2 k k 1 1 0 1

shows that there is a quadratic extension of k splitting C0, hence also A by the fundamental
relations, and thus ind(S) = 2.

Now suppose that ind(S) = 4. Then both γ and α are nontrivial. If ρ(S) = 1 then S
is birationally rigid by Proposition 3.10. If ρ(S) = 2, then S ∼= SB(B) × SB(B′) such that
A = B ⊗B′ has index 4 and C0 = B ×B′. In §C, we show that S1 admits a birational
morphism S1 → S0 where S0 is a conic bundle over either SB(B) or SB(B′) and has the
required semiorthogonal decomposition.

Now suppose that ind(S) = 2 and ρ(S) = 2, then S1 admits a birational morphism S1 → S0

where S0 is a conic bundle of degree 8, and in Appendix C, we show that it has the required
semiorthogonal decomposition. �

Remark 7.4. We now describe the geometry of the all possible cases listed in Table 3. Any
involution surface is minimal. If ρ(S) = 1 (equivalently, l is a field) then Pic(S) is generated
either by the anticanonical bundle or its square root. In the second case, ind(S)|2 and S ⊂ P3

is a quadric surface, which can either be isotropic (case 8.8) or anisotropic (case 8.4). If the
Picard group is generated by the anticanonical bundle, then S ⊂ SB(A) is a degree 2 divisor of
a Severi–Brauer threefold and ind(S) = ind(A) (cases 8.1 and 8.3). In the case when ρ(S) = 2
then S is isomorphic to a product of Severi–Brauer curves SB(B) and SB(B′). In this case,
C0 = B ×B′ and A = B ⊗B′ and the possible cases are: B not equivalent to B′ and both
nontrivial (cases 8.2 and 8.5 according to the index of A); B = B′ nontrivial (case 8.6); and
B nontrivial and B′ trivial (case 8.7); and both B and B′ trivial (case 8.9). We remark that
cases 8.6 and 8.7 are k-birational to each other for any given B.

Remark 7.5. Recall the rank 4 vector bundle U on SB(A) considered by Quillen [98, § 8.4]
(see Example 2.14) such that Uks = O(1)⊕4. Similarly, there exists a rank 4 vector bundle
W on S such that Wks = O(1, 0)⊕2 ⊕ O(0, 1)⊕2. We let V1 = Wmin and V2 = U |min

S (recall
Definition 2.10). These vector bundles are tilting bundles for the blocks F and G, respectively,
and have the following properties: A1 = End(V1) is Morita equivalent to C0 and A2 = End(V2)
is Morita equivalent to A; V1 is indecomposable if and only if l is a field; and V2 is always
indecomposable. We list the ranks and second Chern classes of the vector bundles Vi in Table 3.
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The calculation of the second Chern classes of the vector bundles V1 and V2 is easily obtained
by their description over ks . In particular, we note that ind(S) = gcd(c2(V1), c2(V2)), except
when S is an anisotropic quadric surface, in which case gcd(c2(V1), c2(V ⊕2

2 )) = ind(S). Here,
we use the convention that gcd(a, 0) = a.

8. Del Pezzo surfaces of degree 7

A del Pezzo surface S of degree 7 is the blow-up of P2
k along a point of degree 2, see Example 3.4.

If the residue field of the center of blow-up is l, then there is a semiorthogonal decomposition

Db(S) = 〈O,O(H),O(2H), V 〉 = 〈Db(k),Db(k),Db(k),Db(l)〉,
where H is the pull-back of the hyperplane class from P2

k to S, and V is a rank 2 vector bundle
on S such that End(V ) = l and V ⊗ ks = O(L1) ⊕ O(L2), where L1 and L2 are the exceptional
divisors on ks . In particular, S is k-rational and is categorically representable in dimension 0
by Lemma 1.16. However, there is no 3-block decomposition of S.

9. Del Pezzo surfaces of degree 6

Let S be a del Pezzo surface of degree 6. There is an associated quaternion Azumaya algebra
Q over a cubic étale k-algebra L and an associated degree 3 Azumaya algebra B over a
quadratic étale k-algebra K. Blunk [28] gives an interpretation of these algebras in terms of a
toric presentation of S, building on the geometric construction of Colliot-Thélène, Karpenko,
and Merkurjev [45]. Let κ ∈ Br(L) and β ∈ Br(K) denote the Brauer classes of Q and B,
respectively. Blunk, Sierra, and Smith [29] provide a semiorthogonal decomposition

Db(S) = 〈Db(k),Db(k,Q),Db(k,B)〉 = 〈Db(k),Db(L/k, κ),Db(K/k, β)〉. (9.1)

Our first task is to prove that the semiorthogonal decomposition (9.1) is the descent of the
minimal 3-block decomposition from [70]. This will give an alternative description of the tilting
bundles generating the blocks.

Proposition 9.1. The base-change of the semiorthogonal decomposition (9.1) coincides
with the minimal 3-block decomposition of Db(Sks ).

Remark 9.2. We could appeal directly to Proposition 4.1 for the fact that the base-change
to ks of the semiorthogonal decomposition (9.1) coincides, up to mutation, tensoring by a line
bundle, and the Weyl group action, with the minimal 3-block decomposition over ks . Hence
in Proposition 9.1, we prove slightly more: using Blunk’s work [28], we explicitly describe the
generators of the semiorthogonal components of (9.1) that base-change to the 3-block collection
from Table 1. Aside from being necessary for the sequel, we believe that the direct proof clarifies
the connection between the beautiful geometry and arithmetic of del Pezzo surfaces of degree 6
and its derived category.

Before giving the proof, we recall the construction in Blunk [28], and Blunk, Sierra, and
Smith [29], of certain vector bundles on S. The del Pezzo surface Sks of degree 6 over ks

is the blow-up of P2
ks in three noncolinear points p1, p2, p3. There are six exceptional lines,

coming in two pairs of three lines, say L1, L2, L3 and M1,M2,M3. The intersection products
are Mi.Mj = Li.Lj = −δij , and Mi.Lj = δij . So there is a map π : Sks → P2

ks whose exceptional
divisors are the Li (with the convention that Li is over pi). The other three exceptional lines
Mi are the strict transforms of the lines in P2

ks joining pairs of the three points (with the
convention that Mi corresponds to the line not going through pi). There is another birational



DEL PEZZO SURFACES 37

morphism η : Sks → P2
ks contracting the Mi to three points q1, q2, q3, and sending Li to lines

joining two of those three points. We end up with the following diagram:

(9.2)

where φ is the well-known Cremona involution, a birational self-map of the projective plane of
degree 2 given by the linear system |OP2

ks
(2) − p1 − p2 − p3| of conics in P2

ks through passing
through the points pi.

This description allows us to present the Picard group of Sks in a way convenient to compare
the base-change of the semiorthogonal decompositions of Blunk–Sierra–Smith and Karpov–
Nogin 3-block decomposition. Indeed, the Picard group of Sks has rank 4 and is generated
by the exceptional lines Li and Mi, with the relations Li + Mj = Lj + Mi. If we denote by
H = π∗OP2

ks
(1), we have that H = L1 + L2 + M3. The anticanonical divisor −KSks is then

−KSks = L1 + L2 + L3 + M1 + M2 + M3. On the other hand, if we denote by H ′ = η∗OP2
ks

(1),
we have H ′ = M1 + M2 + L3 = −KSks −H.

To describe the semiorthogonal decomposition (9.1), Blunk, Sierra, and Smith construct
vector bundles over Sks that descend to S in the following way [29]. The first one is just OSks .

To define the second vector bundle, first recall that exceptional lines are sent to exceptional
lines by the action of the Galois group, which acts by the automorphisms of the intersection
hexagon of the exceptional lines over Sks . Consider the following rank 2 vector bundles:

J1 = O(L3 + M2) ⊕ O(L2 + M3),
J2 = O(L1 + M3) ⊕ O(L3 + M1),
J3 = O(L1 + M2) ⊕ O(L2 + M1)

(9.3)

on Sks . The presentation (9.3) shows that J = J1 ⊕ J2 ⊕ J3 is Galois-invariant. Blunk, Sierra,
and Smith assert that J descends to a vector bundle J of rank 6 on S and they consider
Q = End(J). On Sks , we remark that Ji = O(H − Li)⊕2. Thus, by base-change, we get that
Q⊗ ks = End(O(H − L1)⊕2 ⊕ O(H − L2)⊕2 ⊕ O(H − L3)⊕2), which is Morita equivalent to
End

(⊕3
i=1 O(H − Li)

)
.

To define the third vector bundle, consider the two rank 3 vector bundles

I1 = O(L1 + M2 + M3) ⊕ O(M1 + L2 + M3) ⊕ O(M1 + M2 + L3),
I2 = O(L1 + L2 + M3) ⊕ O(L1 + M2 + L3) ⊕ O(M1 + L2 + L3)

(9.4)

on Sks . The presentation (9.4) shows that the sum I := I1 ⊕ I2 is Galois-invariant. Blunk,
Sierra, and Smith assert that I descends to a vector bundle I of rank 6 on S and they consider
B = End(I). On Sks , we remark that I1 = O(H ′)⊕3 = O(−KSks −H)⊕3, and I2 = O(H)⊕3.
In particular, by base-change, we get that B ⊗ ks = End(O(H)⊕3 ⊕ O(−KSks −H)⊕3), which
is Morita equivalent to End(O(H) ⊕ O(−KSks −H)).

Proof of Proposition 9.1. Let us now recall the construction of the 3-block decomposition
over Sks described by Karpov and Nogin [70]. We provide a slightly different presentation.
Consider the birational morphism π : Sks → P2

ks , which is the blow-up of three points with
exceptional divisors L1, L2, and L3. A semiorthogonal decomposition of Db(Sks ) is given by
Orlov’s formula (see [91]) as follows:

Db(Sks ) =
〈
π∗Db(P2

ks ),OL1 ,OL2 ,OL3

〉
.



38 ASHER AUEL AND MARCELLO BERNARDARA

Choosing the full exceptional collection {O(−1),O,O(1)} on P2
ks , we get the semiorthogonal

decomposition

Db(Sks ) = 〈O(−H),O,O(H),OL1 ,OL2 ,OL3〉.

Lemma 1.6 says that mutating an exceptional object with respect to its whole right orthogonal
complement amounts to tensor it with the anticanonical bundles. Hence, mutating O(−H) to
the left with respect to the whole orthogonal complement we get

Db(Sks ) = 〈O,O(H),OL1 ,OL2 ,OL3 ,O(−KSks −H)〉 .

Now we mutate the three exceptional objects OLi
to the left with respect to O(H), using again

Lemma 1.6 to obtain

Db(Sks ) = 〈O,O(H − L1),O(H − L2),O(H − L3),O(H),O(−KSks −H)〉. (9.5)

The decomposition (9.5) is a mutation of the 3-block decomposition [70, (3)]. The latter
is indeed obtained mutating the three exceptional objects OLi

to the right with respect to
O(−KSks −H) = O(2H − L1 − L2 − L3), as Karpov and Nogin do. The presentation (9.5)
allows the following description of the three blocks:

E = 〈O〉, G = 〈O(H − L1),O(H − L2),O(H − L3)〉, F = 〈O(H),O(−KSks −H)〉.

So, the block E corresponds to the first component of (9.1). Recall that End
(⊕3

i=1 O(H − Li)
)

is Morita equivalent to Q⊗ ks , and that End(O(H) ⊕ O(−KSks −H)) is Morita equivalent to
B ⊗ ks . The claim follows now by Proposition 1.7.

Remark 9.3. A consequence of [28, Theorem 4.1] is that B comes with a natural K/k-
unitary involution, equivalently, the corestriction of B from K to k is split. This involution on
B was already constructed by Colliot-Thélène, Karpenko, and Merkurjev [45]. Furthermore,
the corestriction of Q from L to k is split. Also, B is split by L and Q is split by K. Otherwise,
any choices of K and L are possible and any choices of algebras B/K and Q/L are possible,
subject to the above restrictions, see [28, Theorem 2.2].

Remark 9.4. Given a del Pezzo surface S of degree 6, Blunk constructs the triple
(Q,B,KL), where KL = K ⊗k L, and shows that a toric presentation of S is uniquely
determined by the equivalence class under pairwise L-isomorphisms of Q and K-isomorphisms
of B, see [28, Theorem 2.4]. On the other hand, a consequence of Blunk’s work is that
the isomorphism class of S is uniquely determined by the equivalence class under pairwise
k-isomorphisms of Q and B, see [28, Proposition 3.2]. By Theorem 1.18, the semiorthogonal
decomposition (9.1) determines Q and B up to pairwise k-linear Morita equivalence, hence
k-isomorphism, since the algebras involved are semisimple of finite rank. We conclude that the
semiorthogonal decomposition (9.1) identifies the isomorphism class of S.

Now we prove that rationality is equivalent to categorical representability in dimension 0.

Proposition 9.5. Let S be a del Pezzo surface S of degree 6. The following are equivalent:

(i) S has a k-rational point,
(ii) S is k-rational;
(iii) S is categorically representable in dimension 0;
(iv) AS is representable in dimension 0.
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Proof. By [47, § 2], S is rational if and only if S(k) 	= ∅ if and only if ind(S) = 1. Also, by
[28, Corollary 3.5], S(k) 	= ∅ is equivalent to the triviality of the Brauer classes κ and β and
so (9.1) becomes a semiorthogonal decomposition

Db(S) = 〈Db(k),Db(L/k),Db(K/k)〉.
Hence (i) is equivalent to (ii), which implies (iii).

On the other hand, suppose that S has Picard rank 1. If S is categorically representable in
dimension 0, then there is a semiorthogonal decomposition

Db(S) = 〈Db(l1/k),Db(l2/k),Db(l3/k)〉, (9.6)

base-changing to a 3-block exceptional collection over ks . Hence, up to mutation, the
decomposition (9.6) equals the decomposition (9.1) and hence AS is representable in dimension
0 and both the Brauer classes of Q and B are trivial, hence S(k) 	= ∅ by [28, Corollary 3.5].
Thus (iii) implies (iv), which implies (i). If the Picard rank of S is > 1, then S is not minimal
and we can consider its minimal model S′, which is a del Pezzo surface of degree at least 7.
We conclude in this case by appealing to the results from the previous sections. �

Remark 9.6. Colliot-Thélène, Karpenko, and Merkurjev [45, Remark 4.5] provide a
geometric argument to show that the splitting of K implies the nonminimality of S.

This can also be seen via the description of B = End(I), where I is the vector bundle
constructed above. Indeed, the splitting of K, that is, B ∼= A×Aop, means that both H⊕3

and (H ′)⊕3 descend to vector bundles of rank 3 on S, hence both H and H
′

are Galois-
invariant line bundles, with Brauer obstruction to descent being the Brauer classes of A and
Aop, respectively. Hence (cf. [105, Proposition 8]) we get birational morphisms S → SB(A) and
S → SB(A−1) (compare with [45, Remark 4.5]). As an interesting consequence, the birational
Cremona involution φ from diagram (9.2) descends to a k-birational map SB(A) ��� SB(A−1).

Lemma 9.7. Let S be a del Pezzo surface of degree 6. The index of S divides 6 and there
is always a closed point whose degree equals the index.

Proof. There is always a closed point of degree 6 on S. Indeed, the six points of intersection
of the hexagon of exceptional curves defined over ks is Galois-invariant, hence defines a point
of degree 6. Since the index is the greatest common divisor of the degrees of all closed points,
the index of S divides 6.

Considering the Galois action on the hexagon of exceptional curves defined over ks , there
exists a quadratic extension K/k (respectively, cubic extension) such that SK has a triple
(respectively, pair) of skew exceptional curves, cf. [42, Lemme 1]. Blowing down, we have
SK → S0 where S0 is a Severi–Brauer surface defined over K and also SL → S1, where S1 is a
del Pezzo of degree 8 defined over L. In this later case, a lattice computation over ks shows that
S1 is actually an involution surface. If we assume that S has index 2, then so does S0, hence
S0

∼= P2
K . In particular, S(K) 	= ∅ so S has a closed point of degree 2. Similarly, if we assume

that S has index 3, then so does S1, hence S1(L) 	= 0 by Springer’s theorem. In particular,
S(L) 	= ∅ so S has a closed point of degree 3. Finally, if we assume that S has index 1, then
it must have a point of degree relatively prime to 6, hence S(k) 	= ∅ by [47]. �

We now want to show that the Griffiths–Kuznetsov component is well defined. This also
gives a strengthening of [45, Lemma 4.6].

Proposition 9.8. Let S be a del Pezzo surface of degree 6. Then the Griffiths–Kuznetsov
component GKS is well defined as a birational invariant as follows. Letting S1 ��� S be a
birational map, we have
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• ind(S) = 6 if and only if both κ and β are nontrivial; there is a semiorthogonal
decomposition AS1 = 〈T,Db(L/k, κ),Db(K/k, β)〉,

• ind(S) = 3 if and only if κ is trivial and β is nontrivial; there is a semiorthogonal
decomposition AS1 = 〈T,Db(K/k, β)〉,

• ind(S) = 2 if and only if κ is nontrivial and β trivial; there is a semiorthogonal
decomposition AS1 = 〈T,Db(L/k, κ)〉,

where T always denotes a category representable in dimension 0.

Proof. We can reduce to the case when S is minimal, equivalently, has Picard rank 1. Indeed,
if S is not minimal (and not rational), then there is a birational morphism S → S0 where S0 is
either a nonsplit involution surface (when ind(S) = 2) or S′ is a nonsplit Severi–Brauer surface
(when ind(S) = 3). We have already treated the Griffiths–Kuznetsov component in these cases,
see § 6 and § 7. For the interpretations of κ and β in the nonminimal cases, see Remark 9.9.

First, we remark that if β is trivial then S(K) 	= ∅, hence ind(S)|2 by [45, Remark 4.5].
Similarly, we will argue that if κ is trivial, then S(L) 	= ∅, hence ind(S)|3. Indeed, βL is split
by Remark 9.3, so assuming that κ is split implies that SL is categorically representable in
dimension 0, hence is rational by Proposition 9.5. As a consequence, if ind(S) = 6, then both
β and κ are nontrivial and also S is birationally rigid by Proposition 3.10.

Now assume that S has index 3. Then S has a degree 3 point x by Lemma 9.7, and we can
appeal to the description of elementary links detailed in §A.3. There is only one elementary
link ψ : S ��� S′ defined by degree three points x on S and x′ on S′. Let X be the del Pezzo
surface of degree 3 obtained as a resolution of ψ with the following diagram (over ks):

Denote by G = τ∗0 OP2(1) and let Fi be the exceptional divisors of τ0 and by abuse of notations,
we write H for σ∗H and G for τ∗G. Finally, L4, L5, L6 are the exceptional divisors of σ and
F4, F5, F6 the exceptional divisors of τ (over ks we are blowing up three points). Now we rewrite
all line bundles in terms of H and the Li using the relations in §A.3, see equation (A.6), for
the link M6,3:

G = 5H −
6∑

j=1

2Lj

Fi = 2H −
∑

j 
=i+3

Lj for i = 1, 2, 3

Fi = 2H −
∑

j 
=i−3

Lj for i = 4, 5, 6.

(9.7)

Recall the semiorthogonal decompositions for Db(S) and Db(S′) and the description of the
vector bundles I and J on S from above. We denote I ′ and J ′ the vector bundles constructed
in the same way on S′.

We perform a series of mutations in Db(X) over ks in order to compare End(I), End(J),
End(I ′), End(J ′) and the residue fields k(x) and k(x′). Let us choose the following 3-block



DEL PEZZO SURFACES 41

semiorthogonal decomposition

Db(S′) = 〈OS′ |O(G),O(−KS′ −G)|
O(−KS′ −G + F1),O(−KS′ −G + F2),O(−KS′ −G + F3)〉,

(9.8)

which is the original 3-block decomposition of Karpov–Nogin [70], and the vertical lines divide
the blocks. We denote E′, F′, and G′ the three blocks in the order given in (9.8) as in Table 1.
In particular, E′ descends to Db(k), F′ descends to Db(k,B′) and G′ descends to Db(k,Q′). We
mutate the second and the third blocks of (9.8) to the left with respect to OS′ to obtain, using
Lemma 1.6:

Db(S′) = 〈O(KS′ + G),O(−G)|O(−G + F1),O(−G + F2),O(−G + F3)|OS′〉. (9.9)

By abuse of notations, we will denote KS′ := τ∗KS′ . Via the blow-up τ , we get the following
4-block decomposition:

Db(X) = 〈O(KS′ + G),O(−G)|O(−G + F1),O(−G + F2),O(−G + F3)|OX |OF4 ,OF5 ,OF6〉.
(9.10)

The decomposition (9.10) is made of the four blocks: the three blocks F′, G′, E′, and a further
one H′ arising from the blow-up, descending to Db(k(x′)/k). Finally, if we mutate H′ to the
left with respect to OX , Lemma 1.6 shows:

Db(X) = 〈O(KS′ + G),O(−G)|O(−G + F1),O(−G + F2),O(−G + F3)|
O(−F4),O(−F5),O(−F6)|OX〉.

(9.11)

This makes (9.11) into

Db(X) = 〈O(2KX + 2H − L1 − L2 − L3),O(2KX + H)|
O(KX + L4),O(KX + L5),O(KX + L6)|
O(KX + H − L1),O(KX + H − L2),O(KX + H − L3)|OX〉,

(9.12)

where the blocks are now F′, G′, H′, and E′. We apply the autoequivalence ⊗ω∨
X and mutate

the first block F′ to the right with respect to its right orthogonal to obtain, using Lemma 1.6:

Db(X) = 〈O(L4),O(L5),O(L6)|O(H − L1),O(H − L2),O(H − L3)|
O(KX)|O(−σ∗KS −H),O(H)〉,

(9.13)

where the blocks are now G′, H′, E′, and F′.
Now consider the semiorthogonal decomposition

Db(S) = 〈OS |O(H − L1),O(H − L2),O(H − L3)|O(H),O(−KS −H)〉, (9.14)

as in Proposition 9.1. This decomposition has blocks E (descending to Db(k)), G (descending to
Db(k,Q)) and F (descending to Db(k,B)) in the order presented in (9.14), as in Table 1. This
presentation provides, via σ∗, equivalences F � F′, whence Db(k,B) � Db(k,B′). On the other
hand, G � H′, whence Db(k,Q) � Db(k(x′)/k). By symmetry, we have Db(k,Q′) � Db(k(x)/k).
Using Theorem 1.18, we conclude that κ ∈ Br(L) is trivial. If in addition β ∈ Br(K) is trivial,
then S(k) 	= ∅ and S is rational. Otherwise, if β ∈ Br(K) is nontrivial, the category Db(K/k, β)
is a birational invariant. Indeed, in this case, the index of S is 3, hence there is no point of
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degree 2 and all birational maps S ��� S′ decompose into elementary links of type M6,3. We
have proved that ind(S)|3 implies that κ is trivial.

Now we handle the case where S has index 2. Then S has a degree 2 point x (cf. Lemma 9.7),
and we can appeal to the description of elementary links detailed in §A.3. Let now ψ : S ��� S′

be the elementary link defined by the two degree 2 points x on S and x′ on S′. Let X be the del
Pezzo surface of degree 4 obtained as a resolution of ψ with the following diagram (over ks):

Denote by G = τ∗0 OP2(1) and Fi be the exceptional divisors of τ0 and by abuse of notations,
we write H for σ∗H and G for τ∗G. Finally, L4 and L5 are the exceptional divisors of σ and F4

and F5 the exceptional divisors of τ (over ks we are blowing up two points). As in the index 3
case, we perform a series of mutations in Db(X) over ks in order to compare End(I), End(J),
End(I ′), End(J ′) and the residue fields k(x) and k(x′). We perform the same first mutation as
in the index 3 case, and consider the decomposition (9.9) of Db(S′

ks ). Via the blow-up τ , we
get the following 4-block decomposition of X:

Db(X) = 〈O(KS′ + G),O(−G)|O(−G + F1),O(−G + F2),O(−G + F3)|OX |OF4 ,OF5〉. (9.15)

The decomposition (9.15) is made of the four blocks F′, G′, E′, and H′. The latter arises from
the blow-up and descends to Db(k(x′)/k). Finally, if we mutate OF4 and OF5 to the left with
respect to OX , Lemma 1.6 holds:

Db(X)= 〈O(KS′+G),O(−G)|O(−G+F1),O(−G+F2),O(−G+F3)|O(−F4),O(−F5)|OX〉.
(9.16)

Now we rewrite all line bundles in terms of H and the Li using the relations in §A.3, see
equation (A.4), for the link M6,2:

G = 3H − L1 − L2 − L3 − L4 − 2L5

Fi = H − Li − L5, i = 1, . . . , 4

F5 = 2H − L1 − L2 − L3 − L4 − L5.

This makes (9.16) into

Db(X) = 〈O(KX + L4),O(KX + L5)|
O(KX + H − L1),O(KX + H − L2),O(KX + H − L3)|
O(−H + L4 + L5),O(KX + H)|OX〉,

(9.17)

where the blocks are F′, G′, H′, and E′. Now we mutate the left orthogonal to OX to the right
to obtain, using Lemma 1.6:

Db(X) = 〈OX |O(L4),O(L5)|O(H − L1),O(H − L2),O(H − L3)|O(−σ∗KS −H),O(H)〉,
(9.18)
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Table 4. The invariants of a del Pezzo surface S of degree 6. Here, the algebras End(V1) = A1 = Q
and End(V2) = A2 = B are given up to Morita equivalence; l1 = Z(A1) = L and l2 = Z(A2) = K are
separable cubic and quadratic extensions of k; the columns Z and ind refer to the center and index of
Ai; and the columns c2 and rk refer to the second Chern class and rank of Vi. Note that (V1)ks is a
direct sum of copies of ⊕iO(H − Li), while (V2)ks is a direct sum of copies of O(H) ⊕ O(H ′). Recall
that S is rational if and only if ind(S) = 1, see [47, § 2]. See Remark 9.9 for a geometric description of
each case.

S ind(S) ρ(S) A1 Z ind c2 rk A2 Z ind c2 rk

6.1 S ⊂ RK/kSB(B) 6 1 Q L 2 12 6 B K 3 24 6

6.2 S ⊂ RK/kSB(B) 3 1 L L 1 3 3 B K 3 24 6

6.3 S ⊂ SB(A) × SB(A−1) 3 2 L L 1 3 3 A×A−1 k2 3 24 6

6.4 S ⊂ RK/kP2 2 1 Q L 2 12 6 K K 1 2 2

6.5 S ⊂ RK/kP2 2 2 Q′′ ×Q′ k × L′ 2 12 6 K K 1 2 2

6.6 S ⊂ RK/kP2 2 2 k ×Q′ k × L′ 2 8 5 K K 1 2 2

6.7 S ⊂ RK/kP2 2 3 Q′ ×Q′′ ×Q′′′ k3 2 12 6 K K 1 2 2

6.8 S ⊂ RK/kP2 2 3 k ×Q′ ×Q′ k3 2 8 5 K K 1 2 2

6.9 S ⊂ RK/kP2 1 1 L L 1 3 3 K K 1 2 2

6.10 S ⊂ RK/kP2 1 2 k × L′ k × L′ 1 3 3 K K 1 2 2

6.11 S ⊂ P2 × P2 1 2 L L 1 3 3 k2 k2 1 2 2

6.12 S ⊂ RK/kP2 1 3 k3 k3 1 3 3 K K 1 2 2

6.13 S ⊂ P2 × P2 1 3 k × L′ k × L′ 1 3 3 k2 k2 1 2 2

6.14 S ⊂ P2 × P2 1 4 k3 k3 1 3 3 k2 k2 1 2 2

where the blocks are E′, F′, G′, and H′. Now consider the semiorthogonal decomposition

Db(S) = 〈OS |O(H − L1),O(H − L2),O(H − L3)|O(H),O(−KS −H)〉, (9.19)

as in Proposition 9.1. This decomposition has blocks E (descending to Db(k)), G (descending
to Db(k,Q)) and F (descending to Db(k,B)) in the order presented in (9.19), as in Table 1.

This presentation provides, via σ∗, equivalences E � E′ and G � G′, from whence
Db(k,Q) � Db(k,Q′). On the other hand, F � H′, whence Db(k,B) � Db(k(x′)/k). By sym-
metry, we have Db(k,B′) � Db(k(x)/k). Using Theorem 1.18, we conclude that β ∈ Br(K)
is trivial. If in addition κ ∈ Br(L) is trivial, then S(k) 	= ∅ and S is rational. Otherwise, if
κ ∈ Br(L) is nontrivial, the category Db(L/k,Q) is a birational invariant. Indeed, in this case,
the index of S is 2 so can have no point of degree 3 and all birational maps S ��� S′ decompose
into elementary links of type M6,2. We have proved that ind(S)|2 implies that β is trivial. �

Remark 9.9. We now describe the geometry of the all possible cases listed in Table 4. In
particular, for the nonminimal cases, we describe how the classes κ and β are related to the
Brauer classes arising from their minimal model.

Cases 6.1, 6.2, 6.4, and 6.9 are minimal since they have Picard rank 1. Cases 6.9–6.14 are
rational by Proposition 9.5.

Case 6.3 is the blow-up of the Severi–Brauer surface SB(A) in a point x of degree 3 with
residue field L, via the natural projection of S ⊂ SB(A) × SB(A−1). In fact, S resolves the
standard Cremona quadratic transformation SB(A) ��� SB(A−1). Recall, from (9.4), that
B = End(I) = End(I1 ⊕ I2) and note that I1 and I2 are the pull-backs of the natural rank
3 vector bundles on SB(A) and SB(A−1), respectively. Over ks , the block G is obtained by
right mutation of the category generated by the exceptional divisors of Sks → P2

ks . From this,
we see that Db(L/k, κ) � Db(k(x)/k). Hence κ is trivial and k(x) = L.
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We now argue that cases 6.5–6.8 are blow-ups of an involution variety associated to (A, σ) in
a point x of order 2 with residue field K, where the center of C0 is isomorphic to L′ (or k2). The
minimal model π : S → S0 has index 2 and degree greater than 6, hence must be an involution
surface of index 2. Over ks , consider the diagram:

where σ blows up a point q with exceptional divisor F , τ blows up two points p1 and p2 with
exceptional divisors L1 and L2, and η blows up a point p3 with exceptional divisor L3. Here,
only π is defined over k and the exceptional divisor is L3 + F . Let us denote by H1 and H2

the two ruling of P1 × P1 and by H the hyperplane section of P2, and by abuse of notations,
all their pull-backs. Then we have Hi = H − Li for i = 1, 2 and F = H − L1 − L2. Now we
consider the 3-block decomposition

Db(P1 × P1) = 〈O(−H1 −H2)|O|O(H1),O(H2)〉,
where the first block descends to Db(k,A) and the third block descends to Db(k,C0). Via the
blow-up π, we obtain

Db(S) = 〈O(−L3),O(−F )|O(−H1 −H2)|O|O(H1),O(H2)〉,
where the first block, call it H, descends to Db(k(x)/k). Mutating this block to the right with
respect to O(−H1 −H2) and mutating O(−H1 −H2) to the right with respect to its right
orthogonal, and substituting the previous relations, we obtain

Db(S) = 〈H|O|O(H − L1),O(H − L2)|O(H − L3)〉
so that the last two blocks descend together to Db(L/k, κ). We conclude that there is an
equivalence Db(L/k, κ) = Db(k,C0) × Db(k,A). It also follows that H descends to Db(K/k, β)
and we conclude that β is trivial and K = k(x).

By comparing with the index 2 cases in Table 3, we see that: case 6.5 is the blow-up of
case 8.3, Q′ is Morita equivalent to C0(A, σ) and also Q′′ is the corestriction of Q′ from L′/k
and is Morita equivalent to A; case 6.6 is the blow-up of case 8.4 (a quadric of Picard rank 1)
and Q′ is Morita equivalent to C0(A, σ); case 6.7 is the blow-up of case 8.5 and Q′ ⊗Q′′ ⊗Q′′′

is trivial; and case 6.8 is the blow-up of either cases 8.6 or 8.7 (which are anyway birational to
each other), in fact, it is the resolution of this birational map.

Finally, when S is rational, we can see that: case 6.10 is the blow-up of a rational quadric of
Picard rank 1 along a point of degree 2 or and is not the blow-up of P2; case 6.11 is the blow-up
of P2 in a point of degree 3 with residue field L and cannot be the blow-up of a quadric; case
6.12 is the blow-up of P1 × P1 in a point of degree 2 or the blow-up of a rational quadric of
Picard rank 1 in two rational points (this resolves the rational map between these two); case
6.13 is the blow-up of P1 × P1 in a point of degree 2 with residue field L′ or of P2 in a union
of a rational point and a point of degree 2 with residue field L′ (this resolves a birational map
between the quadric and the Hirzebruch surface of degree 1). Case 6.14 is totally split.

Remark 9.10. Let V1 = Jmin and V2 = Imin (recall Definition 2.10). These vector bundles
are tilting bundles for the blocks F and G, respectively, and have the following properties:
A1 = End(V1) is Morita equivalent to Q and A2 = End(V2) is Morita equivalent to B; V1 is
indecomposable if and only if L is a field; and V2 is indecomposable if and only if K is a field.
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In particular, both Vi are indecomposable if and only if S is minimal. We list the ranks and
second Chern classes of the vector bundles Vi in Table 4.

The calculation of the second Chern classes of the vector bundles V1 and V2 is easily obtained
by their description over ks . In particular, we note that ind(S) = gcd(c2(V1), c2(V2)) unless
ind(S) = 6, in which case gcd(c2(V1), c2(V2)) = 12. When ind(S) = 6, we have to appeal to a
particular generator (ω⊕2

S works) of the remaining block to obtain a bundle with second Chern
class equal to 6.

10. Del Pezzo surfaces of degree 5

Let S be a Del Pezzo surface of degree 5. It is a classical fact (announced by Enriques [52] and
proved first by Swinnerton-Dyer [107]), that S(k) 	= ∅ (see [102] for a different proof).

The base-change Sks is the blow-up of P2
ks at four points in general position. Such a surface

has ten exceptional lines. Fix x ∈ S(k). If x lies in the intersection of two exceptional lines, then
S is not minimal (see [89, 29.4.4.(v)]). So we can suppose that x does not lie on the intersection
of two exceptional lines and consider the geometric construction described by Manin to show
that S is rational: let X → S be the blow-up of x, and D its exceptional divisor. Then there
are five pairwise nonintersecting exceptional lines L1, . . . , L5, where L5 = D, on Xks .

Manin shows that on X there is an exceptional divisor Z ⊂ X whose contraction gives a
birational map onto a del Pezzo surface of degree 9. Since the target also has a rational point,
we have a birational map π : X → P2

k. We have a diagram of birational morphisms

where π : X → P2
k is the blow-up of a closed point of degree 5 in general position.

Passing to the algebraic closure, we can describe these birational maps in the following way:
let p1, . . . , p5 be five points in general position on P2

ks . Then Xks is a del Pezzo of degree 4
which has sixteen exceptional lines: five of them are the exceptional divisors E1, . . . , E5 of π,
ten of them are the strict transforms of the lines Li,j passing through the points pi and pj .
The last one is the strict transform D of the conic through the five points pi. This is, indeed,
the exceptional divisor of the blow-up ε : Xks → Sks . On the other hand, the lines E1, . . . , E5

all meet D, and it can be checked that they are the only exceptional lines on Xks with such
property. Since D is defined over k; it follows that E1, . . . , E5 are Galois-invariant and hence
the cycle Z is the descent of the disjoint union of divisors Ei. Conversely, given any point of
degree 5 (geometrically) in general position on P2

k, we can blow it up, and then blow-down the
strict transform of the conic through the point to obtain a del Pezzo surface of degree 5.

Moreover, the surface Sks is a del Pezzo surface of degree 5 and can therefore be realized
as the blow-up of P2

ks in four points in general positions. Given Sks , this can be realized by
the choice of four pairwise nonintersecting exceptional lines L1, . . . , L4. It is easy to see, via
the previous construction, that we have five choices, one for each of the points pi. Once we
fix such a point, it is then enough to consider all the lines joining it to the other four points,
which are blown up by π to exceptional lines (call them loosely L1, . . . , L4), which are, in turn,
blown down by ε to four exceptional nonintersecting lines. Let us then fix p5, so that Li is
the (strict transform of the) line through p5 and pi, and consider the blow-down η : Sks → P2

ks .
This latter map is not, in general, defined over k, so we will avoid the ‘overline’ notation to
mark this difference.
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We end up with the following diagram:

(10.1)

where qi are the points blown-up by η, and φ the birational map obtained by composition.
Let us denote by OSks (H) = η∗OP2

ks
(1). We can assume that this line bundle is not defined

over k, since we can suppose that S is minimal. Otherwise, S is the blow-up of P2
k.

We will explicitly use this construction to show that the 3-block exceptional collection
described by Karpov and Nogin [70] over ks descends to a zero-dimensional semiorthogonal
decomposition of Db(S).

Proposition 10.1. Any del Pezzo surface of degree 5 is k-rational and is categorically
representable in dimension 0. In particular, there is a degree 5 étale k-algebra l and a
semiorthogonal decomposition

AS = 〈Db(k),Db(l/k)〉,
hence AS is also representable in dimension 0. Moreover, l is a field if and only if ρ(S) = 1.

Proof. Over ks , Karpov and Nogin [70, § 4] provide the following 3-block decomposition:

Db(Sks ) = 〈OSks |F |OSks (H),OSks (L1 −KSks −H), . . . ,OSks (L4 −KSks −H)〉, (10.2)

where F is the rank 2 vector bundle given by the nontrivial extension

0 −→ OSks (−KSks −H) −→ F −→ OSks (H) −→ 0. (10.3)

These blocks are denoted E, F, and G. Consider the rank 5 vector bundle on Sks

V =
4⊕

i=1

OSks (Li −KSks −H) ⊕ OSks (H), (10.4)

and BV = EndSks (V ). Since the five line bundles form an exceptional block, we have that
BV � (ks)5 and V is a tilting bundle for the block G. We are going to show that V descends to k,
hence BV descends to a degree 5 extension l of k, and G descends to a category k-equivalent to
Db(l/k). To this end, recall that the functors ε∗ : Db(S) → Db(X) and ε∗ : Db(Sks ) → Db(Xks )
are fully faithful. We analyze the pull-back of the 3-block collection (10.2) as an exceptional
collection in Db(Xks ) to deduce the descent. In order to do that, we first stress the structure
of the Picard group of Xks .

On one hand, we have the line bundle OXks (H) = ε∗OSks (H) = ε∗(η∗OP2
ks

(1)). We have the
five exceptional lines D (the exceptional locus of ε) and L1, . . . , L4 (by abuse of notation, we
denote Li = ε∗Li). We have that KXks = ε∗KSks −D.

On the other hand, we have the line bundle OXks (G) = π∗OP2
ks

(1), and the five exceptional

lines E1, . . . , E5 of the blow-up π. We have that KXks = −3G +
∑5

i=1 Ei.
The divisor D is the strict transform via π of the conic passing through the five points pi.

Hence D = 2G−∑5
i=1 Ei, so that −KXks = D + G. For each 1 � i � 4, the divisor Li is the

strict transform of the line through p5 and pi, so that Li = G− E5 − Ei.
Finally, let us show that the birational map φ is given by the system of cubics through

the five points pi which have multiplicity 2 in p5. Indeed, the map φ is not defined over the
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curve given by the conic D and the four lines joining pi to p5. This is a curve C of degree 6.
The map φ can be written as three homogeneous polynomials of the same degree d, which we
proceed to determine. The degeneracy locus C of φ is then the zero locus of the determinant of
the Jacobian matrix. This is a 3 × 3 matrix with entries of degree d− 1, hence the polynomial
defining C has degree 3(d− 1). Thus 6 = deg(C) = 3(d− 1), from which we deduce that d = 3.
This implies that φ is given by a linear system of cubics. The hyperplane section H of the
target P2

ks corresponds then to the linear system 3G−∑n
i=1 mixi, where xi are the points

of multiplicity mi > 0 of the map φ. By construction, it is clear that the points of positive
multiplicity are exactly the pi (they are transformed via φ into lines), so we get the linear
system 3G−∑5

i=1 mipi. This linear system must have degree 1, so we get 9 −∑5
i=1 m

2
i = 1.

Since φ is given by the cubics passing through the points pi, with multiplicity 2 in p5, we
deduce that m5 = 2 and mi = 1 for 1 � i � 4.

From this, we get that

ε∗H = 3G− 2E5 −
4∑

i=1

Ei = 3G−
5∑

i=1

Ei − E5 = −KXks − E5. (10.5)

On the other hand, consider, for any 1 � i � 4, the divisor Li −KSks −H and pull it back
via ε. Recall that ε∗KSks = KXks + D, and that Li = G− Ei − E5 over Xks . We then get

ε∗(Li −KSks −H) = G− E5 − Ei −KXks + D −H

using equation (10.5), we substitute H to get

ε∗(Li −KSks −H) = G + D − Ei = −KXks − Ei. (10.6)

Using equations (10.5) and (10.6), the block G pulls back via ε to the exceptional block

〈OXks (−KXks − E1), . . . OXks (−KXks − E5)〉 (10.7)

in Db(Xks ), and where we have performed a mutation of the completely orthogonal bundles in
the block to arrive at this ordering. It follows that

ε∗V =
5⊕

i=1

OXks (−KXks − Ei) = ω∨
Xks ⊗

5⊕
i=1

OXks (−Ei),

hence ε∗V descends to a vector bundle of rank 5 on X and V descends to a vector bundle
(again denoted by V ) of rank 5 on S since ε∗ is fully faithful. We see that End(V ) is then
isomorphic to the structure sheaf l of the degree 5 point in P2

k that is blown up by π, which
is a k-étale algebra of degree 5. We conclude that G descends to a block over k equivalent to
Db(l/k).

It is now sufficient to prove that F descends to k, which would imply that F � Db(k). Since E
and G descend to blocks of Db(S) defined over k, so does F, being the orthogonal complement of
both. Hence by Theorem 2.11, F descends to a block equivalent to Db(k, α) for some α ∈ Br(k).
We proceed to show that α is trivial. To this end, consider the semiorthogonal decomposition
(10.2). Orlov’s formula applied to the blow-up ε gives the following 4-block semiorthogonal
decomposition:

Db(Xks ) = 〈OXks (−D)|OXks |ε∗F |OXks (−KXks − E1), . . . ,OXks (−KXks − E5)〉, (10.8)

where we used the identifications (10.5) and (10.6) in writing G. Mutating G to the left with
respect to its left orthogonal, we obtain, using Lemma 1.6:

Db(Xks ) = 〈OXks (−E1), . . . ,OXks (−E5)|OXks (−D)|OXks |ε∗F 〉. (10.9)

As the first block, the mutation of G, is generated by the exceptional divisors of the blow-
up π, by Orlov’s blow-up formula, it follows that 〈OXks (−D)|OXks |ε∗F 〉 can be identified with
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Table 5. The invariants of a del Pezzo surface S of degree 5 of Picard rank 1. Here, the algebras
End(V1) = k and End(V2) = l are listed up to Morita equivalence; l is an étale k-algebra of degree
5, and is a field if and only if ρ(S) = 1; and c2 and rk refer to the second Chern class and rank of
Vi. Note that (V1)ks is the unique extension of O(H) by O(KS −H), while (V2)ks is the direct sum

O(H) ⊕⊕4
i=1 O(Li −KS −H).

S ind(S) A1 c2 rk A2 c2 rk

S ⊂ P5
k 1 k 2 2 l 20 5

π∗Db(P2
ks ). Since π, as well as the line bundles OX(−D) and OX , is defined over k, we arrive

at a 3-block decomposition π∗Db(P2
k) = 〈OX(−D),OX ,Db(k, α)〉. By the uniqueness of 3-block

decompositions on P2 (see [56] or Proposition 4.1), and by Corollary 1.19, we conclude that
α is trivial. Moreover, ε∗F can be mutated into an exceptional line bundle π∗OP2

ks
(i) via a

sequence of mutations inside π∗Db(P2
ks ), which are a posteriori, all defined over k. It follows

that ε∗F can be mutated to π∗OP2(i), hence F descends to a k-exceptional vector bundle of
rank 2. �

Remark 10.2. Let V1 = F and V2 = V . These vector bundles are tilting bundles for the
blocks F and G, respectively, and have the following properties: A1 = End(V1) is Morita
equivalent to k and A2 = End(V2) is Morita equivalent to l; V1 is always indecomposable;
and V2 is indecomposable if and only if l is a field. In particular, both Vi are indecomposable
if and only if S is minimal. We list the ranks and second Chern classes of the vector bundles
Vi in Table 5.

The calculation of the second Chern classes of the vector bundles V1 and V2 is easily obtained
by their description over ks . In particular, we note that one generator from each block must
be considered to compute the index gcd(c2(V1), c2(V2), c2(ω⊕2

S )) = 1.

Part III. Appendix: explicit calculations with elementary links

Appendix A. Elementary links for nonrational minimal del Pezzo surfaces

In this appendix, we consider all possible links between two nonrational minimal del Pezzo
surfaces S and S′. Let us briefly sketch the notion of elementary link in Sarkisov’s program
from [63]. We consider π : S → Z to be a minimal geometrically rational surface with an
extremal contraction. Hence one obtains that either Z is a point and S a minimal surface with
Picard number 1, or Z is a Severi–Brauer curve and S → Z is a minimal conic bundle, and the
Picard number of S is 2.

If S → Z and S′ → Z ′ are such extremal contractions, an elementary link is a birational map
φ : S ��� S′ of one of the following types.

Type I) There is a commutative diagram

where σ : S′ → S is a Mori divisorial elementary contraction and ψ : Z ′ → Z is a morphism.
In this case, Z = Spec(k), ρ(S) = 1, S is a minimal del Pezzo, and S′ → Z ′ is a conic bundle
over a Severi–Brauer curve.
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Type II) There is a commutative diagram

where σ : X → S and τ : X → S′ are Mori divisorial elementary contractions. In this case, S
and S′ have the same Picard number.

Type III) There is a commutative diagram

where σ : S → S′ is a Mori divisorial elementary contraction and ψ : Z → Z ′ is a morphism.
These links are inverse to links of type I.

Type IV) There is a commutative diagram

where Z and Z ′ are Severi–Brauer curves and ψ and ψ′ are the structural morphisms. This
link amounts to a change of conic bundle structure on S.

Iskovskikh shows that any birational map S ��� S′ between minimal geometrically rational
surfaces factors into a finite sequence of elementary links [63]. We are interested in the case
where S and S′ are both non-k-rational del Pezzo surfaces of Picard rank 1.

Thanks to Iskovskikh’s classification, a link of type I (respectively, III) can happen in the
non-k-rational cases only if S (respectively, S′) has either degree 8 and a point of degree 2,
or has degree 4 and a rational point [63, Theorem 2.6]. It follows that if we assume S to not
be of this type, then we only have to consider links of type II where ρ(S) = ρ(S′) = 1. By
Iskovskikh’s classification, there is a finite list of such links. In particular, if we assume S to
not be k-rational, and S′ not isomorphic to S, then we have that deg(S) = deg(S′) can be only
6, 8 or 9, and we are left with five possible links.

Let φ : S ��� S′ be a link of type II between non-k-rational nonisomorphic surfaces, and
recall that we assume that if S has degree 8 (respectively, 4), there is no degree 2 (respectively,
rational) point on S. Then deg(S) = deg(S′) and there is a closed point x in S of degree d such
that φ is resolved as

where σ is the blow-up of x and τ is the blow-up of a point x′ of degree d on S′. Let E
be the exceptional divisor of σ and F be the exceptional divisor of τ . If one considers the
Z-bases (σ∗ωS , E) and (τ∗ωS′ , F ) of Pic(X), the birational map φ can be described by the
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Table A.1. The possible links of type II between nonisomorphic
non-k-rational Del Pezzo surfaces. The transformation matrix
expresses the change of basis from σ∗ωS , E to τ∗ωS′ , F .

deg(S) deg(x) Transformation Matrix

9 3 M9,3 =
(

2
−3

1
−2

)

6 M9,6 =
(

5
−6

4
−5

)

8 4 M8,4 =
(

3
−4

2
−3

)

6 2 M6,2 =
(

2
−3

1
−2

)

3 M6,3 =
(

3
−4

2
−3

)

transformation matrix between these two bases. We list all possibilities from [63, Theorem 2.6]
in Table A.1. For example, consider the link M9,3 and the corresponding matrix. This will say
that, in the Picard group Pic(X), we have the following relations:{

σ∗ωS = 2τ∗ωS′ − 3F

E = τ∗ωS′ − 2F.

In order to understand the behavior of the semiorthogonal decompositions of S and S′ under
birational maps, it is enough to consider the links listed in Table A.1. We will proceed as follows:
given a link φ : S ��� S′, we describe the birational map φ : Sks ��� S′

ks . Note that φ is not
a link, since over ks , we can factor σ into a finite sequence of blow-ups (actually, deg(x) of
them).

In order to describe φ we will consider the description of the Picard group of Sks . If
deg(S) = 9, then φ is described by a linear system on P2

ks , the so-called homaloidal system
of φ. If deg(S) = 8, we find similarly a homaloidal system on the quadric Sks ⊂ P3

ks . Finally,
if deg(S) = 6, we have to choose models Sks → P2

ks and S′
ks → P2

ks , and describe how φ
corresponds to a homaloidal system on P2

ks .
In general, let us consider a linear system on P2 of the form G = nH −∑r

i=1 mipi, where
n > 0 and mi > 0 are integers, H denotes the hyperplane divisor, and pi are points on P2. Such
a linear system defines a birational map P2 ��� P2 if and only if deg(G) = 1 and the curves in
the linear system are rational. We can resolve the birational map by blowing up the points pi,
and call X the blow-up. We obtain then the following conditions on n and mi:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3n− 3 =
r∑

i=1

mi since G.KX = 3

n2 − 1 =
r∑

i=1

m2
i since G2 = 1.

(A.1)

In order to describe the system, we will extensively use the Cauchy–Schwartz inequality( r∑
i=1

mi

)2

� r
r∑

i=1

m2
i

to bound the possible values of n. In particular, we obtain that 9(n− 1) � r(n + 1). Moreover,
it is clear that if n = 1, then G = H defines an isomorphism. Hence we have that r � 3. Let
us spell out all the possible birational transforms with 3 � r � 6.
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If r = 3, then n = 2. Conditions (A.1) give mi = 1. These are the standard quadratic
transformations φ2 : P2 ��� P2.

If r = 4, then n = 2. Conditions (A.1) give
∑4

i=1 m
2
i = 3, which is impossible since we only

consider mi > 0. It follows in particular that n = 2 if and only if r = 3.
If r = 5, then n = 3. Conditions (A.1) give m1 = · · · = m4 = 1 and m5 = 2, so that there

is only one possibility (up to renumbering the points). We denote these birational maps by
φ3 : P2 ��� P2.

If r = 6, then n � 5. Conditions (A.1) give two possibilities. The first one is n = 5, mi = 2.
We denote these birational maps by φ5 : P2 ��� P2. The second possibility is when n = 4,
m1 = m2 = m3 = 1, and m4 = m5 = m6 = 2 (up to renumbering the points). One can check
that the birational map φ4 : P2 ��� P2 is the composition of two standard quadratic transforms,
the first one φ2 : P2 ��� P2 blows up p1, p2, and p3, so that p4, p5, and p6 belong to the target
P2. The second standard quadratic transform blows-up p4, p5, and p6.

With this calculation in mind, we are able to describe the homaloidal systems of P2
ks for the

links in degrees 6, 8, and 9 del Pezzo surfaces in Table A.1.

A.1. Degree 9

If deg(S) = 9, then Sks � P2
ks . Hence we are considering a birational map φ : P2

ks → P2
ks .

The link M9,3 base-changes to the following diagram (considered over ks though we omit it
for ease of notation):

where σ blows up three points p1, p2, and p3. Hence φ is the standard quadratic transformation.
Since G = 2H − L1 − L2 − L3, we have that σ∗O(−1) = τ∗O(1) ⊗ ωX .

The link M9,6 base-changes to the following diagram (considered over ks though we omit it
for ease of notation):

where σ blows up six points p1, . . . , p6. As explained above, we have two possibilities: φ is
either of type φ5 or φ4. Checking the action of the matrix M9,6 one gets that φ is of type φ5,
since all mi must be equal. Since G = 5H − 2L1 − 2L2 − 2L3 − 2L4 − 2L5 − 2L6, we have that
σ∗O(−1) = τ∗O(1) ⊗ ω⊗2

X .
These considerations lead to a simple proof of Amitsur’s theorem in the case of degree 3

central simple algebras.

Proposition A.1. Let S be a non-k-rational minimal surface of degree 9, and let T+
S

(respectively, T−
S ) be the category generated by the descent of a hyperplane section OSks (1)

(respectively, OSks (−1)). For any birational map φ : S ��� S′ to a minimal surface S′ (which
must be of degree 9), we have either an equivalence T+

S � T+
S′ , or an equivalence T+

S � T−
S′ .

Proof. It is easy to see that any elementary link S ��� S′ gives an equivalence between T+
S

and T−
S′ , just by pull-back to X and tensor by either ωX or ω⊗2

X . �
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A.2. Degree 8

If deg(S) = 8 and S is an involution surface, then Sks ⊂ P3
ks is a quadric surface. We are

interested in the hyperplane section O(1) and in O(2) = ω∨
Sks , the anticanonical divisor. The

latter is always defined on S.
The link M8,4 base-changes to the following diagram (considered over ks though we omit it

for ease of notation):

where σ blows up four points p1, . . . , p4. Using the action of the matrix on the Picard group of
X, we get that σ∗O(1) = τ∗O(1) ⊗ ω⊗2

X .
As a corollary, we can see that involution surfaces with Picard rank 1 and no point of degree

at most 2 are birationally semirigid. We can give a further refinement of this result purely using
the algebraic theory of quadratic forms. Recall that an involution surface has Picard rank 2 or
1 depending on whether it has trivial or nontrivial discriminant, respectively, see Example 3.3.

Proposition A.2. Let S and S′ be k-birational involution surfaces over an arbitrary field k.
Then S and S′ are k-isomorphic in the following cases:

(i) S and S′ are anisotropic quadrics in P3;
(ii) S (and hence S′) has nontrivial discriminant and no rational point;
(iii) S (and hence S′) has index 4.

Proof. We know that S is rational as soon as it has a rational point, in which case it can have
k-birational yet nonisomorphic partners. Hence we can assume that S(k) = ∅. By considering
the Galois action on the Picard groups, we see that k-birational involution surfaces have the
same discriminant. Now let S and S′ be associated to quadratic pairs (A, σ) and (A′, σ′).

Part (i) is a classical result in the theory of quadratic forms, see [85, XII.2.2]. This handles
the case when both A and A′ are split, hence we may assume that A is not split.

We recall a result proved by Arason for quadric surfaces and generalized to involution surfaces
by Tao [111, Theorem 4.8(b)]

ker(Br(k) → Br(k(S))) =

{
〈[A]〉 if the discriminant is nontrivial

〈[C+
0 ], [C−

0 ]〉 if the discriminant is trivial.
(A.2)

Any k-birational isomorphism between S and S′ induces a k-isomorphism of function
fields k(S) ∼= k(S′), under which the Brauer group kernels ker(Br(k) → Br(k(S))) and
ker(Br(k) → Br(k(S′))) coincide. We now proceed according to cases.

For part (ii), S and S′ have nontrivial discriminant, so (A.2) implies that the cyclic subgroups
of the Brauer group generated by A and A′ are the same. However, since both algebras carry
involutions of the first kind, they are of period 2 in the Brauer group (we are assuming
they are not split). Thus A and A′ are Brauer equivalent, hence are k-isomorphic since they
have the same degree. We will now show that the quadratic pairs (A, σ) and (A′, σ′) become
adjoint to anisotropic quadratic forms over F = k(SB(A)) ∼= k(SB(A′)) (and SF and S′

F are still
F -birational), which by case (i) implies that they are isomorphic over F , which in turn, by the
following Lemma A.3, implies that they are isomorphic over k. This anisotropicity statement
follows, in the case when S (hence S′) has index 4, that is, that A ∼= A′ is division, from Tao
[111, Proposition 4.18, Corollaries 4.20 and 4.21] (see also Karpenko [67, Theorem 5.3] in
greater generality). In the case when S (hence S′) has index 2, which under our assumptions
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implies that A ∼= A′ has index 2, a result of Karpenko [68, Theorem 3.3], stating that the
Witt index of a quadratic pair (A, σ) over F is divisible by the index of the A, implies that the
quadratic pairs σ and σ′ are either anisotropic or hyperbolic over F (see also [18]). The latter is
impossible, since by assumption the quadratic pairs have nontrivial discriminant, which remains
nontrivial over F . Another way to see the index 2 case, at least when the characteristic is
not 2, is by writing A = M2(H), where H is a quaternion algebra, and interpreting the
involution (A, σ) as a (−1)-hermitian form of rank 2 over (H, τ), where τ is the standard
involution, and similarly for (A′, σ′), then invoking the result of Parimala, Sridharan, and
Suresh [96] that the involutions remain anisotropic over k(SB(H)), hence over F , since
F/k(SB(H)) is purely transcendental.

To finish part (iii), we need only deal with the case of index 4 and trivial discriminant, in
which case (A.2) implies an equality of two Klein four subgroups of the Brauer group. By the
fundamental relations for Clifford algebras [73, Theorem 9.14], we have the equality of Brauer
classes [A] = [C+

0 ] + [C−
0 ], and we can rule out [A] = [C±

0 ] since ind(A) = 4 while ind(C±
0 ) � 2

(in fact, we see that ind(C±
0 ) = 2), and similarly for A′. We deduce that A and A′ are each

the unique element of index 4 in their respective Klein four Brauer group kernels. Hence A
and A′ are Brauer equivalent, thus are k-isomorphic since they have the same degree. Also,
the unordered pairs of Clifford algebra components C+

0 and C−
0 , associated to A and A′, are

isomorphic. Thus, by the classification of quadratic pairs of degree 4 and trivial discriminant
[73, § 15.B], both (A, σ) and (A′, σ′) are isomorphic to (C+

0 , τ+
0 ) ⊗ (C−

0 , τ−0 ), where τ±0 is the
standard involution on the quaternion algebra C±

0 . �

The following result, in characteristic 	= 2, can be seen as a consequence of general
hyperbolicity results for orthogonal involutions due to Karpenko [69]. The following direct
argument in the case of degree 4 algebras, using the results of [73, § 15.B], was communicated
to us by Anne Quéguiner-Mathieu and works over any field.

Lemma A.3. Let σ1 and σ2 be quadratic pairs on a central simple algebra A of degree 4
over a field k and let F = k(SB(A)). If σ1 and σ2 become isomorphic quadratic pairs over F
then they are isomorphic over k.

Proof. Since (A, σ1) and (A, σ2) become isomorphic over F , their discriminants coincide
over F , hence coincide over k, since the map H1(k,Z/2Z) → H1(F,Z/2Z) is injective. Let
K/k be the discriminant extension. By the low-dimension classification of algebras of degree 4
with quadratic pair [73, § 15.B], we have that (A, σi) = NK/k(Hi, τi), where τi is the standard
involution on the quaternion algebra Hi over K.

Over K, we get (A, σi)K = (Hi, τi) ⊗ (ιHi,
ιτi), where ι is the nontrivial automorphism of

K/k. Let KF be the compositum of K and F . Over KF , we have that Hi and ιHi are
isomorphic, hence A ∼= End(Hi) and σi is adjoint to the quadratic norm form of Hi. Therefore,
if the quadratic pairs σi are isomorphic over F , then the norm forms of Hi over KF are
isomorphic. In particular, H1 ⊗H2 is split over KF . Hence, either H1 ⊗H2 is already split
over K, or, by Amitsur’s theorem, H1 ⊗H2 = H1 ⊗ ιH1. Thus H2 is either isomorphic to H1

or ιH1. In both cases, we get an isomorphism of quadratic pairs σ1 and σ2. �

In the remaining cases, we will classify all possible nonisomorphic birational involution
surface partners in Proposition C.3.

A.3. Degree 6

Let S be a degree 6 non-k-rational del Pezzo surface. Then, as recalled in Table A.1, there are
two possible types of elementary links. Consider Sks , and recall that there are six exceptional
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lines, coming into two triples of nonintersecting lines. Each of these triples gives a morphism
Sks → P2

ks , so that we have two ways of blowing down Sks to P2
ks . The previous considerations

show that Sks can be seen as the resolution of a standard quadratic transformation. Let H ′

and H denote the pull-back of the generic line from each of the P2, and let {Li} and {L′
i} be

the two sets of exceptional divisors.
In particular, we have two Z-bases for Pic(Sks ), one given by H and the Li, and the other

given by H ′ and the L′
i. We have H ′ = 2H − L1 − L2 − E, and L′

i = H − Lj − Lk for distinct
i, j, k. If φ : S ��� S′ is an elementary link, we suppose that we have chosen the triple Li (and
hence L′

i) to describe φ as coming from a homaloidal system on P2
ks .

The link M6,2 base-changes to the following diagram (considered over ks though we omit it
for ease of notation):

where σ0 blows up three points p1, p2, and p3, and σ blows up two points p4 and p5. Hence
φ0 is resolved by blowing up five points. In this case, we should calculate which one of the five
points has coefficient 2 in the homaloidal system of φ0. Let us then denote H = σ∗σ∗

0O(1),
G = τ∗τ∗0 O(1), Li the exceptional divisor over pi, and Fi the exceptional divisor over qi.

The matrix M6,2 in Table A.1 is the transformation matrix from σ∗ωS , E to τ∗ωS′ , F . Since
ωS = −3H + L1 + L2 + L3 and ωS′ = −3G + F1 + F2 + F3, we get the following conditions:{

3G− F1 − F2 − F3 = 6H − 2L1 − 2L2 − 2L3 − 3L4 − 3L5

F4 + F5 = 3H − L1 − L2 − L3 − 2L4 − 2L5.
(A.3)

Since X is a del Pezzo of degree 4, there are only sixteen exceptional lines on X, which can be
described, in the base H,Li as follows.

• The five exceptional lines Li.
• The ten strict transforms Li,j of the lines through two of the points pi. They are of the

form H − Lj − Li for any i 	= j.
• The strict transform D of the unique conic through the five points pi. It is of the form

2H −∑r
i=1 Li.

Using the above description (and the fact that Fi is not of type Lj), it is easy to check that
(up to switching 4 and 5) we get that F5 = D and Fi = Li,5 for i 	= 5. Hence the homaloidal
system of φ0 is 3H − L1 − · · · − L4 − 2L5, which is indeed the only linear system with five
base points. Our calculation aims at finding the point with coefficient −2. Note that while we
could have switched 4 and 5, the coefficients of L1, L2, and L3 must be 1. We resume finally
the relations in the Picard group of Xks as follows:

G = 3H − L1 − L2 − L3 − L4 − 2L5

Fi = H − Li − L5, i = 1, . . . , 4

F5 = 2H − L1 − L2 − L3 − L4 − L5.

(A.4)
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The link M6,3 base-changes to the following diagram (considered over ks though we omit it
for ease of notation):

where σ0 blows-up three points p1, p2 and p3, and σ blows-up three points p4, p5 and p6.
Hence φ0 is resolved by blowing-up six points. In this case we have two possibilities for the
homaloidal system of φ0, and we appeal to the form of the matrix M6,3 to understand which
one we are indeed considering. Let us then denote by H := σ∗σ∗

0O(1), and G := τ∗τ∗0 O(1), by
Li the exceptional divisor over pi, and by Fi the exceptional divisor over qi.

The matrix M6,3 in Table (A.1) is the transformation matrix from (σ∗ωS , E) to (τ∗ωS′ , F ).
Since ωS = −3H + L1 + L2 + L3 and ωS′ = −3G + F1 + F2 + F3, we get the following condi-
tions: {

3G− F1 − F2 − F3 = 9H − 3L1 − 3L2 − 3L3 − 4L4 − 4L5 − 4L6

F4 + F5 + F6 = 6H − 2L1 − 2L2 − 2L3 − 3L4 − 3L5 − 3L6.
(A.5)

Since X is a del Pezzo of degree 3, there are only 27 exceptional lines on X, which can be
described, in the basis (H,Li), as follows.

• The six exceptional lines Li.
• The fifteen strict transforms Li,j of the lines through two of the points pi. They are of the

form H − Lj − Li for any i 	= j.
• The six strict transforms Dj of the conic through the five points pi for i 	= j. It is of the

form 2H −∑
i
=j Li.

Since φ0 is a birational map resolved by a cubic surface, we have two possibilities to write
G in the basis H, Li. The first one is G = 4H − 2L1 − 2L2 − 2L3 − L4 − L5 − L6, in which
case φ0 is the map we called φ4 above, and we observed that this map is the composition of
two standard quadratic transformations. It is easy to check that in this case S would not be
minimal, because it would admit a birational morphism onto a Severi–Brauer surface.

We are left with the case where G = 5H −∑6
i=1 2Li, in which case φ0 is the map we called

φ5 above. Using the above description of the exceptional lines on the cubic and the action
of the matrix M3,6 (and the fact that Fi is not of type Lj), it is easy to check that (up to
internal permutations of 1,2,3 and of 4,5,6) we get that F1 = D4, F2 = D5, and F3 = D6, while
F4 = D1, F5 = D2, and F6 = D3.

Hence, if S is minimal with a point of degree 3, the birational map φ corresponds over ks to
the homaloidal system of quintics passing twice to six points in general position in P2

ks , three
of which are Galois-conjugate and correspond to the closed point of degree 3 on S. We resume
finally the relations in the Picard group of Xks as follows:

G = 5H −
6∑

j=1

2Lj

Fi = 2H −
∑

j 
=i+3

Lj for i = 1, 2, 3

Fi = 2H −
∑

j 
=i−3

Lj for i = 4, 5, 6.

(A.6)
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Appendix B. Links of type I, and minimal del Pezzo surfaces of ‘conic bundle type’

Let S be a minimal nonrational del Pezzo surface, which is not deg-rigid. Then S has either
degree 8 and a point of degree 2, or degree 4 and a point of degree 1. In both cases, blowing up
the given point gives a conic bundle S′ → C over a conic, of degree either 6 or 3, respectively.

In this appendix, we would like to show how these two special cases should be thought of,
from a derived categorical (or a noncommutative) point of view as conic bundles instead of
del Pezzo surfaces. The main point is describing a semiorthogonal decomposition of S whose
nonrepresentable components can be seen as the ‘natural’ nonrepresentable components of
some conic bundle S′. First of all, let us recall a result of Kuznetsov on the derived category
of a conic bundle, as a special case of a quadric fibration (see [13, 79] for a statement over any
field).

Proposition B.1. Let π : X → C be a conic bundle over a genus zero curve, A the Azumaya
algebra associated to C, and C0 the even Clifford algebra associated to π. Then there is a
semiorthogonal decomposition

Db(X) = 〈Db(k),Db(k,A),Db(C,C0)〉,
where the two first components are the pull-back via π of the natural semiorthogonal
decomposition of Db(C). In particular, the first one is generated by OX = π∗OC and the second
one by the local form of π∗OC(1).

In particular, given a conic bundle, we have two natural potentially nonrepresentable
components, one of which is representable in dimension 0 if and only if C � P1.

B.1. Del Pezzo of degree 4 with a rational point

Let S be a degree 4 del Pezzo surface with a rational point. Any such surface can be realized in
P4 as an intersection of two quadrics. In Theorem 5.7, we recalled how AS � Db(P1, C0), where
C0 is the Clifford algebra of the quadratic form spanned by the two quadrics. Since S has a
point, the fibration has a regular section, so that it can be reduced by hyperbolic splitting (see
[13, § 1.3]) to a conic bundle with Clifford algebra C ′

0 over P1, so that Db(P1, C0) � Db(P1, C ′
0).

On the other hand, one can blow-up the point and obtain a degree 3 surface S′, with a
structure of conic bundle S′ → P1 (see, for example, [63, Theorem 2.6(i)]). Let us denote by
B0 the Clifford algebra of such a conic bundle.

Theorem B.2 [13, § 4]. For S a del Pezzo of degree 4 with a rational point, the OP1-
algebras C0, C

′
0, and B0 described above are all Morita equivalent. In particular, we have that

AS � Db(P1, B0).

B.2. Del Pezzo of degree 8 with a degree 2 point

In the case where S is involution surface with a point of degree 2, the nonrepresentable
component can also be described by a Clifford algebra over P1.

Theorem B.3. Let S be a minimal nonrational del Pezzo surface of degree 8, with a closed
point x of degree 2. Let S′ → S the blow-up of S along x and π : S′ → C the associated conic
bundle. Write C = SB(A′) and C ′

0 for the even Clifford algebra of π. Recall the semiorthogonal
decomposition

Db(S) = 〈Db(k),Db(k,A),Db(k,C0)〉, (B.1)
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where A is the underlying degree 4 central simple algebra defining S, that is, S ↪→ SB(A), and
C0 is the even Clifford algebra associated to S. Then A and A′ are Brauer equivalent and there
is a semiorthogonal decomposition

Db(C,C ′
0) =

〈
Db(l/k),Db(k,C0)

〉
,

where l is the residual field of x.

Proof. Consider the diagram:

where φ is a rational map that is resolved by the blow-up σ : S′ → S of x to the conic bundle
π : S′ → C. Denote by E the exceptional divisor of σ. Over ks , we have that C ∼= P1

ks and
S ∼= P1

ks × P1
ks and x decomposes into points x1 and x2. Let G = σ∗O(1, 1) and H = π∗O(1).

As one can check, comparing parts a) and b) of the case K2 = 8 of [63, Theorem 2.6(i)],
the rational map φ is defined, over ks , by the linear system OSks (1, 1) − x1 − x2. In particular,
since π resolves φ, we have H = G− L1 − L2 over ks , where E = L1 + L2. The semiorthogonal
decomposition (B.1) can then be written as

Db(Sks ) = 〈O,O(1, 1),F〉,
where F is the block descending to Db(k,C0). Consider the semiorthogonal decompositions of
Db(S′

ks ) given, respectively, by the blow-up and by the conic bundle formulae:

Db(S′
ks ) = 〈OS′

ks
,OS′

ks
(G), σ∗F,OL1 ,OL2〉. (B.2)

Now consider the decomposition (B.2), and mutate σ∗F to the right with respect to 〈OL1 ,OL2〉,
to obtain, by a repeated application of Lemma 1.6:

Db(S′
ks ) = 〈OS′

ks
,OS′

ks
(G),OL1 ,OL2 ,ΦF〉,

where Φ is the functor obtained composing σ∗ with the mutation. Now mutate 〈OL1 ,OL2〉 to
the left with respect to OS′

ks
(G), to obtain, using Lemma 1.6:

Db(S′
ks ) = 〈OS′

ks
,OS′

ks
(G− L1),OS′

ks
(G− L2),OS′

ks
(G),ΦF〉.

Then we mutate 〈OS′
ks

(G),ΦF〉 to the left with respect to its left orthogonal. Lemma 1.6 gives:

Db(S′
ks ) = 〈OS′

ks
(G),ΨF,OS′

ks
,OS′

ks
(G− L1),OS′

ks
(G− L2)〉,

where Ψ is the functor obtained composing Φ with the tensorization with the canonical
bundle. Finally we mutate ΨF to the right with respect to its right orthogonal to arrive at
a decomposition:

Db(S′
ks ) = 〈OS′

ks
(−G + L1 + L2),OS′

ks
,OS′

ks
(G− L1),OS′

ks
(G− L2),ΞF〉. (B.3)

where Ξ is the functor obtained composing Ψ with the mutation. Rewriting in terms of H, we
have the decomposition

Db(S′
ks ) = 〈OS′

ks
(−H),OS′

ks
,OS′

ks
(H + L2),OS′

ks
(H + L1),ΞF〉 (B.4)

in which we can identify 〈OS′
ks

(−H),OS′
ks
〉 with π∗Db(Cks ). Since OS′

ks
(G) is the mutation

of OS′
ks

(−H), and these mutations are defined over k, we conclude that 〈OS′
ks

(G)〉 and
〈OS′

ks
(−H)〉 descend to equivalent categories over k. It follows that Db(k,A) � Db(k,A′), hence

by Corollary 1.19, A and A′ are Brauer equivalent.
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The block 〈OS′
ks

(H + L2),OS′
ks

(H + L1)〉 has tilting bundle

OS′
ks

(H + L2) ⊕ OS′
ks

(H + L1) = OS′
ks

(H) ⊗ (OS′
ks

(L2) ⊕ OS′
ks

(L1)).

There is a vector bundle V on C of rank 2 such that Vks = O(H)⊕2 and a vector bundle W on
S′ of rank 2 such that Wks = O(L1) ⊕ O(L2). Then π∗V ⊗W is a tilting bundle for a category
base-changing to the block 〈OS′

ks
(H + L2),OS′

ks
(H + L1)〉. It follows that the later descends to

a category equivalent to Db(k(x)/k,A). Since k(x) is the residue field of a point of S ⊂ SB(A),
we have that k(x) splits the algebra A. Then Db(k(x)/k,A) � Db(k(x)/k). In conclusion, we
get a decomposition π∗Db(C,C ′

0) = 〈Db(l/k),F〉 and we recall that F � Db(k,C0). �

Appendix C. Links of type II between conic bundles of degree 8

In this section, we consider conic bundles of degree 8 and study their semiorthogonal
decompositions under links of type II and IV. The upshot is to show that the Griffiths–
Kuznetsov component is well defined in these cases, which include in particular all involution
surfaces of Picard rank 2.

Let us first consider a conic bundle π : S → C over a Severi–Brauer curve C = SB(A). Such
a conic bundle has an associated Clifford algebra C0, a locally free sheaf over C. Kuznetsov
provides a semiorthogonal decomposition:

Db(S) =
〈
Db(C),Db(C,C0)

〉
,

and shows that there is a root stack structure Ĉ, obtained by the natural Z/2Z-action on points
of C where the fiber is degenerate, and a Brauer class β in Br(C) such that C0 pulls back to
Ĉ to an Azumaya algebra with class β. Recall that a conic bundle over C has degree 8 − r,
where r is the number of degenerate fibers. If S has degree 8, then it has no degenerate fibers
and hence Ĉ ∼= C since the root stack structure is trivial. Recall moreover that, denoting by
α ∈ Br(k) the class of A, there is a semiorthogonal decomposition Db(C) = 〈Db(k),Db(k, α)〉.
We finally obtain a semiorthogonal decomposition

Db(S) = 〈Db(k),Db(k, α),Db(k, β),Db(k, α⊗ β)〉. (C.1)

We can show that the nontrivial components of this decomposition are a birational invariant,
which allows us to conclude that the Griffiths–Kuznetsov component is well defined.

Proposition C.1. Suppose that S → C is a conic bundle of degree 8 and that S1 ��� S is
a birational map. Then there is a semiorthogonal decomposition

AS′ = 〈T,Db(k, α),Db(k, α′),Db(k, α⊗ β)〉.

Remark C.2. Note that if α = 0 (that is, C = P1), we can include Db(k, α) in T, and
similarly for β = 0 (that is, π has a section), we can include Db(k, β) in T.

Proof. Note that, over ks , the conic bundle Sks is isomorphic to a Hirzebruch surface Fn,
that is, a P1-bundle π : Sks → P1

ks . One can check that the semiorthogonal decomposition (C.1)
base-changes to the semiorthogonal decomposition

Db(Sks ) = 〈OSks ,OSks (F ),OSks (Σ),OSks (Σ + F )〉, (C.2)

where we denoted by F and Σ the fiber and the section of π, respectively.
Suppose first that S1 is minimal, so that S can be decomposed in a series of links of type

either II or IV (a link of type III is a blow-down, so S1 is not minimal). Let us first consider
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links of type II, which are described by Iskovskikh [63, Theorem 2;6 (ii)]. Let π : S → C be a
conic bundle of degree 8, and

where σ : X → S and τ : X → S′ are blow-ups in a point x and x′, respectively, of the same
degree d, and S′ → C ′ is a conic bundle. We denote by E and E′ the exceptional divisors of
the blow-ups. We first note that S′ has also degree 8 and that C ′ � C. The degree d of the
point can be either 1, 2, or 4. It is easy to check that, over ks , the link is just a composition
of d elementary transformations of the Hirzebruch surface Sks . In particular, if there is a
point of degree 1, then we obtain a birational map between S and a quadric with a rational
point, so that S is already a Hirzebruch surface and there is nothing to prove. So we assume
that d is either 2 or 4. Moreover, as one can check over ks , we have −KS = 2Σ − (n− 2)F
and −KS′ = 2Σ′ − (n + d− 2)F ′. In the Picard group of Xks we have the following relations
(we omit the pull-back notation):

F = F ′, (C.3)

E = dΣ′ − E′, (C.4)

−KS = −KS′ + dF ′ + 2E′, (C.5)

Σ = Σ′ − E′, (C.6)

where the last equality, is obtained combining the first and the third one. In particular, we
obtain an identification O(F ) with O(F ′) and that the equivalence ⊗O(−E′) of Db(Xks ) sends
the exceptional line bundle O(Σ) to the exceptional line bundle O(Σ′) and the exceptional line
bundle O(Σ + F ) to the exceptional line bundle O(Σ′ + F ′). We note that, since E′ is defined
over k, the latter equivalence is defined over k as well. From this we obtain equivalences
Db(k, α) � Db(k, α′) (the identity), Db(k, β) � Db(k, β′) and Db(k, α⊗ β) � Db(k, α′ ⊗ β′)
(induced by ⊗O(E′)).

Let us now consider links of type IV. Thanks to Iskovskikh, this is possible only in the
cases where S = S′ = C × C ′ is the product of two Severi–Brauer curves and the conic bundle
structures are given by the two projections. Let α and α′ in Br(k) be the classes of C and C ′,
respectively. Then there are natural decompositions:

Db(C) =
〈
Db(k),Db(k, α)

〉
Db(C,C0) =

〈
Db(k, α′),Db(α⊗ α′)

〉
Db(C ′) =

〈
Db(k),Db(k, α′)

〉
Db(C,C ′

0) =
〈
Db(k, α),Db(α′ ⊗ α)

〉
.

(C.7)

It follows that the components of the decompositions (C.1) obtained by the conic bundle
structures are pairwise equivalent.

This proves the Proposition for S1 minimal. If S1 is not minimal, then just consider a minimal
model S1 → S0 and use the blow-up formula. �

We finally classify birational equivalent involution surfaces based on algebraic methods. This
can be seen as the algebraic interpretation of the classification of all type IV links for such
surfaces.

Proposition C.3. Let S and S′ be nonrational involution varieties over a field k. Then
S and S′ are k-birational if and only if either they are isomorphic or S = SB(B1) × SB(B2)
and S′ = SB(B′

1) × SB(B′
2) and the subgroups of the Brauer group generated by Bi and B′

i

coincide and consist solely of quaternion algebras.
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Proof. Let S and S′ be k-birational nonrational involution varieties associated to quadratic
pairs (A, σ) and (A′, σ′). Then by Proposition A.2, and assuming without loss of generality
that A is nonsplit (though A′ might be split), we have that S is isomorphic to S′ unless S
(hence S′) has index 2 and trivial discriminant. By the classification of degree 4 algebras with
orthogonal involution of trivial discriminant [73, § 15.B], we have that (A, σ) is isomorphic
to (C+

0 , τ+
0 ) ⊗ (C−

0 , τ−0 ), where τ±0 is the standard involution on the quaternion algebra C±
0 ,

and similarly for (A′, σ′). By (A.2) and the considerations in the proof of Proposition A.2,
the subgroups of Br(k) generated by C±

0 and C ′
0
± coincide and consist solely of quaternion

algebras (since A and A′ have index at most 2).
Now we verify that if B1, B2 and B′

1, B
′
2 are quaternion algebras generating the same

subgroup of Br(k) consisting of classes of index at most 2, then S = SB(B1) × SB(B2)
and S′ = SB(B′

1) × SB(B′
2) are k-birational. If the unordered pairs (B1, B2) and (B′

1, B
′
2)

are isomorphic then S ∼= S′. Otherwise, without loss of generality, we can write
B′

1 = B1 and B′
2 = H, where B1 ⊗B2

∼= M2(H). However, since [H] = [B1] + [B2] ∈ Br(k)
and ker(Br(k) → Br(SB(B1))) = 〈[B1]〉, the images of [H] and [B2] coincide in Br(k(SB(B1))),
and thus we conclude that k(S′) = k(SB(B1)) ⊗ k(SB(H)) ∼= k(SB(B1)) ⊗ k(SB(B2)) = k(S)
so that S and S′ are k-birational. �

As a special case, this result recovers the fact that the involution surfaces C × C and P1 × C
are k-birational for any Severi–Brauer curve C over k.
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R. Parimala, A. Quéguiner-Mathieu, T. Várilly-Alvarado, B. Viray, and Y. Tschinkel for useful
conversations and remarks. We also thank the anonymous referee for questions and remarks
that helped improving the exposition. This project was started the week following hurricane
Sandy, during which time the Courant Institute at New York University graciously hosted the
authors in one of the few buildings in lower Manhattan not completely without electricity.
Yale University and the American Institute of Mathematics also provided stimulating working
conditions for both authors to meet and are warmly acknowledged.

References

1. N. Addington and R. Thomas, ‘Hodge theory and derived categories of cubic fourfolds’, Duke Math. J.
163 (2014) 1885–1927.

2. S. A. Amitsur, ‘Generic splitting fields of central simple algebras’, Ann. of Math. (2) 62 (1955) 8–43.
3. A. Ananyevskiy, A. Auel, S. Garibaldi and K. Zainoulline, ‘Exceptional collections of line bundles

on projective homogeneous varieties’, Adv. Math. 236 (2013) 111–130.
4. B. Antieau, ‘A reconstruction theorem for abelian categories of twisted sheaves’, J. reine angew. Math.

2016 (2016) 175–188.
5. B. Antieau, ‘Twisted derived equivalences for affine schemes’, Brauer groups and obstruction problems:

moduli spaces and arithmetic, Progress in Mathematics 320 (eds A. Auel, B. Hassett, A. Várilly-Alvarado
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26. I. N. Bernštĕın, I. M. Gelfand and S. I. Gelfand, ‘Algebraic vector bundles on Pn and problems of
linear algebra’, Funktsional. Anal. i Prilozhen. 12 (1978) 66–67.

27. M. Blunk, ‘A derived equivalence for some twisted projective homogeneous varieties’, Preprint, 2012,
arXiv:1204.0537.

28. M. Blunk, ‘Del Pezzo surfaces of degree 6 over an arbitrary field’, J. Algebra 323 (2010) 42–58.
29. M. Blunk, S. J. Sierra and S. P. Smith, ‘A derived equivalence for a degree 6 del Pezzo surface over

an arbitrary field’, J. K-Theory 8 (2011) 481–492.
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2013, arXiv:math.AG/1304.0903.
83. A. Kuznetsov, ‘Semiorthogonal decompositions in algebraic geometry’, Proceedings of the International

Congress of Mathematicians, Seoul, 2014 II (2014) 635–660.
84. A. Kuznetsov, ‘Derived categories view on rationality problems’, Rationality problems in alge-

braic geometry, Levico Terme, Italy 2015, Lecture Notes in Mathematics 2172 (eds R. Pardini and
G. P. Pirola; Springer, Berlin, 2016) 67–104.

85. T. Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Math. 67 (American
Mathematical Society, Providence, RI, 2005).

86. M. Lieblich and M. Olsson, ‘Fourier-Mukai partners of K3 surfaces in positive characteristic’, Ann. Sci.
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