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A semiorthogonal decomposition for the bounded derived category of coherent sheaves on a Brauer–Severi
scheme is given. It relies on bounded derived categories of suitably twisted coherent sheaves on the base.

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

In this paper we give a semiorthogonal decomposition of the bounded derived category (the category of perfect
complexes in the nonsmooth case) of coherent sheaves on a Brauer–Severi scheme f : X → S. Brauer–Severi
schemes can be seen as twisted projective bundles. This leads us to generalize the semiorthogonal decomposition
given in [8] for projective bundles, by considering twisted sheaves on the base S instead of untwisted ones.

Let us recall what happens in the case of a projective bundle. Let S be a smooth projective variety, E a vector
bundle of rank r + 1 over S. We consider its projectivization p : X = P(E) → S. We then have the following
semiorthogonal decomposition for the bounded derived category D(X) of coherent sheaves on X .

Theorem 1.1 ([8, Theorem 2.6]) Let D(S)k be the full and faithful subcategory of D(X) whose objects are
all objects of the form p∗A⊗OX(k) for an object A of D(S). Then the set of admissible subcategories

(D(S)0, . . . ,D(S)r)

is a semiorthogonal decomposition for the bounded derived category D(X) of coherent sheaves on X .

The aim of the paper is to give the following generalization. Let f : X → S be a Brauer–Severi scheme of
relative dimension r over a locally notherian scheme S. Let α be the corresponding class in H2(S,Gm). Let us
denote by D(X) the category of perfect complexes of coherent sheaves on X and by D(S, α) the category of
perfect complexes of α-twisted coherent sheaves on S. Notice that in the smooth case they actually correspond
to the bounded derived categories.

Theorem 4.1 There exist admissible full subcategories D(S,X)k of D(X), such that D(S,X)k is equivalent
to the category D

(
S, α−k

)
for all k ∈ Z. The set of admissible subcategories

(D(S,X)0, . . . ,D(S,X)r)

is a semiorthogonal decomposition for the category D(X) of perfect complexes of coherent sheaves on X .

It will be clear in the proof of the theorem that the construction of the full admissible subcategories D(S,X)k

is closely related to the definition of the full admissible sucategories D(S)k in Orlov’s theorem.
The paper is organized as follows: in Section 2 we give the definition of twisted sheaves and we state the basic

facts about their connection with Brauer–Severi schemes. We recall then basic facts about derived categories,
categories of perfect complexes and derived functors in twisted case, following [4]. In Section 3 we recall the
definition of admissible subcategories and semiorthogonal decomposition in a triangulated category and we state
some basic results about it. The main theorem and its proof are given in Section 4, together with a simple
example.
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Notation 1.2 All schemes considered are locally noetherian and we suppose that any pair of points has an
affine open neighborhood. This technical property will be used in Section 2 to refine étale coverings as needed in
the construction of the twisted sheaf associated to a Brauer–Severi variety.
Set denotes the étale site of a scheme S. For the definition of a (étale) site, see [10] or [7].
Given an étale covering U → S, we denote U ′′ the fibered product U ×S U and U ′′′ the fibered product

U ×S U ×S U . We call p1 and p2 the projections U ′′ → U and qij the projections U ′′′ → U ′′.
f : X → S is a Brauer–Severi scheme of relative dimension r, that means that f is flat and proper and each

geometric fiber of f is isomorphic to Pr.
XU denotes f−1(U) for U → S an étale covering. We use notations X ′′

U , X ′′′
U , pi,X and qij,X in the natural

way. Notice that X ′′
U = XU ′′ .

2 Twisted sheaves

In this section, we recall the definition of twisted sheaves and we state the relationship between them and Brauer–
Severi schemes. We are working in étale topology, but all can be defined and stated in the analytic topology as
well (see [4, I, 1]).

Definition 2.1 Let S be a scheme with étale topology, let U → S be an étale covering, let α ∈ Γ(U ′′′,Gm)
be a 2-cocycle.

A quasi-coherent α-twisted sheaf on S is given by a quasi-coherent sheaf E over U and an isomorphism
φ : p∗1E → p∗2E, such that

(q∗23φ) ◦ (q∗12φ) = α(q∗13φ).

We say that such a sheaf is coherent if E is a coherent sheaf on U , and we denote Coh(S, α) the category of
coherent α-twisted sheaves on S and D(S, α) the category of perfect complexes of such sheaves.

The category Coh(S, α) does not change up to equivalence neither by refining the open coverU → X , nor by
changing α by a cochain.

Lemma 2.2 If α and α′ represent the same element of H2(S,Gm), the categories Coh(S, α) and Coh(S, α′)
are equivalent.

P r o o f. This is [4, Lemma 1.2.8]. Indeed, if α and α′ are in the same cohomology class they differ by a
1-cochain: α = α′ + δγ. But then sending any α′-twisted sheaf (E, φ) to the α-twisted sheaf (E, γφ) gives the
required equivalence.

Remark 2.3 Notice that in general the choice of the cochain γ matters: different choices give different equiv-
alences. Since we are just interested in the existence of such equivalences and not in a special one, in what follows
this choice will not matter.

Now we can see how twisted sheaves arise naturally when we consider Brauer–Severi schemes. Let f : X →
S be a flat and proper morphism between schemes such that each geometric fibre is isomorphic to Pr. Then we
call X a Brauer–Severi scheme of relative dimension r over S.

We can find a étale covering U → S, so that XU = f−1(U) is a projective bundle over U and XU → X is an
étale covering. Then we have a local picture P(EU ) → U , where EU is a locally free sheaf of rank r + 1 on U
and we have an isomorphism ρ : P(EU )→̃XU . This fact is an application of descent theory ([5, I, 8]).

Consider the diagram

X ′′′
U

������ X ′′
U

���� XU

and call the projections pi,X and qij,X . We have an isomorphism

ψ := p∗1,Xρ
−1 ◦ p∗2,Xρ : P(p∗1EU ) −̃→P(p∗2EU ).

We would like to lift it to an isomorphism φ : p∗1EU→̃p∗2EU .
Consider U such that p∗1EU and p∗2EU can be trivialized. This implies that ψ is an automorphism of U ′′ × Pr

and then it gives a section of PGL(r + 1, U ′′). We can again refine U in order to obtain from it a section of
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GL(r+ 1, U ′′), which will give us the required isomorphism φ : p∗1EU→̃p∗2EU . Notice that this is not canonical
since it can be done up to a choice of an element of Γ(U ′′,Gm). This can be done since any pair of point on S
has an affine open neighborhood (see [9]).

For this reason, we have (q∗12φ) ◦ (q∗23φ) = αU (q∗13φ), where αU ∈ Γ(U ′′′,Gm). We can see that αU gives a
cocycle and then (EU , φ) is an α-twisted sheaf.

From now on, given a Brauer–Severi scheme f : X → S, we will consider the α-twisted sheaf (EU , φ)
described above and the category D(S, α). Notice that the choice of αU could be modified by a 1-cochain, but,
by Lemma 2.2, this would give an equivalent category. Whence everything depends just on the cohomology class
of α.

The class α represents the obstruction to f : X → S to be the projectivization of a locally free sheaf. To
express this via cohomology, recall the exact sequence of sheaves over S:

1 −→ Gm −→ GL(r + 1) −→ PGL(r + 1) −→ 1.

It gives a long cohomology sequence

. . . −→ H1(S,GL(r + 1)) −→ H1(S, PGL(r + 1)) δ−→ H2(S,Gm)

and especially a connecting homomorphism δ.
Let [X ] be the cohomology class of X in H1(S, PGL(r + 1)) and α′ := δ([X ]) in H2(S,Gm). If α′ = 0,

the class [X ] would lift to an element of H1(S,GL(r + 1)), that is a rank r + 1 vector bundle on S. Since X is
not a projective bundle, α′ is a nonzero element of the cohomological Brauer group Br′(S) := H2(S,Gm) and
it is exactly the cohomology class α of the αU described above, see also [4].

As a projective bundle P(EU ) over U , on XU there exists a tautological line bundle OXU (1). We will also
write OXU (k) for k ∈ Z.

Notice that the choice of the bundle OXU (1) over XU depends on the choice of EU , moreover OXU (1) does
not glue as a global untwisted sheaf OX(1) onX . However, the existence of a section for the morphism f ensures
the existence of a global OX(1).

Lemma 2.4 Let f : X → S be a Brauer–Severi scheme. If s : S → X is a section of f , then there exists a
vector bundle G on S such that P(G) ∼= X → S.

P r o o f. The result is known, but since it is hard to find a reference, we give a proof.
Consider the diagram

X ′′′
U

qij,X ��
����

f

��

X ′′
U

p1,X ��
p2,X

��

f

��

XU

f

��

�� X

f

��
U ′′′ ��

qij

����

s

��

U ′′
p1 ��
p2

��

s

��

U

s

��

�� S

s

��

Here s and f are improperly used to mean their pull-backs to U , U ′′ and U ′′′ in order to keep a clearer notation.
We can choose OXU (1) such that s∗OXU (1) = OU .
Consider now p∗1,XOXU (1) and p∗2,XOXU (1), the two pull-backs of OXU (1) to XU ′′ . There exists an invert-

ible sheaf L on S such that p∗1,XOXU (1) ∼= p∗2,XOXU (1) ⊗ f∗L. Since

s∗p∗i,XOXU (1) = OU ′′

we have L trivial. We choose an isomorphism

φ : p∗1,XOXU (1) −→ p∗2,XOXU (1)

such that s∗φ = IdOU′′ .
The isomorphism φ satisfies an untwisted cocycle condition. Indeed,

s∗
(
(q∗12,Xφ) ◦ (q∗23,Xφ) ◦ (q∗13,Xφ)−1

)
= IdOU′′′ .

This shows that OXU (1) gives a global untwisted sheaf OX(1) and that means X is a projective bundle over S.
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Let us briefly recall what happens to most common derived functors when we consider the category of perfect
complexes of twisted sheaves on a scheme. A more satisfying description can be found in [4]. It is in fact an
adaptation to twisted case of the results of [6].

Remark 2.5 In order to extend the ideas to a more general context, we will deal with categories of perfect
complexes of coherent (α-twisted) sheaves. A perfect complex of coherent sheaves is a complex whose cohomol-
ogy sheaves are coherent and which has finite global Tor-dimension. Equivalentely, it is quasi isomorphic, over
any affine open set, to a bounded complex of locally free sheaves of finite rank in any degree. A complete treate-
ment of perfect complexes on a site is given in [11]. Everything is defined in the very general context of fibered
categories, hence all definitions fit for twisted sheaves. In the smooth case, the category of perfect complexes
of coherent (α-twisted) sheaves turn out to be the same as the bounded derived category of coherent (α-twisted)
sheaves, but keep in mind that in the non smooth case what we call here D(S) (resp. D(S, α)) is not the bounded
derived category of (α-twisted) coherent sheaves on S but just a full triangulated subcategory.

Theorem 2.6 ([4, Theorem 2.2.6]) Let f : X → S be a morphism between schemes, let α, α′ be in
H2(S,Gm), and AB be the category of abelian groups. Then the following derived functors are defined:

RHom : D(S, α)◦ × D(S, α′) −→ D(S, α−1α′),

RHom : D(S, α)◦ × D(S, α) −→ Db(AB),⊗
S

: D(S, α) × D(S, α′) −→ D(S, αα′),

Lf∗ : D(S, α) −→ D(X, f∗α).

If f : X → S is a projective lci (locally complete intersection) morphism, then we can define

Rf∗ : D(X, f∗α) −→ D(S, α).

Let us recall without explicit statements that Projection Formula, Adjoint Property of Rf∗ and Lf∗ and Flat
Base Change are still valid in the α-twisted context. The only thing to care of is the choice of the right twist.
All this and much more is detailed in [4] and can easily be generalized to categories of perfect complexes in a
nonsmooth case.

3 Semiorthogonal decompositions

Let k be a field and D a k-linear triangulated category.

Definition 3.1 A full triangulated subcategory D′ ⊂ D is admissible if the inclusion functor i : D′ → D
admits a right adjoint.

Definition 3.2 The orthogonal complement D′⊥ of D′ in D is the full subcategory of all objects A ∈ D such
that Hom(B,A) = 0 for all B ∈ D′.

We remark firstly that the orthogonal complement of an admissible subcategory is a triangulated subcategory.
It can be shown that a full triangulated subcategory D′ ⊂ D is admissible if and only if for all object A of

D, there exists a distinguished triangle B → A → C where B ∈ D′ and C ∈ D′⊥, see [1]. We also have the
following theorem.

Theorem 3.3 ([2, Proposition 1.5], or [1, Lemma 3.1]) Let D′ be a full triangulated subcategory of a trian-
gulated category D. Then D′ is admissible if and only if D is generated by D′ and D′⊥.

Admissible subcategories occur when we have a fully faithful exact functor F : D′ → D that admits a right
adjoint. To be precise, this functor defines an equivalence between D′ and an admissible subcategory of D.

Definition 3.4 A sequence of admissible triangulated subcategories σ = (D1, . . . ,Dn) is semiorthogonal if,
for all i > j, one has Dj ⊂ D⊥

i . If σ generates the category D, we call it a semiorthogonal decomposition of D.

Lemma 3.5 Let σ = (D1, . . . ,Dn) be a sequence of full subcategories of D sucht that Dj ⊂ D⊥
i for all

i > j and σ generates D. Then Di is admissible for i = 1, . . . , n, and then σ is a semiorthogonal decomposition
of D.
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P r o o f. Consider Dn and D⊥
n : they generate the category D and then they are admissible. In general,

consider Di and D⊥
i for 1 ≤ i < n: they generate the category D⊥

i+1 and then they are admissible.

For further information about admissible subcategories and semiorthogonal decomposition, see [1, 2, 3].

4 The main theorem

Let now f : X → S be a Brauer–Severi scheme of relative dimension r and α in Br(S) the element associated
to it as explained in Section 2. This section is dedicated to the proof of the following theorem.

Theorem 4.1 There exist admissible full subcategories D(S,X)k of D(X), such that D(S,X)k is equivalent
to the category D

(
S, α−k

)
for all k ∈ Z. The set of admissible subcategories

σ = (D(S,X)0, . . . ,D(S,X)r)

is a semiorthogonal decomposition for the category D(X) of perfect complexes of coherent sheaves on X .

Recall that there exist a rank r + 1 locally free sheaf EU on U , such that XU = P(EU ) and that EU gives an
α-twisted sheaf on S. Moreover on XU we have a tautological line bundle OXU (1). In this case, we consider
α as a cocycle chosen once for all in the cohomology class [α]. By Lemma 2.2 this choice does not affect the
category D(S, α) up to equivalence.

We split this section in three parts: in the first one we define the full subcategories D(S,X)k of D(X) and
we show the equivalence between D(S,X)k and D

(
S, α−k

)
; all this is inspired by a construction by Yoshioka

[12]. In the second one we show that the sequence σ is indeed a semiorthogonal decomposition. In the third one
we give a simple example.

4.1 Construction of D(S, X)k

Definition 4.2 We define D(S,X)k, for k ∈ Z, to be the full subcategory of D(X) generated by objects A
such that

A|XU
	q.iso f

∗AU ⊗OXU (k) (4.1)

where AU is an object in D(U).

Lemma 4.3 For all k ∈ Z, there is a functor

f∗
k : D

(
S, α−k

) −→ D(S,X)k

given by the association

A|U 
−→ f∗A|U ⊗OXU (k). (4.2)

P r o o f. Firstly, XU is the projective bundle P(EU ) over U . We then have on XU the surjective morphism
f∗EU � OXU (1). Given F an α−1-twisted sheaf on S, we have the surjective morphism

f∗(FU ⊗ EU ) = f∗FU ⊗ f∗EU � f∗FU ⊗OXU (1).

Since FU and EU give respectively an α−1-twisted and an α-twisted sheaf on S, their tensor product FU ⊗ EU

gives an untwisted sheaf on S. We can naturally see f∗FU ⊗ f∗EU as an untwisted sheaf on X : the glueing
isomorphism is obtained by pull-back with f and this makes naturally f∗FU ⊗ OXU (1) an untwisted sheaf as
well. It is now clear that given an object A in D

(
S, α−1

)
, the object given locally by (4.2) belongs to D(S,X)1.

The proof is similar for any k ∈ Z.

Theorem 4.4 The functor f∗
k defined in Lemma 4.3 is an equivalence between the category D

(
S, α−k

)
and

the category D(S,X)k.
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P r o o f. Given A in D(S,X)1, consider the association over U

A|XU

−→ Rf∗

(
A|XU

⊗OXU (−1)
)
.

We show that it gives a functor Λ from D(S,X)1 to D
(
S, α−1

)
and that is the quasi-inverse functor of f∗

1 .
Firstly, since A is in D(S,X)1, on XU we have A|XU

= f∗AU ⊗OXU (1), with AU in D(U). Evaluating Λ
on A|XU

we get

Rf∗
(
A|XU

⊗OXU (−1)
)

= Rf∗f∗AU .

Now use projection formula:

Rf∗f∗AU = Rf∗OX ⊗AU .

We have Rif∗OX = 0 for i > 0 and f∗OX = OS , and then

Rf∗f∗AU 	q.iso AU . (4.3)

It follows that Λ associates to A|XU
the object AU in D(U).

At a level of coherent sheaves, by the same reasoning used in Lemma 4.3, we have the surjective morphism

f∗(FU ⊗ EU ) � f∗FU ⊗OXU (1).

Since EU is an α-twisted sheaf on S, we can give to FU the structure of α−1-twisted sheaf over S. This shows
that Λ is actually a functor from the subcategory D(S,X)1 to the category D

(
S, α−1

)
.

It is now an evidence by (4.3) that Λ and f∗
1 are each other quasi-inverse.

The proof for k ∈ Z is similar.

We then have constructed full subcategories D(S,X)k of D(X), each one equivalent to a category of perfect
complexes of suitably twisted sheaves on S.

Notice that we have f∗
0 = Lf∗ = f∗ since f is flat and the full subcategory of D(X) which is the image of

D(S) under the functor f∗ is in fact the category D(S,X)0 defined earlier.

4.2 σ is a semiorthogonal decomposition

Lemma 4.5 For any A in D(S,X)k and B in D(S,X)n we have RHom(A,B) = 0 for r ≥ k − n > 0.

P r o o f. We have locally A|XU
= f∗AU ⊗OXU (k) and B|XU

= f∗BU ⊗OXU (n).
We have

RHom(A|XU
, B|XU

) = RHom(f∗AU ⊗OXU (k), f∗BU ⊗OXU (n))

= RHom(f∗AU , f
∗BU ⊗OXU (n− k)).

We now use the adjoint property of f∗ and Rf∗:

RHom(f∗AU , f
∗BU ⊗OXU (n− k)) = RHom(AU , Rf∗(f∗BU ⊗OXU (n− k)).

Now by projection formula

Rf∗(f∗BU ⊗OXU (n− k)) = BU ⊗Rf∗(OXU (n− k)).

We have Rf∗(OXU (n− k)) = 0 for −r ≤ n− k < 0 and hence the sheaves RHom(A,B) are zero.
Using the local to global Ext spectral sequence, we get the proof.
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We thus have an ordered set σ = (D(S,X)0, . . . ,D(S,X)r) of orthogonal subcategories of D(X). Last step
in proving Theorem 4.1 is to show that it generates the whole category.

Consider the fiber square over S

P := X ×S X

q

��

p �� X

g

��
X

f
�� S

We have g = f : X → S. We call P the productX ×S X .
Consider the diagonal embedding Δ : X → P . It is a section for the projection morphism p : P → X . By

Lemma 2.4, there exists a vector bundle G on X such that P ∼= P(G) → X .
Consider now on P the surjective morphism: p∗G � OP → 0. We also have the Euler short exact sequence

on P :

0 −→ ΩP/X(1) −→ p∗G −→ OP (1) −→ 0.

Combining the exact sequence and the surjective morphism, we get a section of Hom(ΩP/X(1),OP ) whose zero
locus is the diagonal Δ of P . Remark that ΩP/X(1) = p∗ΩX/S ⊗OP (1) and

Λk(p∗ΩX/S ⊗OP (1)) = p∗Ωk
X/S ⊗OP (k).

We get a Koszul resolution

0 −→ p∗Ωr
X/S ⊗OP (r) −→ . . . −→ p∗ΩX/S ⊗OP (1) −→ OP −→ OΔ −→ 0.

By this complex we deduce that OΔ belongs, as an element of the category D(P ), to the subcategory generated
from {

p∗Ωr
X/S ⊗OP (r), . . . , p∗ΩX/S ⊗OP (1),OX � OX

}
(4.4)

by exact triangles and shifting.
Given A an element of D(X), we remark that A = Rq∗(p∗A⊗OΔ). Since all involved functors (pull-back,

direct image and tensor product) are exact functors, A belongs to the subcategory of D(X) generated by{
Rq∗

(
p∗

(
A⊗ Ωr

X/S

)
⊗OP (r)

)
, . . . , Rq∗

(
p∗

(
A⊗ ΩX/S

) ⊗OP (1)
)
, Rq∗p∗A

}
.

Lemma 4.6 The object Rq∗
(
p∗

(
A⊗ Ωk

X/S

)
⊗OP (k)

)
in D(X) belongs to the subcategory D(S,X)k.

P r o o f. We look at it in a local situation. In this case XU is a projective bundle over U , and we have

q∗OXU (k) = OP (k)|XU′′ .

This leads us to write locally

Rq∗
(
p∗

(
A⊗ Ωk

X/S

)
⊗OP (k)

)
|XU′′

= Rq∗

((
p∗

(
A⊗ Ωk

X/S

))
|XU

⊗ q∗OXU (k)
)

= Rq∗
(
p∗

(
A⊗ Ωk

X/S

))
|XU

⊗OXU (k)

= f∗Rg∗

((
A⊗ Ωk

X/S

)
|XU

)
⊗OXU (k),

(4.5)

where we used projection formula and flat base change in the last two equalities. Then we have an object locally
of the form finally given in (4.5), and then it is an object in D(S,X)k.

We have shown that all objectsA in D(X) belong to the subcategory generated by the orthogonal sequence σ.
This implies, by Lemma 3.5, that the subcategories D(S,X)k are admissible and then σ is in fact a semiorthog-
onal decomposition of D(X). This completes the proof of Theorem 4.1.
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4.3 An example

We finally treat the simplest example of a Brauer–Severi scheme. LetK be a field andX a Brauer–Severi variety
over the scheme Spec(K). In this case Theorem 4.1 gives a very explicit semiorthogonal decomposition of the
bounded derived category D(X) of coherent sheaves on X in terms of central simple algebras over K .

The cohomological Brauer group of Spec(K) is indeed the Brauer group Br(K) of the field K . The elements
of Br(K) are equivalence classes of central simple algebras over K and its composition law is tensor product.
To each α in Br(K) corresponds the choice of a central simple algebra over K .

Given the α corresponding to the Brauer–Severi varietyX , an α−1-twisted sheaf is then a module over a prop-
erly chosen central simple algebraA, and it is coherent if it is finitely generated. The category D(Spec(K), α−1)
is the bounded derived category of finitely generated modules over the algebra A. Concerning the element α−k

in Br(K), just remind that the composition law is tensor product, to see that we can choose A⊗k to represent
it. The construction of D

(
Spec(K), α−k

)
is then straightforward. We can state the following corollary of the

Theorem 4.1.

Corollary 4.7 Let K be a field, X a Brauer–Severi variety over Spec(K) of dimension r. Let α be the
class of X in Br(K) and A a central simple algebra over K representing α−1. The bounded derived category
D(X) of coherent sheaves on X has a semiorthogonal decomposition σ = (D(K,X)0, . . . ,D(K,X)r), where
D(K,X)i is equivalent to the bounded derived category of finitely generated A⊗i-modules.
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[11] A. Grothendieck et al., Théorie des intersections et Théorème de Riemann–Roch (SGA 6), Lecture Notes in Mathematics

Vol. 225 (Springer-Verlag, Berlin – Heidelberg – New York, 1971).
[12] K. Yoshioka, Moduli spaces of twisted sheaves on a projective variety, Math AG/0411538 (2004).

www.mn-journal.com c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


