Solutions to x> + Y3 + 22+ w? = (x +y + z + w)*:
cubic surfaces, 27 lines, and the icosahedron.

Marcello Bernardara

Institut de Mathématiques de Toulouse
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Perspective and infinite

A.Lorenzetti's Annunciazione (1344)
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Perspective and infinite

@ One of the first paintings with
modern perspective.

@ The parallel lines on the floor
converge to the same point

o L.B.Alberti: De pictura (1430s),
Piero della Francesca De
Prospectiva Pingendi (1470s)

A.Lorenzetti's Annunciazione (1344)
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The projective plane IP?- stereographic projection

Idea: two parallel lines meet at an infinite point.
How to add “infinite points” to the Euclidean plane?
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The projective plane IP?- stereographic projection

Idea: two parallel lines meet at an infinite point.
How to add “infinite points” to the Euclidean plane?

e A point P
corresponds to a
line through N.

@ The oo point of
I;'s corresponds
to a line tangent
at N with the
same direction.

{Points of projective plane} <+ {Lines through origin in Euclidean space} J
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The projective plane P?: Mathematics

{Points of projective plane} <+ {Lines through origin in Euclidean space} ]

Equation of such a line I: A(xo, x1, x2), where P = (xp, x1, x2) is a point on
I, and (xo, x1, x2) # (0,0,0).
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The projective plane P?: Mathematics

{Points of projective plane} <+ {Lines through origin in Euclidean space} ]

Equation of such a line I: A(xo, x1, x2), where P = (xp, x1, x2) is a point on
I, and (xo, x1, x2) # (0,0,0).

{Points of P2} ¢ {triples (xo, x1,x2) # 0}/(x0, X1, x2) = (Ax0, Ax1, Ax2) J

Homogeneous coordinates. A point of P2 is determined by an equivalence
class of triples denoted (xp : x1 : x2). Infinite points have coordinates
(x1:x2: 0).

Bezout's Theorem (1779)
Two curves of degree m and n meet exactly in n- m points of P2. J

The projective space P of dimension n has points with homogeneous
coordinates (xp : ... : Xp)
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Projective Geometry

Projective varieties and Homogeneous equations

Homogeneous polynomials: polynomials F(xg,. .., x,) whose monomials
with nonzero coefficients all have the same total degree.

If F(ao,...,an) =0, then F(\ag,...,\a,) =0 for all A, so the Zero
Locus Z(F) = {points of P" where F vanishes} is well defined.
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Projective Geometry

Projective varieties and Homogeneous equations

Homogeneous polynomials: polynomials F(xg,. .., x,) whose monomials
with nonzero coefficients all have the same total degree.

If F(ao,...,an) =0, then F(\ag,...,\a,) =0 for all A, so the Zero
Locus Z(F) = {points of P" where F vanishes} is well defined.

Example: Degree 3 curves in P?
@ irreducible: F is irreducible.
@ conic + line: F=F-F
@ 3lines: F=F -Gy H;
@ 2 lines, one double: F = F12 -G

e atriple line: F = F}
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Cubic Surfaces

Lines on cubic surfaces

A Cubic Surface in P3 is the zero locus S = Z(F) of a degree 3
homogeneous polynomial. We suppose that S is smooth.

Theorem (Cayley-Salmon 1849)
There are exactly 27 lines on S. J

Arthur Cayley (1821 - 1895)
George Salmon (1819 - 1904)
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Cubic Surfaces

Proof of the Theorem

First step
There are at most 3 lines in S through any point P of S. If there are 2 or
3, then they are coplanar.

Every plane intersects S along either an irreducible cubic or a conic plus a
line or three distinct lines.
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Proof of the Theorem

First step

There are at most 3 lines in S through any point P of S. If there are 2 or
3, then they are coplanar.

Every plane intersects S along either an irreducible cubic or a conic plus a
line or three distinct lines.

Proof: wlog, let w = 0 be the equation of the plane I, then [TN S is a
degree three curve on P2 The line /: (z = w = 0) in M is double if

F =Z2F + wk;
with F; of degree i. But this would imply that S is nonsmooth

Second Step
There is at least a line on S. J
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Proof of the Theorem

Third Step
I a line on S. There are exactly 5 pairs (/;,/7) of lines on S meeting / s.t.
o fori=1,...5 1/ [, and [/ are coplanar

o for i # j, I; Ul; does not intersect /[; U /1.

Marcello Bernardara (IMT) Cubic surfaces 9/19



Proof of the Theorem

Third Step

I a line on S. There are exactly 5 pairs (/;,/7) of lines on S meeting / s.t.
o fori=1,...5 1/ [, and [/ are coplanar
o for i # j, I; Ul; does not intersect /[; U /1.

PROOF: take / and a plane 1 O/, Then TN S is one of the following:
We want exactly 5 planes giving a) or b). If /: (z = w = 0) then we can
write F = Ax? 4 Bxy + Cy? + Dx + Ey + G which is the equation of a

conic in the plane (x,y) depending on z, w. Exactly 5 of them are
reducible.
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Cubic Surfaces

Fourth Step
There exist two disjoint lines / and m on S. J
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Fourth Step J

There exist two disjoint lines / and m on S.

Fifth Step
Find 27 lines in term of the pairs configuration. J

Consider /, m and the pairs (/;, I!).

No double line on S = m cannot meet both /; and /,f

Being in P> = m meets either /; or I for all i..

Up to renaming: mN /= mnN I =0 for all i.

Pairs (mj, m’) are given by m; = [ and m. N [/ = .

Let n be any other line on S. If n meets more than 3 out of /;'s = n
is double. Then n meets exactly 3 out of /;, call n=: [; ; «

~
<

LINES

=

m

/ m IU
1 + 1 +

1

+ 5 + 5 + 10 = 27

(6]
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Schlafli's double six

A double six is a configuration of 12 lines (a1, ... as, b1, . . .

projective space such that
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Cubic Surfaces

Schlafli’'s double six

A double six is a configuration of 12 lines (a1, ... as, b1, . . .

projective space such that

@ aiNaj=biNbj=0fori+#j
@ aiNb;=0 foralli=1,...6
@ a;jNbjisapointifi#j

aiy a» a3 a4 as as
b1 b2 b3 b4 b5 b6
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Schlafli's double six

A double six is a configuration of 12 lines (a1, ... as, b1, ..., bs) in the
projective space such that

@ aiNaj=biNbj=0fori+#j
@ aiNb;=0 foralli=1,...6
@ a;jNbjisapointifi#j

aiy a» a3 a4 as as
b1 b2 b3 b4 b5 b6

Schlafli’s Theorem (1858)

The 27 lines are completely determined by a double six. There are 36
double sixes for a given cubic surface.
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The blow-up of a point

Consider a point on a surface, and “replace it with a line”

The red line (the exceptional divisor) parameterizes all the lines through
the red point (the center of the blow-up).
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From the plane to the cubic surface

Theorem

Every cubic surface is the blow up of six points in general position in the
projective plane P?.
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Theorem
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@ Given a double six (ai1,...,a6|b1,..., bs) the a;'s are the exceptional
divisors of such blow up.
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From the plane to the cubic surface

Theorem

Every cubic surface is the blow up of six points in general position in the
projective plane P?.

@ Given a double six (ai1,...,a6|b1,..., bs) the a;'s are the exceptional
divisors of such blow up.

@ There are 72 choices of 6 lines giving a map S — P?.
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From the plane to the cubic surface

The 27 lines from this point of view

@ 6 skew lines come from the 6 points
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From the plane to the cubic surface

The 27 lines from this point of view

@ Each line through two points gives a line on the surface (15 of them)

v
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The Clebsch cubic

Consider the homogeneous polynomial

F(X,y,z,w):x3—i—y3—i—z3—i—W3—(X—i—y—i—z—|—w)3

the cubic surface in P2 defined as Z(F) is the locus of points
(x :y:w: z) satisfying

By 42wt =x+y+z+w)d

This cubic is smooth and is called the Clebsch cubic
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The Clebsch cubic surface

Theorem: Clebsch (1871), Klein (1873)

The six points in the plane corresponding to the Clebsch cubic are given
by the lines in the euclidean space joining opposite vertices of a regular
icosahedron, with assigned vertex coordinates.
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The Clebsch cubic surface

Theorem: Clebsch (1871), Klein (1873)

The six points in the plane corresponding to the Clebsch cubic are given
by the lines in the euclidean space joining opposite vertices of a regular
icosahedron, with assigned vertex coordinates.

@ The center of the icosahedron is the origin.
@ The 6 points in P? have to be defined over Q[v/—5].
@ There are 72 such icosahedra.
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The lcosahedron
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