
Solutions to x3 + y 3 + z3 + w 3 = (x + y + z + w)3:
cubic surfaces, 27 lines, and the icosahedron.
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Projective Geometry

Perspective and infinite

A.Lorenzetti’s Annunciazione (1344)

One of the first paintings with
modern perspective.

The parallel lines on the floor
converge to the same point

L.B.Alberti: De pictura (1430s),
Piero della Francesca De
Prospectiva Pingendi (1470s)
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Projective Geometry

The projective plane P2- stereographic projection

Idea: two parallel lines meet at an infinite point.
How to add “infinite points” to the Euclidean plane?

A point P
corresponds to a
line through N.

The ∞ point of
li ’s corresponds
to a line tangent
at N with the
same direction.

{Points of projective plane} ↔ {Lines through origin in Euclidean space}
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Projective Geometry

The projective plane P2: Mathematics

{Points of projective plane} ↔ {Lines through origin in Euclidean space}

Equation of such a line l : λ(x0, x1, x2), where P = (x0, x1, x2) is a point on
l , and (x0, x1, x2) 6= (0, 0, 0).

{Points of P2} ↔ {triples (x0, x1, x2) 6= 0}/(x0, x1, x2) = (λx0, λx1, λx2)

Homogeneous coordinates. A point of P2 is determined by an equivalence
class of triples denoted (x0 : x1 : x2). Infinite points have coordinates
(x1 : x2 : 0).

Bezout’s Theorem (1779)

Two curves of degree m and n meet exactly in n ·m points of P2.

The projective space Pn of dimension n has points with homogeneous
coordinates (x0 : . . . : xn)
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Projective Geometry

Projective varieties and Homogeneous equations

Homogeneous polynomials: polynomials F (x0, . . . , xn) whose monomials
with nonzero coefficients all have the same total degree.
If F (a0, . . . , an) = 0 , then F (λa0, . . . , λan) = 0 for all λ, so the Zero
Locus Z (F ) = {points of Pn where F vanishes} is well defined.

Example: Degree 3 curves in P2

irreducible: F is irreducible.

conic + line: F = F2 · F1

3 lines: F = F1 · G1 · H1

2 lines, one double: F = F 2
1 · G1

a triple line: F = F 3
1
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Cubic Surfaces

Lines on cubic surfaces

A Cubic Surface in P3 is the zero locus S = Z (F ) of a degree 3
homogeneous polynomial. We suppose that S is smooth.

Theorem (Cayley-Salmon 1849)

There are exactly 27 lines on S.

Arthur Cayley (1821 - 1895)
George Salmon (1819 - 1904)
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Cubic Surfaces
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Cubic Surfaces

Proof of the Theorem

First step

There are at most 3 lines in S through any point P of S . If there are 2 or
3, then they are coplanar.
Every plane intersects S along either an irreducible cubic or a conic plus a
line or three distinct lines.

Proof: wlog, let w = 0 be the equation of the plane Π, then Π ∩ S is a
degree three curve on P2 The line l : (z = w = 0) in Π is double if

F = z2F1 + wF2

with Fi of degree i . But this would imply that S is nonsmooth

Second Step

There is at least a line on S .

Marcello Bernardara (IMT) Cubic surfaces 8 / 19



Cubic Surfaces

Proof of the Theorem

First step

There are at most 3 lines in S through any point P of S . If there are 2 or
3, then they are coplanar.
Every plane intersects S along either an irreducible cubic or a conic plus a
line or three distinct lines.

Proof: wlog, let w = 0 be the equation of the plane Π, then Π ∩ S is a
degree three curve on P2 The line l : (z = w = 0) in Π is double if

F = z2F1 + wF2

with Fi of degree i . But this would imply that S is nonsmooth

Second Step

There is at least a line on S .

Marcello Bernardara (IMT) Cubic surfaces 8 / 19



Cubic Surfaces

Proof of the Theorem

First step

There are at most 3 lines in S through any point P of S . If there are 2 or
3, then they are coplanar.
Every plane intersects S along either an irreducible cubic or a conic plus a
line or three distinct lines.

Proof: wlog, let w = 0 be the equation of the plane Π, then Π ∩ S is a
degree three curve on P2 The line l : (z = w = 0) in Π is double if

F = z2F1 + wF2

with Fi of degree i . But this would imply that S is nonsmooth

Second Step

There is at least a line on S .

Marcello Bernardara (IMT) Cubic surfaces 8 / 19



Cubic Surfaces

Proof of the Theorem

Third Step

l a line on S . There are exactly 5 pairs (li , l
′
i ) of lines on S meeting l s.t.

for i = 1, . . . 5, l , li , and l ′i are coplanar

for i 6= j , li ∪ l ′i does not intersect lj ∪ l ′j .

PROOF: take l and a plane Π ⊃ l , Then Π ∩ S is one of the following:

We want exactly 5 planes giving a) or b). If l : (z = w = 0) then we can
write F = Ax2 + Bxy + Cy2 + Dx + Ey + G which is the equation of a
conic in the plane (x , y) depending on z ,w . Exactly 5 of them are
reducible.
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Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l
′
i ).

No double line on S =⇒ m cannot meet both li and l ′i
Being in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m
′
i ) are given by mi = li and m′

i ∩ l ′i = ∅.
Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ n
is double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′
i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19



Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l
′
i ).

No double line on S =⇒ m cannot meet both li and l ′i
Being in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m
′
i ) are given by mi = li and m′

i ∩ l ′i = ∅.
Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ n
is double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′
i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19



Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l
′
i ).

No double line on S =⇒ m cannot meet both li and l ′i

Being in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m
′
i ) are given by mi = li and m′

i ∩ l ′i = ∅.
Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ n
is double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′
i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19



Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l
′
i ).

No double line on S =⇒ m cannot meet both li and l ′i
Being in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m
′
i ) are given by mi = li and m′

i ∩ l ′i = ∅.
Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ n
is double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′
i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19



Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l
′
i ).

No double line on S =⇒ m cannot meet both li and l ′i
Being in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m
′
i ) are given by mi = li and m′

i ∩ l ′i = ∅.
Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ n
is double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′
i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19



Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l
′
i ).

No double line on S =⇒ m cannot meet both li and l ′i
Being in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m
′
i ) are given by mi = li and m′

i ∩ l ′i = ∅.

Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ n
is double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′
i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19



Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l
′
i ).

No double line on S =⇒ m cannot meet both li and l ′i
Being in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m
′
i ) are given by mi = li and m′

i ∩ l ′i = ∅.
Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ n
is double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′
i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19



Cubic Surfaces

Fourth Step

There exist two disjoint lines l and m on S .

Fifth Step

Find 27 lines in term of the pairs configuration.

Consider l , m and the pairs (li , l
′
i ).

No double line on S =⇒ m cannot meet both li and l ′i
Being in P3 =⇒ m meets either li or l ′i for all i ..

Up to renaming: m ∩ l = m ∩ l ′i = ∅ for all i .

Pairs (mi ,m
′
i ) are given by mi = li and m′

i ∩ l ′i = ∅.
Let n be any other line on S . If n meets more than 3 out of li ’s =⇒ n
is double. Then n meets exactly 3 out of li , call n =: li ,j ,k

LINES l m li l ′i m′
i lijk

1 + 1 + 5 + 5 + 5 + 10 = 27

Marcello Bernardara (IMT) Cubic surfaces 11 / 19



Cubic Surfaces

Schläfli’s double six

A double six is a configuration of 12 lines (a1, . . . a6, b1, . . . , b6) in the
projective space such that

ai ∩ aj = bi ∩ bj = ∅ for i 6= j

ai ∩ bi = ∅, for all i = 1, . . . 6

ai ∩ bj is a point if i 6= j

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

Schläfli’s Theorem (1858)

The 27 lines are completely determined by a double six. There are 36
double sixes for a given cubic surface.
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Schläfli’s double six

A double six is a configuration of 12 lines (a1, . . . a6, b1, . . . , b6) in the
projective space such that

ai ∩ aj = bi ∩ bj = ∅ for i 6= j

ai ∩ bi = ∅, for all i = 1, . . . 6

ai ∩ bj is a point if i 6= j

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6
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Cubic Surfaces
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From the plane to the cubic surface

The blow-up of a point

Consider a point on a surface, and “replace it with a line”

The red line (the exceptional divisor) parameterizes all the lines through
the red point (the center of the blow-up).
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From the plane to the cubic surface

Theorem

Every cubic surface is the blow up of six points in general position in the
projective plane P2.

Given a double six (a1, . . . , a6|b1, . . . , b6) the ai ’s are the exceptional
divisors of such blow up.

There are 72 choices of 6 lines giving a map S → P2.
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From the plane to the cubic surface

The 27 lines from this point of view

6 skew lines come from the 6 points

There is a single conic for any choice of 5 points. Each of these
conics give a line (6 skew lines)

Each line through two points gives a line on the surface (15 of them)
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The Clebsch cubic surface

The Clebsch cubic

Consider the homogeneous polynomial

F (x , y , z ,w) = x3 + y3 + z3 + w3 − (x + y + z + w)3

the cubic surface in P3 defined as Z (F ) is the locus of points
(x : y : w : z) satisfying

x3 + y3 + z3 + w3 = (x + y + z + w)3

This cubic is smooth and is called the Clebsch cubic
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The Clebsch cubic surface

Theorem: Clebsch (1871), Klein (1873)

The six points in the plane corresponding to the Clebsch cubic are given
by the lines in the euclidean space joining opposite vertices of a regular
icosahedron, with assigned vertex coordinates.

The center of the icosahedron is the origin.

The 6 points in P2 have to be defined over Q[
√
−5].

There are 72 such icosahedra.
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The Clebsch cubic surface

The Icosahedron
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