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0. Notations

– If A is a subset of a topological space, we denote by
◦
A its interior and by A its closure. If A is a manifold, its boundary

is denoted by ∂ A.
– Br will denote the closed ball in C2 of radius r > 0 centred at the origin, S3

r = ∂Br and Dr = {z ∈ C | |z| � 1}. All the
balls and disks considered in the paper will be closed unless if the contrary is explicitly stated.

– For an analytic curve X , Sing(X) denotes the set of its singular points and Comp(X) is the collection of its irreducible
components. Two irreducible components are called adjacent if they are distinct with non-empty intersection. The num-
ber v(Y ) of components adjacent to Y ∈ Comp(X) is called valence of Y . A (geometric) chain of X is a singular point of X
belonging to two different irreducible components of valence � 3 or1 a maximal connected union of irreducible compo-
nents of X of valence exactly 2 having two adjacent components of valence � 3. A (geometric) dead branch is a maximal
connected union of irreducible components of X having valence � 2 which is not a (geometric) chain.

1. Introduction

Let (S,0) and (S ′,0) be two holomorphic germs of singular curves at 0 = (0,0) ∈ C2. A topological conjugacy between
(S,0) and (S ′,0) is a germ of homeomorphism h : (C2,0) → (C2,0) such that (h(S),0) = (S ′,0). Not every conjugacy h can
be lifted to the resolution of singularities of S and S ′ . Here we are interested in such conjugacies that satisfy in addition
other regularity conditions. The precise notion of an excellent conjugacy will be stated in Definition 2.5 but roughly speaking
a conjugacy h is excellent if

• h can be lifted to a homeomorphism H between some neighbourhoods of the exceptional divisors E and E ′ of the
resolutions of the singularities of S and S ′ (see the beginning of Section 2.1),
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• H is a topological conjugacy between E and E ′ ,
• H is compatible with the Hopf’s fibrations (see Definition 2.1) of each irreducible component of E and E ′ , outside some

neighbourhoods of the singular sets Sing(D) and Sing(D′) of the total transforms D and D′ of S and S ′ ,
• the restriction of H to a neighbourhood of Sing(D) is holomorphic.

The existence of excellent conjugacies is established by the classical results of W. Burau, O. Zariski [25] and M. Lejeune [7].
The plumbing calculus technique introduced by D. Mumford [13] and developed by W.D. Neumann [14,5,15] helps to clarify
this problem and allows to compute some topological invariants as the fundamental group of the complement of S inside
a Milnor ball [12]:

ΓS := π1(Bε \ S, ·), Bε := {|z1|2 + |z2|2 � ε
}
, 0 < ε � 1. (1)

The objective of this work is to describe the “homotopy classes” of topological conjugacies between two germs of curves
and to prove that each class contains an excellent conjugacy. This problem has naturally emerged in the study of the
topological classification of germs of singular foliations. It is a merely topological result but it plays a key role in solving
a dynamical conjecture of D. Cerveau and P. Sad, cf. [3,9,10]. The structure of the proof and the techniques that we use
are familiar in dimension three topology and close for instance to the ones exposed and developed by P. Popescu-Pampu
in [17], in particular in Theorem 9.1. However, our result cannot be deduced from this or other statement of that paper. In
fact, one of our goals was to be the most self-contained as possible, and to give a complete and proper proof of our main
result using well-known tools for researchers working in the field of dynamical systems that are not necessarily familiar
with all the techniques developed by topologists.

More precisely we say that two of topological conjugacies germs f and g between (S,0) and (S ′,0) are fundamentally
equivalent (denoted by f � g) if the restrictions of f and g to Bε \ S are homotopic2 as maps taking values in Bε′ \ S ′ , for
a suitable choice of 0 < ε � ε′ � 1. Clearly � is an equivalence relation on the set consisting of all topological conjugacies
between S and S ′ . Note that the conic structure over ∂Bε \ S of the complement Bε \ S and the homotopy exact sequence
associated with its fibration structure over the circle, show that Bε \ S is a K (ΓS ,1) Eilenberg–MacLane space. Then the
classical homotopy theory implies that f � g if and only if the morphisms induced by f and g from π1(Bε \ S, ·) to
π1(Bε′ \ S ′, ·), are equal modulo left or right compositions by inner automorphisms.

We define a marking of S ′ by S as a fundamental equivalence class (for �) of a conjugacy between S and S ′ . The main
result of this work is:

Theorem A. Any marking admits an excellent representative.

It is worthwhile to note that unicity is not claimed. In fact, there is no natural choice for an excellent representative of
any marking. Our construction is based on the results of Waldhausen [21,22], Jaco and Shalen [6] and Johannson [8] about
the decompositions of 3-manifolds. It cannot be deduced from the Lejeune–Zariski theorems: for evidence, in the case S = S ′
the Zariski–Lejeune results are without object, while Theorem A provides non-trivial results on the automorphisms-group
of curves germs.

The set G S consisting of markings of a curve germ S by itself, is equipped (by the composition law) with a group
structure. It is an analogous of the mapping class group for Riemann surfaces. The classical homotopy theory for K (π,1)-
spaces proves that the group G S is embedded in the outer automorphism group of the fundamental group ΓS , defined
in (1). The image of this embedding Outg(ΓS ) ⊂ Out(ΓS ) is characterised by the preservation of some algebraic data on ΓS ,
of geometric nature: the peripheric structure endowed by its meridians, cf. Definition 3.17, Theorem 3.16 and Corollary 3.20.

The subgroup G 0
S of G S consisting of those homeomorphism germs fixing each irreducible component of S , is normal and

has finite index; it is equal to the kernel of the natural morphism from G S in SS , the permutation group of the irreducible
components of S . The previous theorem allows us to make explicit a system of generators of G 0

S . Denote by E : B → C2 the
resolution map of S and by D = E−1(S) the total divisor. Recall that the valence of an irreducible component D of D is the
cardinal of the finite set S(D) := Sing(D) ∩ D . We denote by R the set of irreducible components of D of valence � 3 and
by C the set of chains of D, see the section of notations at the beginning of the paper. With these notations we can state
the following result.

Theorem B. There is an epimorphism⊕
D∈R

A
(

D•)⊕⊕
C∈C

Z2
C � G 0

S ,

where A(D•) is the pure mapping class group3 of D ∼= S2 pointed by S(D) and Z2
C := Z2 .

2 In Definition 2.6 we present a different and more precise statement of the fundamental equivalence relation � which is equivalent to the one introduced
here after Proposition 2.8.

3 I.e. the homotopy classes of self-homeomorphisms of D fixing pointwise Sing(D)∩ D . This group is isomorphic to the quotient of the pure braid group
of the sphere on v(D) strands, by its centre, which is isomorphic to Z/2Z. It is also isomorphic to the quotient of the pure braid group of the plane on
v(D)− 1 strands, by its centre, which is isomorphic to Z, cf. [2].
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Fig. 1. The holomorphic coordinate system (xs, ys) :Ωs → D1 × D1 and the Hopf fibration ρD :ΩD → D of a local datum L, associated to an irreducible
component D of D and to a singularity s ∈ S(D).

Note that the quotient group G S/G 0
S consists of “large symmetries of S”. Note also that the graph of the topological JSJ

decomposition of the 3-manifold obtained by removing to the sphere S3
ε := ∂Bε a tubular neighbourhood of the link S ∩ Sε

has R as vertex set and C as set of edges. Thus, G 0
S is a group of graph, in the sense of [19]. We will see with an explicit

example, that in general the above epimorphism is not an isomorphism.
The structure of this work can be described as follows:

– In Section 2 we introduce some concepts on the (minimal) desingularisation of a germ of singular curve, as well as
Milnor’s tubes (of dimension three and four); they allow us to clarify the statement of main theorem and the key
concept of marking.

– In Section 3 we establish the topological properties of Milnor’s tubes, that will be used later. This chapter is divided
into three sections. In the first one, we give an overview of the fundamental group of the complement of a singular
curve. In the second one, we specify the Jaco–Johannson–Shalen decomposition of Milnor’s 3-tube, which will play a key
role in the proof of the main theorem. Finally in the third section, we study the algebraic properties of the action of
a topological conjugacy between germs of curves, on some outstanding subgroups of the fundamental group, associated
to the boundary components.

– In Section 4 we give the proof of Theorem A, structured into four sections: the reduction to three dimensions, the con-
struction of a homeomorphism between Milnor’s 3-tubes compatible with JSJ decompositions introduced in Section 3.2,
the conjugation between the dual trees of the exceptional divisors and finally the extension to Milnor’s 4-tubes.

– Finally, in Section 5 we study some algebraic properties of the group G S and we prove Theorem B, using Theorem A
already established.

2. Conjugacies and marked curves germs

2.1. Desingularisation and local data

In all the text, S denotes the intersection of an analytical curve in C2 with a closed ball B := Br0 of fixed centre 0 = (0,0)
and radius r0 > 0. We assume that B is a Milnor’s ball for S , i.e. 0 ∈ S and S \{0} is regular and transversal to the spheres ∂Br ,
0 < r � r0. Let E : B → B be the (minimal) desingularisation map of S . We denote by D := E−1(S) the total divisor, by
E := E−1(0) the exceptional divisor and by S := D \ E the strict transform of S . We also denote by S(D) := D ∩ Sing(D) the
set of singular points of D belonging to D∈ Comp(D). Two components D, D ′ ∈ Comp(D) are called adjacent if D 
= D ′ and
D ∩ D ′ 
= ∅, in which case D ∩ D ′ = {s} ⊂ Sing(D). We also consider a second analytic curve S ′ � 0 in a closed Milnor’s ball
B′ := Br′

0
for S ′; E ′ : B′ → B′ , D′ , E ′ , S ′ denote respectively the resolution map, the total divisor, the exceptional divisor and

the strict transform of S ′ . Throughout the paper, we adopt the following notations:

A∗ := (A \ S), A∗ := (A \ D), for A ⊂ B and A ⊂ B.

Similarly, for A′ ⊂ B′ and A′ ⊂ B′ , we denote A′ ∗ := (A′ \ S ′) and A′ ∗ := (A′ \ D′).
For each singular point s ∈ Sing(D), we fix a local holomorphic coordinate system (xs, ys) :Ωs

∼−→ D1 × D1, defined on
a closed neighbourhood Ωs of s in B taking values on the closed polydisk D1 × D1, such that D ∩ Ωs = {xs ys = 0} and
Ωs ∩ Ωs′ = ∅ if s 
= s′ , where Dε := {|z| � ε} ⊂ C. For each irreducible component D ∈ Comp(D), we fix a locally trivial
fibration by closed disks, given by a differentiable submersion ρD :ΩD → D , defined on a closed neighbourhood ΩD of D
in B (see Fig. 1). In Definition 2.1 we will precise the requirement of the compatibility of the fibration ρD with the polydisk
structure on Ωs for each s ∈ S(D). We adopt the following notations, for D , D ′ ∈ Comp(D) we put

Ds := D ∩Ωs, for s ∈ S(D) := Sing(D) ∩ D (2)
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Fig. 2. The usual Milnor picture and the resolution map of the singular curve S = f −1(0) given by f (x, y) = y2 − x3.

and

K D :=
(

D \
⋃

s∈S(D)

◦
Ds

)
. (3)

For each subsets X ⊂ B, K ⊂ D , not reduced to a single singular point, and each s ∈ Sing(D), we also denote

X(K ) := X ∩ ρ−1
D (K ) and Xs := X ∩Ωs. (4)

Definition 2.1. We say that the collection L := ((xs, ys),ρD)s,D is a local datum for S on B, if it satisfies the following
properties, for all D ∈ Comp(D) and s ∈ Sing(D):

(i) the restriction of ρD to D is the identity map;
(ii) if D ⊂ E , then ρD is holomorphic on ρ−1

D (K D);
(iii) if D ⊂ S and m ∈ D ∩ ∂B, then ρ−1

D (m) ⊂ ∂B;
(iv) if z := xs or ys denotes the local coordinate which is 
≡ 0 on D , then z ◦ ρD(m) = z(m) for |z(m)| � 1/2, m ∈ ΩD ∩ Ωs .

The fibration ρD will be called the Hopf fibration of base D .

Note that ρD is holomorphic on a neighbourhood of each singular point of D and the local branches of D at these
points are fibres of these fibrations. We leave the reader to prove that, if we fix local coordinates (xs, ys), there exists
a fibration ρD , such that L is a local datum for S on B.

2.2. Milnor’s tubes and excellent homeomorphisms

Fix now a reduced holomorphic equation f of S , defined on an open neighbourhood of B, with values in a closed disk
Dσ := {|z| � σ } ⊂ C. For η > 0 small enough, denote

Tη := f −1(Dη)∩ B and Tη := E−1(Tη) ⊂ B.

When η > 0 is small enough, the restriction of f to T ∗
η is a locally trivial C∞-fibration with base Dη \ {0}; we say then that

Tη and Tη are Milnor’s 4-tubes of S . Fix also a reduced equation of S ′ defined on an open neighbourhood of B′ . We define
in the same way, the notion of Milnor’s 4-tubes of S ′ , denoted by T ′

η′ ⊂ B′ , T ′
η′ ⊂ B′ (see Fig. 2).

Remark 2.2. If Tη ⊂ B is a Milnor’s 4-tube and Bε is a closed ball contained in
◦

T η , then the inclusions B∗
ε ⊂ T ∗

η ⊂ B∗ induce
isomorphisms at the fundamental group level.

Once the local datum L is fixed, we can precise the topology of the Milnor’s 4-tubes. Classically for η0 > 0 small enough,
we construct4 a smooth vector field X on Tη0 vanishing on D which is tangent to the fibres of ρD at each point of Tη0(K D),
for each irreducible component D of D, and fulfilling the equality X · ( f ◦ E) = f ◦ E . This vector field blow down by E to
a Lipschitz vector field X on Tη0 tangent to S and vanishing at the origin. Its flow is defined for all negative times.

We consider the following 3-manifolds with boundary, that we call Milnor’s 3-tubes:

Mη := f −1(∂Dη)∩ B ⊂ ∂Tη and Mη := E−1(Mη) ⊂ ∂Tη. (5)

Using the flows of X and X we easily construct a retraction by deformation of T ∗
η0

on Mη0 —and then also a retraction by
deformation of T ∗

η0
on Mη0 . The tangency properties of these flows allow us to be more specific.

4 By transversality, there exists a vector field X D fulfilling these properties on an open neighbourhood W D of K D . On Ωs , s ∈ Sing(D), the existence of
such vector fields can be deduced from the quasi-homogeneity of the function f ◦ E coming from the fact that it is locally a monomial. All these vector
fields can be glued together using a partition of unity consisting of functions uD : W D → R which are identically 1 on Tη0 (K D ) and us :Ωs → R which are
identically zero on Ωs ∩ (

⋃
D Tη0 (K D )), cf. [23].



D. Marín, J.-F. Mattei / Topology and its Applications 158 (2011) 1271–1295 1275
Proposition 2.3. There exists a diffeomorphism Θ : Mη0 × ]0, η0] ∼−→ T ∗
η0

such that

Θ
(

Mη0 × {η})= Mη, Θ
(
∂Mη0 × ]0,1])= T ′ ∗

η0
∩ ∂B′, Θ(m, η0) = m,

for all m ∈ Mη0 and 0 < η � η0 . Furthermore, with notations (4),

Θ
(

Mη0(K D) × ]0, η0]
)= T ∗

η0
(K D), D ∈ Comp(D),

and the restriction of Θ to Mη0(K D) × ]0, η0] extends to a differentiable map ΘD : Mη0 (K D) × [0, η0] → Tη0(K D) fulfilling the
relations

ρD ◦ ΘD(m, s) = ρD(m), ΘD(m,0) = ρD(m) ∈ K D .

This diffeomorphism blow down to a diffeomorphism

Θ� : Mη0 × ]0, η0] ∼−→ T ∗
η0

(6)

which induce a retraction by deformation of (T ∗
η0
, T ∗

η0
∩ ∂B) on (Mη0 , ∂Mη0). T ∗

η0
being a retract by deformation of B∗ ,

cf. [12], Mη0 is also a retract by deformation of B∗ . Then for η > 0 small enough, the restriction of ρD to Tη(K D) is
a fibration by disks.

Remark 2.4. When they occur, the inclusions B∗
ε ⊂ T ∗

η ⊂ B∗ are homotopy equivalences and consequently induce5 isomor-
phisms at the fundamental group level. Since Mη fibres by f over the circle ∂Dη , the associated exact homotopy sequence
shows that Mη is a K (π,1) Eilenberg–MacLane space. It is the same for T ∗

η and B∗ which retracts to Mη , and for T ∗
η , B∗

and Mη which are homeomorphic to them.

The local datum L for S on B being always fixed, consider also a local datum for S ′ on B′ , denoted by

L′ := ((x′
s′ , y′

s′
)

:Ω ′
s′ → D1 × D1,ρ

′
D ′ :Ω ′

D ′ → D ′)
s′,D ′ .

We use for L′ , the same notations (2), (3) and (4) introduced for L.

Definition 2.5. A homeomorphism Φ : Tη → T ′
η′ between two Milnor’s 4-tubes for S and S ′ , such that Φ(S) = S ′ , is called

excellent for L and L′ , if it lifts to a homeomorphism φ : Tη → T ′
η′ , E ′ ◦ φ = Φ ◦ E , fulfilling the following properties:

(a) φ is holomorphic on a neighbourhood of each singular point of D;
(b) for each irreducible component D of D, we have the equality

φ
(

Tη(K D)
)= T ′

η′
(

K ′
φ(D)

);
moreover the fibrations ρD and ρ ′

φ(D) are conjugated by φ on these sets, i.e. ρ ′
D(φ(m)) = φ(ρD(m)), m ∈ Tη(K D).

2.3. Marking between germs of curves

Classically the conic structure of B∗ , which will be specified in Section 4.1, induces a retraction by deformation of
B∗ on each pointed closed subball B∗

ε ⊂ B∗ . Thus, if the Milnor’s 4-tube Tη ⊂ B contains Bε , the inclusion B∗
ε ⊂ T ∗

η ⊂ B∗
induces isomorphisms at the fundamental group level. Hence each continuous map from one of these sets into B′ ∗ defines a
morphism from the fundamental group of B∗ into the fundamental group of B′ ∗ . More precisely, consider the set C(B∗,B′ ∗)
consisting of all the continuous maps F : U → B′ ∗ , from any arc-wise connected subset U of B∗ , such that the inclusion map
iU : U ↪→ B∗ induces an isomorphism iU∗ :π1(U , p) ∼−→ π1(B

∗, p). Then we denote

F ∗ := F∗ ◦ (iU )−1 :π1
(
B∗, p

)→ π1
(
B′ ∗, F (p)

)
.

Definition 2.6. We say that two elements F : U → B′ ∗ and G : V → B′ ∗ of C(B∗,B′ ∗) are fundamentally equivalent (denoted
by F � G), if for any path α in B∗ , from a point p ∈ U to a point q ∈ V , there exists a path α′ in B′ ∗ from F (p) to G(q)
such that

α′∗ ◦ F ∗ = G∗ ◦ α∗, (7)

where α∗ :π1(B
∗, p) → π1(B

∗,q) and α′∗ :π1(B
′ ∗, F (p)) → π1(B

′ ∗,G(q)) are the natural isomorphisms induced by α
and α′ .

5 This is easy to see using the conic structure [12] of the pair (B, S).
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It is easy to see that � defines an equivalence relation on C(B∗,B′ ∗) and that F � G as soon as there exists a pair of
paths (α,α′) satisfying (7).

Definition 2.7. An equivalence class f by � will be called a marking of S ′ by S , if there exists an open neighbourhood U of
the origin in B and an element F̆ : U∗ → B′ ∗ of f, which extends to a homeomorphism F : U ∼−→ F (U ) ⊂ B′ preserving the
orientations,6 such that F (S ∩ U ) = S ′ ∩ F (U ).

From now on all the homeomorphism conjugating two germs of curves which we consider, are supposed to preserve the orientations
of the ambient space and those of the holomorphic curves.

Obviously two homeomorphisms conjugating S to S ′ on neighbourhoods of the origin, define the same marking of S ′
by S as soon as their germs are equal. We therefore speak about homeomorphism germs which represent a marking. Since
from Remark 2.4 we have that B∗

ε is a K (π,1)-space, a classical theorem of algebraic topology7 give us the following
characterisation:

Proposition 2.8. Two germs of homeomorphisms conjugating the germs of curves S and S ′ , represent the same marking if and only if
they induce homotopic maps from B∗

ε into B′ ∗ , with ε > 0 small enough.

This leads us to ask the following question:

Question. It is true that two germs of homeomorphisms h0,h1 : (C2,0) → (C2,0) such that hi(S,0) = (S ′,0), i = 0,1, define
the same marking if and only if there exist a germ of homeomorphism H : (C3, I) → (C3, I) along the compact set I :=
0 × 0 × [0,1], such that H(x, y, t) = (Ht(x, y), t), H0 = h0, H1 = h1 and such that the set germs along I , H(S × [0,1]) and
S ′ × [0,1], are equal?

The main result of this work is the following theorem.

Theorem 2.9. Let L = ((xs, ys),ρD)s,D , respectively L′ = ((x′
s′ , y′

s′),ρ
′
D ′ )s′,D ′ , be a local datum for S, respectively S ′ , on B, respec-

tively B′ and let h : Bε
∼−→ h(Bε) ⊂ B′ be a homeomorphism such that h(S ∩ Bε) = S ′ ∩ h(Bε). Then there exists a homeomorphism

Φ : Tη
∼−→ T ′

η′ , Φ(S) = S ′ which is excellent for the local data L and L′ , such that the restrictions h|B∗
ε

and Φ|T ∗
η

: T ∗
η → T ′ ∗

η′ are
fundamentally equivalent.

In other terms, we obtain Theorem A stated in the introduction which can be reformulated as follows:

Each marking of S ′ by S can be represented by an excellent homeomorphism between two Milnor’s 4-tubes.

3. Topology of Milnor’s tubes

Before starting the proof of Theorem 2.9, we bring to light in this section the topological properties of the Milnor’s tubes
that we shall use later.

3.1. Fundamental group and homology

We shall give an explicit presentation of the fundamental group Γ of T ∗
η . For this, recall that the dual tree8 A of the

desingularisation of S has one vertex for each element D ∈ Comp(D) and, for each singular point s ∈ Sing(D), {s} = D ∩ D ′ ,
it has an edge joining the vertices corresponding to D and D ′ .

Fix a local datum L for S and a topological embedding j of a geometrical realisation |A| of A in T ∗
η , such that:

• for each D ∈ Comp(D), j−1(T ∗
η (K D)) is connected and it contains a unique vertex sD , which is the one associated to D;

furthermore, ρD ◦ j restricts to a neighbourhood of sD as an embedding;
• for each s ∈ Sing(D), j−1(T ∗

η (Ks)) is connected and it is contained in a single edge, which is the one associated to s.
Without lost of generality we also assume that the point having coordinates (xs, ys) = (ε, ε) belongs to j(A), 0 < ε � η.

In the sequel we will assume that the base point of the fundamental group Γ belongs to j(A). Since j(A) is contractible,
we can identify the groups π1(T ∗

η , j(A)) and Γ , by an isomorphism that we shall not make explicit.

6 If S = S ′ is given by an equation with real coefficients, then F (x, y) = (x̄, ȳ) preserves the ambient space orientation, but reverse the orientation of S .
7 Confer for example [24, Corollary 4.4, p. 226].
8 The dual graphs are usually weighted by either Euler numbers (self-intersections) or multiplicities. Both are relevant in this paper, see Corollary 3.4.
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Definition 3.1. We call meridian associated to a component D ∈ Comp(D), the conjugacy class of the element cD ∈ Γ which
corresponds to the loop ρ−1

D (ρD( j(sD))) ∩ Mη , oriented as the boundary of a holomorphic curve.

Remark 3.2. Let s ∈ Sing(D) be the intersection of D and D ′ ∈ Comp(D). Assume that D ∩ Ωs = {xs = 0} and D ′ ∩ Ωs =
{ys = 0}. Then cD , respectively cD ′ , are the homotopy classes of the loops (xs, ys) = (e2iπtε, ε), respectively (xs, ys) =
(ε, e2iπtε).

Let us denote by (·,·) : Comp(D) × Comp(D) → Z the intersection pairing on the components of the total divisor D.
When D 
= D ′ then (D, D ′) = 1 if D ∩ D ′ 
= ∅ and (D, D ′) = 0 otherwise. When E ∈ Comp(E) the self-intersection number
(E, E) coincides with the integral over the fundamental class of the Chern class of the normal bundle of E inside B. It
also coincides with the Euler number of the unit normal bundle of E . When C is an irreducible component of the strict
transform of S we simply put (C,C) = 0.

Proposition 3.3. The fundamental group Γ is defined by the generators system {cD}D∈Comp(D) , whose relations are given by the
families ∏

D ′∈Comp(D)

c
(D ′,E)
D ′ = 1, [cD , cE ](D,E) = 1 (8)

indexed by E ∈ Comp(E) and D ∈ Comp(D).

Here we consider the product
∏

D ′∈Comp(D) c
(D ′,E)
D ′ with the order induced by the cyclic order of the wedges of

ρE ◦ j(star(sE )), obtained by projection of the sE -star, in the component E . The proof is done by induction, by applying
the classical Seifert–Van Kampen’s theorem; see for example [13,4,9].

We will use a multiplicative notation for writing the elements of Γ and an additive notation for their classes in
Γ/[Γ,Γ ] ∼= H1(T ∗

η ;Z); but we will keep the same names.

Corollary 3.4. The homology group H1(T ∗
η ;Z) is a rank r := #Comp(S) free-abelian group, generated by the classes cS j associated

to the irreducible components S1, . . . , Sr of S . Furthermore, denoting by {E1, . . . , En}, the components of E and by cE and cS , the
column-matrix obtained by transposing (cE1 , . . . , cEn ) and (cS1 , . . . , cSr ), we have that

cE = −(E, E)−1(E, S) · cS , (9)

being (E, E), respectively (E, S), the matrices whose entries are the intersection numbers (Ei, E j), respectively (Ei, Sk). Finally, the
(i,k)-entry of the matrix −(E, E)−1 · (E, S), is equal to the multiplicity νEi ( fk ◦ E) of fk ◦ E along Ei , being fk a reduced equation
of Sk.

Proof. From (8), we deduce the relations:

0 =
∑

D∈Comp(D)

(Ei, D)cD =
n∑

j=1

(Ei, E j)cE j +
r∑

k=1

(Ei, Sk)cSk . (10)

Then it is enough to write them in matrix form and to express cEi depending of cSk , using the well-know fact that det(E, E)

is equal to ±1. Finally,

νEi ( fk ◦ E) = 1

2iπ

∫
cEi

E∗
(

dfk

fk

)
= 1

2iπ

∫
−∑r

�=1((E,E)−1(E,S))i�E(cS�
)

dfk

fk

= −((E, E)−1 · (E, S)
)

ik, (11)

because 1
2iπ

∫
E(cS�

)
dfk
fk

= δ�k . �
3.2. The JSJ decomposition

The following is well known by the specialists in topology of 3-manifolds. These are applications to singularities of
curves, of the classification’s results of 3-manifolds, due to Waldhausen [21,22], Jaco and Shalen [6] and Johannson [8].
This study was done by Michel and Weber [11] and by Neumann [14,15] via plumbing calculus. In this section we specify
these technics in order to highlight the properties that we will need in the next section. For precise statements of the
used theorems, we refer to [20] from which we adopt the vocabulary. The reader may also refers to the C.T.C. Wall’s
monography [23] and to the Neumann and Swarup’s article [16].
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By using still the notations (3) and (4), we define for each singular point s and each component D of D, the following
sub-manifolds (with boundary) of Mη:

Ms := Mη ∩ Ωs and M D := Mη(K D). (12)

We call them elementary blocks of Mη . The Jaco–Shalen–Johannson decomposition (JSJ for short) of Mη in Seifert blocks
and thick tori that we will now define, will be obtained by aggregating such elementary blocks.

Denote by R the set of all irreducible components of D having valence � 3. Now, we precise the notion of chain of
components given at the end of the notations section: it is a finite collection of irreducible components of E ,

C := {D0, . . . , DlC +1}, lC � 0, D0, DlC +1 ∈ R, (13)

such that

v(D1) = · · · = v(DlC ) = 2 and D j ∩ D j+1 
= ∅, j = 0, . . . , lC . (14)

Denote by C the set of all the chains of components of E . The number lC is called the length of the chain C ∈ C. Notice that
chains of length zero, which are explicit allowed, consist in two irreducible components of R meeting at a single singular
point. A dead branch of E adjacent to D ∈ R is a finite sequence C := {D0, . . . , DlC }, lC � 1, of components of E , such that

D0 = D, v(D j) = 2, v(DlC ) = 1, Dk ∩ Dk+1 
= ∅, (15)

with 1 � j � lC − 1 and 0 � k � lC − 1. The component DlC is called the end component of C and the intersection point of D0
with D1, the attaching point of C . We denote by M the set of all dead branches of E . Notice that a chain of components is
not oriented unlike the case of a dead branch in which we take D0 ∈ R and v(DlC ) = 1. Chains of components of length > 0
and dead branches are also called bambous in the literature.

Fix C := {D0, . . . , D�C +1} ∈ C and denote by s j the intersection point of D j−1 and D j , for j = 0, . . . , lC . If η > 0 is small
enough, as we will assume, then Ms j is a thick torus, i.e. Ms j is homeomorphic to the product of the standard torus
T := ∂D1 × ∂D1 with a compact interval. Each M D j , j = 1, . . . , lC , is also a thick torus and by gluing them, we obtain a
3-manifold with boundary MC , endowed with a homeomorphism:

σ̆C : MC :=
lC⋃

j=1

M D j ∪
lC⋃

j=0

Ms j
∼−→ T × [−1,1].

This product structure extends to a neighbourhood of the boundary of M C over a 3-manifold with boundary M̃C , endowed
with a homeomorphism

σC : M̃C
∼−→ T × [−1 − ε,1 + ε], σ−1

C
(
T × [−1,1])= MC, σC|MC = σ̆C . (16)

Consider the 2-torus TC := σ−1
C (T × {0}). The adherence B of each connected component of Mη \ (

⋃
C∈C TC) contains a

unique elementary block M D , D ∈ R. We say that B is the JSJ block of Mη associated to D and we will denote it by B D . We

will also denote by B�
D the connected component of the adherence of Mη \⋃C∈C MC inside B D .

For each dead branch C := {D0, . . . , DlC } ∈ M of E we still denote

MC :=
lC⋃

j=1

M D j ∪
lC −1⋃
j=0

Ms j , where {s j} := D j ∩ D j+1. (17)

Then, if D ∈ R, B�
D is the union of M D and the manifolds MC , where C describes the set of dead branches whose

attaching points belong to D . Notice that if C ∈ M then M C is homeomorphic to a solid torus D × S1; remark also that
the complement M◦

C , inside MC , of a Hopf fibre (not contained in DlC −1) of the divisor DlC having valence 1, has the
homotopy type of a torus S1 × S1.

Definition 3.5. For each C ∈ C ∪ M, we put H C
1 = H1(MC,Z), if C ∈ C and H C

1 = H1(M◦
C,Z), if C ∈ M. For each D j ∈ C ,

the class c j of a fibre of ρD j restricted to M D j and oriented as the boundary of a holomorphic curve of Tη , will be called
meridian associated to D j . If C ∈ M, we define the exceptional meridian clC +1 of the dead branch C as the generator of the
kernel of the morphism H1(M◦

C,Z) → H1(MC,Z), oriented as the boundary of a holomorphic curve in Tη .

Proposition 3.6. If C ∈ C ∪ M then:

(i) H C
1 is the free-abelian group of rank 2 generated by c0, . . . , clC +1 having the following relations:

c j−1 + e jc j + c j+1 = 0, e j = (D j, D j), j = 1, . . . , lC ; (18)
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(ii) for each j = 0, . . . , lC , the elements c j , c j+1 define a basis of H C
1 ; all theses bases define the same orientation; the canonical

Z-linear 2-form det(·,·) over H C
1 such that det(c j, c j+1) = 1 and det(c j, c j) = 0, corresponds to the intersection form of each

connected component of ∂MC with the induced orientation;
(iii) we have that c0 = aclC + bclC +1 , with a = ±det(A) 
= 0, where A denotes the matrix of the restriction to the divisor

⋃lC
j=1 D j , of

the intersection form of E ;
(iv) the elements c0 ⊗ 1, clC +1 ⊗ 1 define a Q-basis of H C

1 ⊗ Q.

Proof. Assertion (i) follows directly from relations (10) and the fact that H C
1 is canonically identified with the integer

homology of a torus. Assertion (ii) follows easily from the relations (18), see also [4,5], which can be written in matrix form
as follows⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1 1 0 0 · · · 0
1 e2 1 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 1 elC −1 1

0 · · · · · · 0 1 elC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2
...
...

0
clC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0

0
...
...

0
clC +1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By applying Cramer’s formula, it is easy to see that the coefficient a in the expression c0 = aclC + bclC +1 is a = ±det A,

where A is the matrix of the restriction to the divisor
⋃lC

j=1 D j ⊂ E of the intersection form of E , which is negative definite.
This gives us (iii), because det A 
= 0. Finally, Assertion (iv) follows directly from (iii). �

Denote by SM(D) ⊂ S(D) the set of attaching points of the dead branches over D and put

Ŝ(D) := S(D) \ SM(D), K̂ D := D \
⋃

s∈ Ŝ(D)

◦
Ds = K D ∪

⋃
s∈SM(D)

Ds. (19)

Corollary 3.7. For each irreducible component D of E having valence � 3, the restriction to M D of the fibration ρD of the local da-
tum L, extends to a Seifert fibration ρ̂D : B�

D → K̂ D , having exceptional fibres ρ̂−1
D (s), s ∈ SM(D). Moreover, ρ̂−1

D (s) is the intersection

of B�
D with a fibre of the Hopf fibration corresponding to the end component of the dead brach whose attaching point is s.

Proof. Consider a meridian m := [∂D × {1}] and a parallel p := [{1} × S1] inside H1(D
∗ × S1,Z). It is well known that

a curve of D∗ × S1 having integer homology class ap + bm is the fibre of a Seifert fibration of D × S1, if and only if a 
= 0.
We conclude by applying Assertion (iii) in the previous proposition because in this case m = clC +1. �
Remark 3.8. The product structure of the thick tori M C , C ∈ C, allows us to extend ρ̂D into a Seifert fibration

ρ̂ ext
D : B D → K̂ ext

D , K̂ ext
D := D \

⋃
s∈ Ŝ(D)

◦
Ds, ρ̂ ext

D|B�
D

= ρ̂D , (20)

whose fibres are contained in the fibres of σC , where Ds denotes a conformal closed disk centred at s contained in
◦
Ds .

Thus, each torus TC , C ∈ C, which is the intersection of two JSJ blocks is endowed with two circle fibrations obtained
by restricting the Seifert fibrations of each adjacent block. The homology classes of these two fibrations are precisely c0
and clC +1. They can be considered as elements of H1(TC,Z) because the inclusion TC ⊂ MC induces an isomorphism in
homology.

Remark 3.9. If C ∈ C then it is easy to see that TC is incompressible in B D by using that v(D j) � 3 for j ∈ {0, lC + 1},
cf. [9]. This gives the monomorphism H1(TC,Z) ↪→ H1(B D j ,Z). Thus, c0 and clC +1 are also independent in H1(B D j ,Z)

and therefore the Seifert fibrations of B D0 and B DlC +1 are incompatible. Moreover, by using the relations (9), it is easy
to see that the image of H1(TC,Z) inside H1(Mη,Z) is different from the images of the tori contained in the boundary
of Mη .
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Since the hypotheses of Theorem 1.2.3 of [20] are verified we obtain:

Corollary 3.10. The collection (TC)C∈C is a characteristic family9 of essential tori10 of the 3-manifold Mη and determines its JSJ
decomposition, which is entirely constituted by Seifert blocks.

Remark 3.11. The vertices of the tree of the JSJ decomposition of Mη (corresponding to the Seifert blocks B D ) are in one-
to-one correspondence with the irreducible components D ∈ R, and their edges (joining two vertices corresponding to two
adjacent Seifert blocks) are in one-to-one correspondence with the chains C ∈ C.

3.3. Peripheral structures and geometric isomorphisms

For each irreducible component Sk of S we consider a tubular neighbourhood Wk of Sk ∩ (Br \ ◦
Bs) with 0 < s < r � 1,

such that the restrictions of the fibrations ρSk and ρDk to Wk := E−1(Wk) are topologically trivial, where Dk ∈ Comp(D)

denotes the irreducible component of E adjacent to Sk . The fundamental group Pk := π1(W ∗
k ) is isomorphic to Zmk ⊕ Zpk ,

where mk and pk are the oriented boundaries of a fibre of the restriction to W ∗
k of ρSk and ρDk respectively. The com-

mutativity of Pk allows us do not make explicit the choice of a base point in W ∗
k . Notice that mk generates the kernel

of the morphism π1(W ∗
k ) → π1(Wk) induced by the inclusion. Let s = Sk ∩ Dk ∈ Sing(D) be the attaching point of Sk .

Up to permutation of the coordinates (xs, ys) we will assume that xs = 0 is a reduced equation of Sk . We suitably
choose ε1, ε2 > 0 such that W ∗

k retracts over the 2-torus {|xs| = ε1, |ys| = ε2}. The loops m and p of W ∗
k defined by

(xs, ys) ◦ m(t) = (ε1e2iπt, ε2) and (xs, ys) ◦ p(t) = (ε1, ε2e2iπt) are representatives of mk and pk respectively.

Definition 3.12. We will call mk and pk the canonical meridian and parallel of Sk respectively.

Remark 3.13. It should be noticed that there are several choices for the parallel in the literature. The most widely used is
the Seifert one, denoted here pS

k , which verifies lk(pk, Sk) = 0. This linking number coincides with the intersection number
of pk with a Seifert surface of Sk that we can take as a Milnor fibre fk = c 
= 0 of a reduced equation fk of Sk . We can write
locally fk(xs, ys) = xs yνk

s u(xs, ys), where u(0,0) 
= 0 and νk = νDk ( fk ◦ E) is the multiplicity considered in (11). Consequently
we have pS

k = pk − νkmk . The relationship with other choices can be deduced from this formula, see for instance [11].

Proposition 3.14. The subset W ∗
k is incompressible in T ∗

η , i.e. the morphism ik : Pk → Γ induced by the inclusion W ∗
k ⊂ T ∗

η , which is
given explicitly by ik(mk) = cSk , ik(pk) = cDk , is injective.

Proof. This can be proved11 by using iteratively Van Kampen’s theorem, as we have already done in the construction of an
adapted neighbourhood of D by boundary assembly in [9]. We shall present here other proof based on the incompressibility
inside T ∗

η of the Milnor fibre12 F of a reduced equation f of S . Let us denote by iCW , iWT , iCF , iFT the morphisms induced
at the fundamental groups by the inclusions F ∩ W ∗

k ⊂ W ∗
k , W ∗

k ⊂ T ∗
η , F ∩ W ∗

k ⊂ F , F ⊂ Tη∗ respectively. Note that π1(F )
is the kernel of the morphism f∗ :Γ → Z sending cD into the multiplicity νD( f ◦ E) of f ◦ E along D . Let us denote by
νk := νDk ( f ◦ E) the vanishing order of E∗ f along Dk . Since f ◦ E = xs yνk

s , we have the isomorphism π1(F ∩ W ∗
k )

∼= Zbk ,
where bk denotes the oriented connected component of the boundary of F contained in W ∗

k and iCW(bk) = pk − νkmk . On
the other hand, if k = αpk + βmk ∈ π1(W ∗

k ) belongs to the kernel of iWT , then f∗(iWT(αpk + βmk)) = ανk + β = 0; hence
k = iCW(αbk). Since iWT ◦ iCW = iFT ◦ iCF , iCF and iFT are injective, α = 0 and iWT is also injective. �

In the sequel we will identify Pk with its image inside the fundamental group Γ , taking the base point in W ∗
k lying also

on j(A). If we need to consider more than one subgroup Pk at the same time, it will be necessary to consider the family
of all the conjugate subgroups of Pk inside Γ . The following result make precise this situation.

Proposition 3.15. The normaliser of Pk in Γ equals Pk, i.e. if ζ ∈ Γ and ζ Pkζ
−1 ⊂ Pk then ζ ∈ Pk. In particular, the decomposition

Pk = Zmk ⊕ Zpk is intrinsic13 in Γ .

Proof. The proof of the previous proposition shows that π1(F )∩ Pk = π1(F ∩ W ∗
k ) = Zbk . Consider the element ζ ′ := ζm

−�
k

with � := f∗(ζ ) = 1
2iπ

∫
ζ

E∗( df
f ). Since f∗(mk) = 1, it follows that f∗(ζ ′) = 0 and then ζ ′ ∈ π1(F ). Thus, ζ ′bkζ

′−1 ∈ π1(F ) ∩

9 I.e. a minimal family of tori such that the adherence of each connected component of its complement is either a Seifert or atoroidal manifold,
cf. [20, p. 144].
10 I.e. incompressible in Mη and non-isotopic to any connected component of ∂Mη .
11 When S is not irreducible, i.e. r > 1, we can argue directly in homology because in this case π1(W ∗

k )
∼= H1(W ∗

k ;Z) ∼= Z
2 ↪→ Z

r ∼= H1(T ∗
η;Z). This last

inclusion follows from (11) because f� ◦ E vanish on Dk , for � = 1, . . . , r.
12 This follows trivially from the exact long sequence associated to the Milnor fibration.
13 I.e. the decomposition P = ZmP ⊕ ZpP of each conjugated subgroup P := ζ Pkζ

−1 given by mP := ζmkζ
−1 and pP := ζpkζ

−1 does not depend on ζ .
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ζ ′Pkζ
′−1 = π1(F )∩ Pk = Zbk . Hence ζ ′bkζ

′−1 = bn
k for some n ∈ Z. By passing this last equality to the homology we obtain

that n = 1 and consequently [ζ ′,bk] = 1. This equality can be thought as a relation inside the free group π1(F ). Since the
subgroup 〈ζ ′,bk〉 of π1(F ) is also free by Schreier’s classical result, we deduce that it is monogeneous, i.e. 〈ζ ′,bk〉 = 〈θ〉
for some θ ∈ π1(F ) = 〈u1, v1, . . . ,ug, v g,b1, . . . ,br |∏g

i=1[ui, vi]∏r
j=1 b j = 1〉, where b j ⊂ ∂ F . We can assume that bk = b1.

It suffices to prove that b1 cannot be a non-trivial power in π1(F ) because in that case ζ ′ ∈ 〈θ〉 = 〈bk〉 ⊂ Pk . If r > 1 then
b1 belongs to a free system of generators u1, v1, . . . ,ug, v g ,b1, . . . ,br−1 of π1(F ); it cannot be then a non-trivial power of
another element. If r = 1, then b−1

1 =∏g
i=1[ui, vi] is a cyclicly reduced word in the free group π1(F ) = 〈u1, v1, . . . ,ug, v g |〉;

it is easy to see in that case that it cannot be a non-trivial power. �
Theorem 3.16. Let U be an open neighbourhood of 0 in B and let h be a homeomorphism14 from U onto a neighbourhood U ′ of 0 in B′ ,
such that h(S ∩ U ) = S ′ ∩ U ′ . Assume that the inclusion U∗ ⊂ B∗ induces an isomorphism π1(U∗) ∼= Γ . Then, for each irreducible
component Sk of S the isomorphism h∗ :Γ → Γ ′ induced by h transforms Pk onto the subgroup P ′

k associated to the irreducible
component S ′

k = h(Sk ∩ U ) of S ′ ∩ U ′ and sends meridian into meridian, i.e. h∗(mk) = m′
k.

Proof. Consider tubular neighbourhoods Wk of Sk ∩ (Br \ ◦
Bs) and W ′′

k ⊂ W ′
k of S ′

k ∩ (B′
r′ \ ◦

B′
s′ ) contained in U and U ′

respectively such that W ′′
k ⊂ h(Wk) ⊂ W ′

k , Pk = π1(W ∗
k ) and π1(W ′′ ∗

k ) = π1(W ′ ∗
k ) = P ′

k via the inclusion W ′′ ∗
k ⊂ W ′ ∗

k .
Thus, we have that h∗(Pk) ⊂ P ′

k and we deduce that the composition P ′
k → h∗(Pk) → P ′

k is an isomorphism. Therefore
h∗(Pk) = P ′

k and the restriction of h∗ to Pk
∼= Z2 is onto over P ′

k
∼= Z2. Since every epimorphism of Z2 onto itself is also

one-to-one, we deduce that h∗ : Pk → P ′
k is an isomorphism. In the same way, we have that h∗ :π1(Wk) → π1(Wk′ ) is also

an isomorphism. Thus, h∗ conjugate the kernels of the morphisms induced by the inclusions W ∗
k ⊂ Wk and W ′ ∗

k ⊂ W ′
k ,

which are generated by mk and m′
k respectively. We obtain that h∗(mk) = m

′±1
k ; but the exponent must be +1 because h

preserves the orientations. �
In the statement of the previous theorem, once k is given, we have arbitrarily chosen the base points of Γ and Γ ′ in

Wk and W ′′
k respectively. We would like to have a more intrinsic notion of the morphism h∗ independent on that choices.

To this end, we go back to the notion of fundamental equivalence introduced in Section 2.6. Notice that the ambiguity of
the action of h∗ :Γ → Γ ′ is controlled by the left and/or right composition of h∗ by inner automorphisms. This leads to
the well-known notion of exterior isomorphism, as an equivalence class of an isomorphism Γ → Γ ′ modulo composition by
inner automorphisms. Now, using Proposition 3.15, we can define the following notion.

Definition 3.17. We will say that an exterior isomorphism ϕ :Γ → Γ ′ preserves the peripheral structures if it sends all the sub-
groups conjugated to Pk onto subgroups conjugated to P ′

k′ . Furthermore, the isomorphism ϕ is called geometric if moreover
it sends all the conjugates of the meridians mk into conjugates of the meridians m′

k′ .

Remark 3.18. Theorem 3.16 asserts that if h : (U , S) → (U ′, S ′) is a germ of homeomorphism then h∗ :Γ → Γ ′ is a geometric
isomorphism. The first half of the proof of Theorem 3.16 implies that if h : U ∗ → U ′ ∗ is a homeomorphism, then h∗ :Γ → Γ ′
preserves the peripheral structure; however, it could be not geometric as the following example shows: U = U ′ = C2,
S = S ′ = {xy = 0} and h : C∗ × C∗ → C∗ × C∗ defined by h(x, y) = (xy, y).

We recall here a very important result of F. Waldhausen [22, Corollary 6.5]:

Theorem 3.19. Let M and M ′ be 3-manifolds which are irreducible and boundary-irreducible. Suppose M is sufficiently large. Let
ϕ :π1(M) → π1(M ′) be an isomorphism which respects the peripheral structure, i.e. for each connected component F of ∂M, there
exists a connected component F ′ of ∂M ′ , such that ϕ(π1(F )) is conjugated to π1(F ′). Then there exists a homeomorphism φ : M → M ′
inducing ϕ in homotopy, i.e. ϕ = φ∗ .

Corollary 3.20. If ϕ :Γ → Γ ′ is an isomorphism which respects the peripheral structure then there exists a homeomorphism
h : T ∗

η → T ′ ∗
η , such that h∗ = ϕ :π1(T ∗

η) → π1(T ′ ∗
η ). If in addition ϕ is geometric, then h extends to a homeomorphism from Tη

onto T ′
η , such that h(S) = S ′ . Thus, every geometric isomorphism is induced by a (unique) marking.

Proof. We can apply Waldhausen’s theorem to the isomorphism ϕ :Γ ∼= π1(Mη) → π1(M ′
η)

∼= Γ ′ , because Mη and Mη′ are
irreducible after Remark 2.4 with non-empty incompressible boundary (so that they are sufficiently large) thanks to Propo-
sition 3.14. Hence, there exists a homeomorphism φ : Mη → Mη′ , which extends trivially to h : T ∗

η → T ∗
η′ , via the product

structures T ∗
η

∼= Mη × ]0, η] and T ′ ∗
η

∼= M ′
η × ]0, η] given by (6). On the other hand, if ϕ conjugate the meridians of the

boundary tori of Mη and M ′
η , then φ extends to a homeomorphism from Tη ∩ ∂B onto T ′

η ∩ ∂B′ . By using the conical
structure of S and S ′ , it is easy to extend φ to a homeomorphism of pairs h : (Tη, S) → (T ′

η, S ′). �
14 Preserving the orientations, as usual.
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Fig. 3. The continuous map h1 defined from h and the retractions �0 and σ ′ .

4. Proof of the main theorem

Given a homeomorphism h : Bε
∼−→ h(Bε) ⊂ B′ such that h(S ∩ Bε) = S ′ ∩ h(Bε), in the first section of this chapter we

construct a map h̆1 from Mη into M ′
η′ , for 0 < η � η′ � 1, which is fundamentally equivalent to h. Thanks to the results

of Waldhausen, we shall modify this map by a homotopy, in order to obtain a homeomorphism h2 between Milnor 3-tubes
of S and S ′ .

In the next section, we will use the classical result of Jaco–Shalen–Johannson to give an isotopy between h2 and a new
homeomorphism h3 which preserves some precise realisations of the JSJ decomposition of the Milnor 3-tubes. Nevertheless,
it is worthwhile to recall that Waldhausen’s theory is enough for the 3-manifolds appearing in singularity theory.

Next, in Section 4.3, we shall construct an explicit isomorphism between the dual trees of the minimal desingularisations
of S and S ′ .

This allows us to extend h3 to the Milnor 4-tubes in the next section. This extension to four dimensions will be done in
four steps: In the first one, we only deal with the blocks Tη(D) associated to the components D of valence � 3. Secondly,
we treat the case of chains C of components of valence 2, by using the product structure of the blocks Tη(C). Next, we
consider the case of dead branches and that of the strict transforms of the original curves. Finally, in the last step, we will
modify the constructed homeomorphism by suitable isotopies in order to assure that it is fundamentally equivalent to the
initial homeomorphism h.

4.1. Reduction to dimension three

Without lost of generality we can assume that the radii of the Milnor balls B and B′ for S and S ′ are both equal to 1.
We fix ε > 0 and 0 < ε′′ < ε′ < 1 small enough such that

B′
ε′′ ⊂ h(Bε) ⊂ B′

ε′ .

Endow the pair (B, S) with a conic structure, i.e. a diffeomorphism ϕ : ∂B × [0,1] → B outside the origin, satisfying
ϕ(∂B × {r}) = ∂Br , for all r ∈ ]0,1], ϕ((S ∩ ∂B) × [0,1]) = S and ϕ(m,0) = 0, ϕ(m,1) = m, for all m ∈ ∂B. We also have
a conic structure ϕ′ : ∂B′ × [0,1] → B′ for the pair (B′, S ′). Denote by �0 : B → Bε the retraction by deformation which
corresponds to the usual radial retraction replacing the standard radii by the ones given by the conic structure. In other
words, �0 conjugated by ϕ writes as (m, t) �→ (m, ε), for ε � t � 1 and (m, t) �→ (m, t) for 0 � t � ε. Denote also by
σ ′

0 : (B′ \ {0}) → ∂B′ the retraction by deformation corresponding, via ϕ′ , to the map (m, s) �→ (m,1). Finally, we denote by
σ ′ : B′ → B′ , the continuous map corresponding, via ϕ′ , to the map (m, t) �→ (m, ς(t)), where ς(t) is affine for ε′′ � t � ε′
and satisfies ς(t) = t , for t � ε′′ and ς(t) = 1, for t � ε′ . Clearly we have that

�−1
0 (S) = S, σ ′(S ′)= S ′, σ ′−1(S ′)= S ′.

Notice that �0 and σ ′ are the identity in a neighbourhood of the origin and that σ ′ coincides with σ ′
0 outside of B′

ε′ . We
define

h1 := σ ′ ◦ h ◦ �0 : B → B′.
This map is continuous, not necessarily surjective neither injective, and satisfies h1(∂B) = ∂B′ , h1(S) = S ′ and

h−1
1 (S ′) = S . Hence, it defines a map from B∗ into B′ ∗ . On the other hand, h1 coincides with h in a neighbourhood of

the origin, and consequently the restrictions of h and h1 to B∗
ε are fundamentally equivalent, i.e. h � h1 (see Fig. 3).

We fix now Milnor 4-tubes Tη ⊂ B for S and T ′
η′ ⊂ B′ for S ′ , such that h1(Tη) ⊂ T ′

η′ . We denote by r : T ∗
η → Mη the

retraction by deformation over the Milnor 3-tube (5), given by the product structure described in Proposition 2.3 and we
denote by r′ : T ′ ∗

η′ → M ′
η′ := f ′−1(∂Dη′ ) ∩ B′ the similar retraction corresponding to S ′ . We put

h̆1 := r′ ◦ h1 ◦ ιMη : Mη → M ′
η′ ,

where ιMη : Mη ↪→ T ∗
η denotes the inclusion map.
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Remark 4.1. Clearly we have h � h1 � h̆1.

By multiplying the equation f ′ by η
η′ , we shall assume that η = η′ . From now on we will identify Tη to Tη , T ′

η to T ′
η and

we continue to denote by h̆1 the map E ′−1 ◦ h̆1 ◦ E defined on Mη := E−1(Mη) taking values on M′
η′ := E ′−1(M ′

η′ ). This

map satisfies the hypotheses of Theorem 6.1 of Waldhausen [22], because h̆1(∂Mη) ⊂ ∂M′
η′ . The thesis of that theorem is

a dichotomy: either Mη is the total space of a line bundle over a closed Riemann surface, or h̆1 is homotopic to a covering

map. Since the first situation do not occur in our case and the morphism induced by h̆1 on the fundamental groups is
surjective, there exists a homotopy F : Mη × [0,1] → M′

η′ satisfying F (∂Mη × [0,1]) ⊂ ∂M′
η′ , F (·,0) = h̆1 and such that

F (·,1) is a homeomorphism. We put

h2 := F (·,1) : Mη
∼−→ M′

η.

Remark 4.2. The relation h2 � h̆1 is verified.

Recall that one of our goals is to construct a homeomorphism Tη → T ′
η fundamentally equivalent to the original homo-

topy equivalence.

4.2. Construction of a JSJ compatible homeomorphism

Consider the analogous JSJ decomposition of M′
η′ to that we have already described for Mη . We keep the notations (12)

for the elementary blocks of M′
η′ ; we denote by R′ the collection of irreducible components of D′ having � 3 and by C′

the collection of the chains of components of D′ joining two elements of R′; for each C′ ∈ C′ , we consider the thick tori
M′

C′ and M̃′
C′ , as well as its product structures σ ′

C′ : M̃′
C′

∼−→ T × [−1 − ε,+1 + ε] constructed as in (16); the 2-torus

T′
C′ = σ ′−1

C′ (T × {0}) is properly embedded in M′
η′ and the adherences of the connected components of M′

η′ \⋃C′∈C′ T′
C′

constitute the JSJ blocks of M′
η′ ; each of them is denoted by B ′

D ′ , because it contains a unique elementary block M′
D ′

with v(D ′) � 3; we consider an extended Seifert fibration ρ̂ ′ ext : B ′
D ′ → K̂ ′ ext

D ′ , defined as in (20), which prolongs the Hopf
fibration ρ ′

D : M′
D ′ → K ′

D ′ ; finally the collection (T′
C′ )C′∈C′ is, by the same reasons, a characteristic family of essential tori

properly embedded in M′
η′ .

Clearly (TC)C∈C and (h−1
2 (T′

C′ ))C′∈C′ are two characteristic families of essential tori of Mη . After the unicity theorem of
characteristic families, cf. [20, (1.2.6)], there exists a bijection

κ2 :C ∼−→ C′

and a homeomorphism ψ from Mη onto itself, isotopic to the identity, such that h2(ψ(TC)) = T′
κ2(C)

for each C ∈ C. Putting

h̃2 := h2 ◦ψ we have that

h̃2 � h2 � h and h̃2(TC) = T′
κ2(C), for each C ∈ C.

Remark 4.3. Clearly h̃2 transforms every JSJ block of Mη into a JSJ block M′
η′ , defining thus a (unique) bijection κ3 :R ∼−→

R′ such that h̃2(B D) = B ′
κ3(D) .

Lemma 4.4. There exists a homeomorphism h̆2 isotopic to h̃2 , conjugating the family of thick tori and preserving their product struc-
tures. More precisely, h̆2(MC) = M′

κ2(C)
and σ ′

κ2(C)
◦ h̆2 = σC .

Proof. Consider C ∈ C and a JSJ block B D of Mη such that TC ⊂ ∂B D . The torus T′
C′ , C′ := κ2(C), is a connected component

of ∂B ′
κ3(D) . We can assume that ∂B�

D ⊃ σ−1
C (T×{1}) and ∂B ′ �

κ3(D) ⊃ σ ′−1
C′ (T×{1}). The homeomorphism rs from T×[0,1+ε]

onto T × [s,1 + ε], defined by

rs(p, t) :=
(

p, s + t
1 + ε − s

1 + ε

)
, s ∈ [0,1],

lifts to a homeomorphism from σ−1
C (T ×[0,1 + ε]) onto σ−1

C (T ×[s,1 + ε]), which extends as the identity to a homeomor-
phism

Rs : B D
∼−→ B D(s) := B D \ σ−1

C
(
T × [0, s[), R

s|B�
D

= id
B�

D
.

A similar homeomorphism R ′
s from B ′

κ3(D)
onto

B ′
κ3(D)(s) := B ′

κ3(D) \ σ−1
C′
(
T × [0, s[)

can be constructed. For all s ∈ [0,1], we denote by Fs : Mη → M′ ′ the map defined by
η



1284 D. Marín, J.-F. Mattei / Topology and its Applications 158 (2011) 1271–1295
⎧⎪⎨⎪⎩
Fs(m) = h̆2(m), if m /∈ B D ,

Fs(m) := R ′
s ◦ h̆2 ◦ R−1

s (m), if m ∈ B D(s),

Fs(m) := σ ′−1
C′ ◦ (H2 × id[0,s]) ◦ σC(m), if m ∈ σ−1

C
(
T × [0, s]),

where H2(p) := σ ′
C′ (h̆2(σ

−1
C (p,0))). Clearly Fs is an isotopy between F0 = h̆2 and F1(MC ∩ B D) = M′

C′ ∩ B ′
κ3(D) . We con-

clude the proof by making a successive composition of such isotopies, one for each JSJ block of Mη . �
Lemma 4.5. There exists a homeomorphism h3 isotopic to h̆2 , satisfying the same properties as h̆2 in Lemma 4.4 and conjugat-
ing the Seifert fibrations of the complements of the thick tori, i.e. there are homeomorphisms ςD : K̂ D

∼−→ K̂ ′
κ3(D) , D ∈ R, such that

ρ̂ ′
κ3(D) ◦ h3|B�

D
= ςD ◦ ρ̂D .

Proof. Clearly B�
D is endowed with two Seifert fibrations [18]: ρ̂D over K̂ D and ρ̂ ′

κ3(D) ◦ h̆2|B�
D

over K̂ ′
κ3(D) . Since B�

D is not

a solid torus neither a thick torus, the unicity for Seifert fibrations of [20, Theorem 1.2.5] (see also [21, Satz 10.1]), gives
us an isotopy ψD,s : B�

D → B�
D , s ∈ [0,1], such that ψD,0 is the identity and ψD,1 conjugates the foliations defined by these

two fibrations. More precisely, if ςD : K̂ D → K̂ ′
κ3(D) is the homeomorphism induced by ψD,1 over the leaf spaces, we have

that ρ̂ ′
κ3(D) ◦ h̆2 ◦ ψD,1 = ςD ◦ ρ̂D . Thanks to Assertion (a) of Lemma 4.6 below, these isotopies can be glued into a global

isotopy ψs : Mη → Mη , satisfying ψ0 = idMη , ψ
s|B�

D
= ψD,s , D ∈ R and ψs|TC = idTC , C ∈ C. We conclude by defining

h3 = h̆2 ◦ ψ1. �
Although the following result about extension of isotopies is classical, we include here the precise statement that we

need with a short proof.

Lemma 4.6. Let B be a manifold with boundary and let B� ⊂ B be a sub-manifold with boundary having the same dimension, such
that there exists a homeomorphism σ from B \ B� onto ∂B × [0,1], satisfying σ(∂B) = ∂B × {1} and σ(∂B�) = ∂B × {0}. Then

(a) if Fs : B� → B� , s ∈ [0,1], is an isotopy such that F0 = idB� , then there is an isotopy F ′
s : B → B such that F ′

s|B� = Fs and F ′
s|∂B =

id∂B , s ∈ [0,1];
(b) if Gs : ∂B → ∂B, s ∈ [0,1], is an isotopy such that G0 = id∂B , then there exists an isotopy G ′

s : B → B such that G ′
s|B� = idB� and

G ′
s|∂B = Gs, s ∈ [0,1].

Proof. (a) Let us denote F̃ s := σ ◦ Fs ◦ σ−1
|∂B� . For m ∈ B \ B� , we define F ′

s(m) := σ−1 ◦ F̃ ′
s ◦ σ(m), with F̃ ′

s(p, t) := F̃ s−t(p, t),

if 0 � t � s and F̃ ′
s(p, t) := (p, t), if s � t � 1. The proof of (b) is analogous. �

For each D ∈ R, the homeomorphism ςD given by Lemma 4.5, induces a bijection �D between the singular points of D
lying on D and those of D′ lying on D ′ := κ3(D). With the notations (19), it verifies

�D
(

SM(D)
)= SM

(
D ′) and consequently �D

(
Ŝ(D)

)= Ŝ
(

D ′),
because the attaching points of the dead branches correspond to the exceptional fibres of the Seifert fibrations and the
elements of Ŝ(D), respectively Ŝ(D ′), correspond to the connected components of ∂ K̂ D , respectively ∂ K̂ ′

D ′ . It is easy to
see that, up to modifying h3 by an isotopy, ςD sends the disk Ds , s ∈ SM(D), onto the disk D ′

�D (s) . Hence h3 sends the
elementary block M D onto the elementary block M′

D ′ , and it conjugates the corresponding Hopf fibrations.

4.3. Conjugation of the dual trees of the divisors

We summarise the results that we are obtained so far. We have constructed a homeomorphism h3 : Mη → M′
η′ such

that h3 � h, as well as bijections

κ3 :R → R, κ2 :C → C′, κ1 :M → M′, (21)

satisfying for all C ∈ C and C̃ ∈ M the following properties:

(a) the image by κ3 of the extremal components of C , are the extremal components of κ2(C);
(b) if D0 ∈ R is the attaching component of C̃ , then κ3(D0) is the attaching component of κ1(C);
(c) the homeomorphism h3 sends MC onto M′

κ2(C)
, MC̃ onto M′

κ1(C̃)
and TC onto T′

κ2(C)
; for each D ∈ R, it also

transforms B D into B ′
κ3(D)

, B ′ �
D into B ′ �

κ3(D)
and M D into M′

κ3(D)
, conjugating, in addition, the corresponding Seifert

fibrations.
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The following proposition extends the one-to-one correspondences (21) to all the components of the divisors. It makes
precise the classical results of Zariski–Lejeune, giving, by means of the property (c), the relationship between the home-
omorphism h conjugating S to S ′ and the one-to-one correspondence between the dual trees of D and D′ . It should be
also mentioned that using plumbing calculus, Neumann [14] proves unicity of the graph under negativity conditions on the
intersection form.

Proposition 4.7. There exists a one-to-one correspondence κ : Comp(D) → Comp(D′) between the sets of irreducible components
of D and D′ , such that:

(1) it is compatible with the intersection numbers, i.e. (κ(D), κ(D ′)) = (D, D ′), for each D, D ′ ∈ Comp(D);
(2) for all C ∈ C, respectively C̃ ∈ M, we have the equivalence: (D ∈ C) ⇔ (κ(D) ∈ κ2(C)), respectively (D ∈ C̃) ⇔ (κ(D) ∈ κ1(C̃));

in particular, C and κ2(C) have the same length, as well as C̃ and κ1(C̃);
(3) the restriction of κ to R ⊂ Comp(D) coincides with κ3 .

In particular, the properties (a), (b) and (c) above are verified by κ .

Before proving Proposition 4.7 we need an auxiliary result. Fix C ∈ C ∪ M.

• If C = {D0, . . . , DlC +1} ∈ C, we consider the chain

C′ = {D ′
0, . . . , D ′

lC′+1

}= κ2(C) ∈ C′,

which we will numerate so that D ′
0 = κ3(D0) and D ′

lC′ +1 = κ3(DlC +1).

• If C = {D0, . . . , DlC } ∈ M, we consider C′ = {D ′
0, . . . , D ′

lC′ } = κ2(C) ∈ M′ .

We denote by c j ∈ H1(MC,Z) the meridian associated to D j and by c′k ∈ H1(M′
C′ ,Z) that one associated to D ′

k , cf. Defini-
tion 3.5. The equality h3(MC) = M′

C′ induces an isomorphism

h3∗ : H1(MC,Z) → H1
(

M′
C′ ,Z

)
.

In the case that C and C′ are dead branches, we denote by clC +1 and c′lC′ +1 the corresponding exceptional meridians. Since

h3 conjugates the Seifert fibrations of B D0 and B ′
D ′

0
, it conjugates also the exceptional fibres. Hence h3 transforms M◦

C
into M′ ◦

C′ and it induces an isomorphism

h3∗ : H1
(

M◦
C,Z

)→ H1
(

M′ ◦
C′ ,Z

)
.

Lemma 4.8. For each j = 0, . . . , l + 1, we have the equalities lC = lC′ =: l and h3∗(c j) = c′j ∈ H C′
1 .

First, we will prove the following technical result15:

Sub-Lemma 4.9. Fix a = (α1,α2) and b = (β1, β2) ∈ Z2 , gcd(α1,α2) = 1, gcd(β1, β2) = 1 such that det(a,b) > 0. Then there is
a unique n ∈ N and a unique ordered collection c := (c0, . . . , cn+1) of elements of Z2 ∩ (Qa + Qb) ⊂ Q2 such that⎧⎨⎩

det(c j, c j+1) = 1, j = 0, . . . ,n,
det(ck−1, ck+1) > 1, k = 1, . . . ,n,
c0 = a, cn+1 = b.

(22)

In particular, if det(a,b) = 1, the unique collection c satisfying (22) is given by n = 0, c0 = a and c1 = b.

Proof. The existence of n and c j follows easily by a standard argument concerning continuous fractions. To prove the unicity,
we will use the following straightforward assertion:

(�) For each u := (ν1, ν2), v := (υ1,υ2) ∈ Z2 and λ,μ ∈ Q>0 , such that det(u, v) > 0, ν1 + ν2 > 1, υ1 + υ2 > 1 and (1,1) =
λu +μv, we have that det(u, v) > 1.

Indeed, clearly 0 < λ,μ < 1; hence (1,1) belongs to the interior of the parallelogram having vertices 0, u, u + v , v; but
this is impossible when u and v span Z2 over Z. To prove the unicity we will make a double recurrence with the following
induction hypothesis HN,N ′ :

15 We thank to Mark Spivakovski for his help and his suggestions concerning the proof of this lemma.
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“if c := (c j)
n+1
j=0 and c′ := (c′

k)
n′+1
k=0 are two finite sequences of elements of Z2 ∩ (Qa + Qb) satisfying (22), and if 0 � n � N and

0 � n′ � N ′ , then n = n′ and c = c′”.

First, we shall see that H0,N ⇒ H0,N+1; by symmetry we will also have HN,0 ⇒ HN+1,0; since H0,0 is obvious, it will
suffice then to prove the implication HN−1,N ′−1 ⇒ HN,N ′ .

H0,N ′ ⇒ H0,N ′+1: Up to an automorphism of Z2 we can assume that c0 = a = (1,0) and c1 = b = (0,1). The property (�)
provides the existence of an index k̃ ∈ {1, . . . , N ′}, such that c ′̃

k
= (1,1), 1 � i0 � N . We conclude by applying the

induction hypothesis to the two sequences ((1,0), (1,1)) and (c′
0, . . . , c ′̃

k
), as well as to the two sequences ((1,1), (0,1))

and c̃′ := (c ′̃
k
, . . . , c′

N ′+1).

HN−1,N ′−1 ⇒ HN,N ′ : Always up to an automorphism of Z2, we can assume that a = (1,0) and b = (β1, β2), with β1 < β2.
Thanks to Assertion (�) we obtain two indices j̃ ∈ {1, . . . , N} and k̃ ∈ {1, . . . , N ′} such that c̃ j = c ′̃

k
= (1,1). The induc-

tive hypothesis applies to the two sequences (c j) j=0,...,̃ j and (ck)k=0,...,̃k , as well as to the two sequences (c j) j=̃ j,...,N
and (ck)k=̃k,...,N ′ , showing that N = N ′ and c = c′ .

This achieves the proof of the sub-lemma. �
Proof of Lemma 4.8. After Lemma 4.5, h3 sends every connected component of ∂MC over a connected component of ∂M′

C′ ,
by conjugating the corresponding Seifert fibrations. Hence the isomorphism h3∗ induced in homology satisfies the following
equalities:

h3∗(c0) = c′0 and h3∗(cl+1) = c′l′+1, (23)

where we have put l := lC and l′ = lC′ . Thanks to Assertion (ii) of Proposition 3.6 we obtain that

det(a,b) = det′
(
h3∗(a),h3∗(b)

)
, (24)

for all a,b ∈ H C
1 . From relations (18) we deduce that

det(c j−1, c j+1) = −(D j, D j) � 2, j = 1, . . . , l,

because the resolution map E of S is minimal.
Set c′′j := h−1

3∗ (c′j). The two finite sequences c := (c j) j=0,...,l+1 and c′′ := (c′′j ) j=0,...,l′+1 of elements of H1(M′
C′ ,Z) � Z2,

have the same first and last terms (23); they satisfy the relations (22) of Sub-Lemma 4.9. The conclusion follows from the
unicity of these families. �
Proof of Proposition 4.7. Since the lengths of the chains and the dead branches corresponding by κ2 and by κ1 are the
same, there exists a unique bijection κ : Comp(D) → Comp(D′) extending κ3 and satisfying Assertions (2) and (3), as well
as the equivalence (D ∩ D ′ 
= ∅ ⇔ κ(D)∩ κ(D ′) 
= ∅). Since the self-intersections of all the compact irreducible components
being � −1 (even � −2 if v(D) � 2), to prove (1) it suffices to show the relations

(D, D) = (κ(D), κ(D)
)
, for all D ∈ Comp(E). (25)

When D j is contained in a chain or a dead branch of E , the relations (18) follow directly from the equalities (D j, D j) =
−det(c j−1, c j+1). Since h3∗ preserves the determinant forms (24), the relations h3∗(c j) = c′j of Lemma 4.8 give us (D j, D j) =
(κ(D j), κ(D j)), for each j = 1, . . . , lC + 1.

It remains to prove (25) when D has valence � 3. Notice that then M D is a retract by deformation of

M 
D := M D

v(D)⋃
j=1

Ms j , D ∩ D j =: {s j},

where D1, . . . , D v(D) are the irreducible components of D adjacent to D . The singular point s j is the attaching point of
a chain or a dead branch C j , or even of a strict transform. Consider the meridian c j ∈ H1(M j,Z) � H1(Ms j ∩ M D ,Z)

associated to D j , where M j is the thick torus MC j , or M◦
C j

in the two first cases, or Ms j ∪ M D j in the last one. Denote

by c̃ j ∈ H1(M D ,Z) the image of c j by the monomorphism induced in homology by the natural inclusion M D ∩ Ms j ⊂ M D .
We can rewrite the index formula along D given by (10) in the following way, cf. [4,5]:

(D, D)c +
v(D)∑
j=1

c̃ j = 0 in H1(M D ,Z),

where c is the homology class of a fibre ρ−1
D (p), p ∈ K D , that we call the meridian associated to D . Therefore {κ(D j)} j=1,...,v(D)

is the collection of the irreducible components of D adjacent to κ(D). Thanks to Lemma 4.8, their corresponding meridians
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are h3∗(c j) ∈ H1(M′
κ(D) ∩ M′

s′j
,Z), where {s′

j} := κ(D) ∩ κ(D j). In the same way h3∗(c) is the meridian associated to κ(D),

because h3 conjugates the Seifert fibrations of B D and B ′
κ(D)

. The index formula along κ3(D) gives us the equality (25). �
4.4. Extension to dimension four

We continue to use the notations (3) and (4) and we define now the collection of elementary blocks of the Milnor 4-tube Tη

by means of

Ts := Tη ∩Ωs and T D := Tη(K D), s ∈ Sing(D), D ∈ Comp(D). (26)

A 4-tube associated to a chain C ∈ C, respectively to a dead branch C̃ ∈ M is, with the notations (13) and (14), respectively (15)
and (17):

T C :=
lC⋃

j=1

T D j ∪
lC⋃

j=0

Ts j , respectively T C̃ :=
lC̃⋃

j=1

T D j ∪
lC̃ −1⋃
j=0

Ts j . (27)

We define in a similar way the elementary blocks of T ′
η′ , that we denote by T ′

s′ , s′ ∈ Sing(D′) and T ′
D ′ , D ′ ∈ Comp(D′), as

well as the 4-tubes T ′
C′ , C′ ∈ C′ and T ′̃

C′ , C̃′ ∈ M′ .
Now, for ! ∈ R, we shall construct homeomorphisms G! : T! → T ′

κ(!) satisfying the properties (a), (b) of Definition 2.5
and coinciding with h3 on T! ∩ Mη = M! . After that we will construct G! when ! is a chain, then when it is a dead
branch or a strict transform, satisfying always the properties (a), (b) of Definition 2.5. It will be able to be glued with the
homeomorphisms G D , D ∈ R, already constructed, but it will not necessarily coincide with h3 over M! . Finally, by using
suitable Dehn twists, we will modify the global homeomorphism

G : Tη → T ′
η′ , G |M! = G!, ! ∈ R ∪ C ∪ M, (28)

in order to that its restriction to Mη becomes isotopic to h3. At that moment we will have a homeomorphism Φ satisfying
the properties of Theorem 2.9.

4.4.1. Construction of G D , for D ∈ R

The restrictions of the Hopf fibrations to the elementary blocks T D and T ′
κ(D)

, D ∈ Comp(D), are globally trivial disk
fibrations.

There exist differentiable vector fields Z and Z ′ on these blocks which are tangent to the Hopf fibres and whose restric-
tion to each of them correspond to the real radial vector field u ∂

∂u + v ∂
∂v , in the trivialising coordinates (u + iv,ρD) : T D →

D1 × K D . We define a homeomorphism extending h3|M D and conjugating the Hopf fibrations, by means of⎧⎪⎨⎪⎩
G D : T D → T ′

κ(D)
, G D|M D = h3, ρ ′

κ(D)
◦ G D = ρD|T D ,

G D
(
φ Z

t (m)
) := φ Z ′

t

(
h3(m)

)
, if m ∈ M D , t < 0,

G D(m) := ςD(m)
(
h3(m)

)
, if m ∈ K D ,

where φ Z
t and φ Z ′

t denote the flows of Z and Z ′ respectively.

4.4.2. Construction of G C when C is a chain
Let C ∈ C be a chain of D and let C′ := κ2(C) be the associated chain of D′ ,

C = {D j} j=0,...,l+1 ∈ C, C′ = {D ′
j

}
j=0,...,l+1, D ′

j := κ(D j),

the components D0, Dl+1 having valence � 3. We will assume that l � 1; the case of a chain of length l = 0, i.e. without
components of valence 2 and having a unique singular point {s} = D0 ∩ D1 can be treated in a similar way by putting
MC = Ms and M′

C′ = M′
s′ , {s′} := D ′

0 ∩ D ′
1.

First, we shall construct homeomorphisms gs j which are holomorphic over some neighbourhoods W s j of the singularities
{s j} := D j−1 ∩ D j . Then we shall construct homeomorphisms gD j defined over the elementary blocks T D j , conjugating the
Hopf fibrations. Finally, we will glue these homeomorphisms in order to obtain a global homeomorphism

G C : T C → T ′
C′

satisfying the properties (a) and (b) in Definition 2.5 of excellent homeomorphisms.

Step 1. The map f ◦ E , composition of the reduced equation of S fixed in Section 2.2 and the resolution of singularities
map, is a global equation for D. Corollary 3.4 gives us universal formulae (see also [5, Theorem 18.2]) expressing the
multiplicities νD( f ◦ E) along each irreducible component D of D, from the intersection matrix of D. The intersection
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matrices (D ′, D ′′) and (κ(D ′), κ(D ′′)), D ′ , D ′′ ∈ Comp(D), coincide thanks to Assertion (1) of Proposition 4.7. Using always
the notations of Section 2.2, we have then

νD ′
j

(
f ′ ◦ E ′)= νD j ( f ◦ E) =: m j, j = 0, . . . , l + 1.

Let s j be the intersection point of D j and D j+1 and let s′
j be that of D ′

j and D ′
j+1. There exist local holomorphic coordinates

at these points

(u j, v j) : W s j
∼−→ D1 × D1,

(
u′

j, v ′
j

)
: W ′

s′j
∼−→ D1 × D1, (29)

with W s j ⊂ ◦
Ω s j and W ′

s′j
⊂ ◦

Ω ′
s′j

, such that v j = 0, respectively v ′
j = 0, is a local equation of D j , respectively D ′

j , making

monomial the functions f ◦ E and f ′ ◦ E ′ , i.e.

f ◦ E |W s j
= u

m j+1
j v

m j

j and f ′ ◦ E ′
|W ′

s′j
= u

′m j+1
j v

′m j

j .

We obtain thus a local biholomorphism gs j , between W s j ∩ Ts j = W s j ∩ Tη and W ′
s′j

∩ T ′
s′j

= W ′
s′j

∩ T ′
η′ , by putting

gs j := (u′
j, v ′

j

)−1 ◦ (u j, v j) : W s j ∩ Tη → W ′
s′j

∩ T ′
η′ . (30)

By taking η > 0 small enough, the 3-manifold W s j ∩ Mη , as well as the connected components T j and T j+1 of Ms j \ W s j ,
with T j ∩ M D j 
= ∅, are thick tori. Their inclusions in MC induce isomorphisms in homology. Assume that W ′

s′j
∩ M′

η′

satisfies the same properties. Up to decreasing η′ > 0 if necessary, we can assume that the restriction of gs j to W s j ∩ Mη ,
taking values in W ′

s′j
∩ M′

η′ , induces an isomorphism

gs j∗ : H1(MC,Z) → H1
(

M′
C′ ,Z

)
. (31)

Lemma 4.10. Let c j and c′j be the meridians associated to the components D j and D ′
j respectively, cf. Definition 3.5. Then gs j∗(ck) = c′k,

k := j, j + 1, for each j = 0, . . . , l.

Proof. Assume that k = j, the case k = j + 1 is completely analogous. Up to permuting the coordinates of the local datum
if necessary, we can also assume that ys j = 0 is an equation for D j . If η > 0 is small enough, the fibres of xs j and u j

are transversal to the Milnor fibres (i.e. that of f ◦ E). Since the simple curves x−1
s j

(p) ∩ Mη and u−1
j (p) ∩ Mη turn once

around D j and do not turn around D j+1 they are homologous in Ms j
∼= MC . We left the reader to complete the details.

Now, it suffices to note that, by construction, gs j transforms fibres of u j (resp. v j ) into fibres u′
j (resp. v ′

j ). �
Step 2. Consider now homeomorphisms

gD j : T D j → T ′
D ′

j
, j = 1, . . . , l (32)

fulfilling the following properties:

(a) gD j (T D j ∩ Ts j ) = T ′
D ′

j
∩ T ′

s′j
,

(b) gD j conjugate the Hopf fibrations, i.e. there is a homeomorphism ςD j : K D j → K ′
D ′

j
such that ςD j ◦ ρD j (m) = ρ ′

D ′
j
◦

gD j (m), m ∈ T D j ,

(c) the morphism gD j∗ : H1(MC,Z) → H1(M′
C′ ,Z) induced16 by the restriction of gD j to M D j , taking values in M′

D ′
j
,

verifies gD j∗(ck) = c′k , for k = j ± 1.

Notice that the equality (c) for k = j follows from (b) and that the case k = j − 1 is equivalent to the case k = j + 1, by
applying the index formulae (18) and Assertion (1) of Proposition 4.7. Hence, the construction of the homeomorphisms gD j

is straightforward once one has trivialised the Hopf fibrations, using that the Euler numbers of D j and D ′
j coincide after

Proposition 4.7.

Step 3. It remains to construct a homeomorphism from each connected component T of Ts j \ W s j , j = 0, . . . , l, onto
a connected component T′ of T ′

s′j
\ W ′

s′j
, which could be glued with gs j and gD j′ , j′ = j or j + 1. To do this we fix a home-

omorphism Λ from T onto [0,1] × S1 × D1 and a disk fibration ρT :T → D j′ ∩ T, coinciding with ρD j′ on a connected

16 Via the identifications H1(M D j ,Z) � H1(MC,Z) and H1(M′
D ′ ,Z) � H1(M′

C′ ,Z) given by the natural inclusions.

j
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component of Λ−1({0,1} × S1 × D1) and with a coordinate of (29) on the other connected component. We proceed in the
same way for T′ . Notice that the restrictions of gs j and gD j′ to ∂T conjugate the constructed fibrations. To conclude it
suffices to apply the following lemma by using also Lemma 4.10.

Lemma 4.11. Consider φ̃0 , φ̃1 two homeomorphisms of S1 × D1 onto itself, commuting to the first projection, i.e. φ̃k(θ, z) =
(θ,φk,θ (z)), satisfying φk,θ (0) = 0, for k = 0,1, and whose restrictions to S1 × ∂D1 induce the identity in homology. Then there
exists a homeomorphism Φ̃ from [0,1] × S1 × D1 onto itself, commuting to the two first projections, i.e. Φ̃(t, θ, z) = (t, θ,Φt,θ (z))
such that

(1) Φk,θ = φk,θ for k = 0,1,
(2) Φt,θ (z) = z for all t ∈ [ 1

3 ,
2
3 ].

Proof. The existence of Φ̃ = Φ̃(φ̃0, φ̃1) fulfilling conditions (1) and (2) follows from that of Φ̃(φ̃0, id) satisfying only condi-
tion (1) by considering

Φ̃(φ̃0, φ̃1)(t, θ, z) =

⎧⎪⎨⎪⎩
Φ̃(φ̃0, id)(3t, θ, z) if t ∈ [0, 1

3 ],
(t, θ, z) if t ∈ [ 1

3 ,
2
3 ],

Φ̃(φ̃1, id)(3(1 − t), θ, z) if t ∈ [ 2
3 ,1].

Now we proceed to construct Φ̃ fulfilling condition (1) in the case φ̃1 = id. The homotopy class of the map

S1 → Aut
(

S1),
θ �→ φ0,θ |∂D1

defines an element in the fundamental group π1(Aut(S1)) which can be identified to Z via the isomorphism[
(ψt)t∈[0,1]

] �→ 1

2iπ

∫
t �→ψt (1)

dz

z
.

Since the restriction of φ̃0 to S1 × ∂D1 induces the identity in homology we have that∫
t �→φ0,e2iπt (1)

dz

z
= 0,

and consequently there exists a homotopy

[0,1] × S1 → Aut
(
S1),

(t, θ) �→ φ∂
t,θ

such that φ∂
0,θ = φ0,θ |∂D1 and φ∂

1,θ = id∂D1 . Now it suffices to define Φt,θ (z) as follows:

– Φt,θ (0) = 0,
– if t ∈ [0, 1

2 ] then

Φt,θ (z) =
{ |z|φ0,θ (

z
|z| ) if |z| � 1 − 2t, z 
= 0,

(1 − 2t)φ0,θ (
z

1−2t ) if 0 < |z| < 1 − 2t,

– if t ∈ ] 1
2 ,1] and z 
= 0 then Φt,θ (z) = |z|φ∂

2t−1,θ (
z
|z| ),

based on a combination of Lemma 4.6 and Alexander’s trick. Checking the continuity at the points on z = 0 others than
(t, z) = (0,0) is straightforward. The continuity at the points (t, z) = (0,0) follows easily from the assumption φ0,θ (0) = 0.
The continuity at the points on t = 1

2 follows from the fact φ0,θ |∂D1 = φ∂
0,θ . �

4.4.3. Construction of G C when C is a dead branch or a strict transform
We consider first the case of a dead branch of D, denoted by C = {D j} j=0,...,l , v(D0) � 3, and we denote by C′ := κ1(C) =

{D ′
j} j=0,...,l , D ′

j := κ(D j), the corresponding dead branch of D′ . We can do, in this context, all the precedent construction
unless for the extremal component, i.e. for {s j} := D j ∩ D j+1, j = 0, . . . , l − 1, with the same notations that in (30), we
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construct a homeomorphism gs j and, for each component of valence two, a homeomorphism gD j as in (32). In H1(M′ ◦
C′ ,Z),

we have yet the equalities

gs j∗(ck) = c′k, k = j, j + 1, j = 0, . . . , l − 1,

for the same reasons as in Lemma 4.10 and thanks to Lemma 4.8. Hence the homeomorphisms gs j and gD j can be glued as
in the step 3 above. It only remains to extend gsl−1 along Dl . To do this we will assume as before that η,η′ > 0 are small

enough so that the connected components of Tsl−1 \ W sl−1 and T ′
s′l−1

\ W ′
s′l−1

are the thick tori. It suffices then to construct a

homeomorphism g from the connected component T of (Tsl−1 \W sl−1 )∪ T Dl containing Dl , onto the connected component T′
of (T ′

sl−1
\ W ′

sl−1
)∪ T ′

D ′
l

containing D ′
l , which coincides with gsl−1 over the solid torus T∩ W sl−1 . Fix again fibrations ρT :T →

T ∩ Dl and ρ ′
T′ :T′ → T′ ∩ D ′

l , coinciding with the Hopf fibrations on T Dl , respectively T ′
Dl

, and with a coordinate of (29) on
T∩ W sl−1 , respectively T′ ∩ W ′

sl−1
. Clearly, T and T′ are homeomorphic to D1 ×D1, and the fibrations ρT and ρ ′

T
correspond

to the first projection. To achieve the construction of G C , it suffices to use the following lemma whose proof is similar to
that of Lemma 4.11.

Lemma 4.12. Let φ be a homeomorphism from ∂D1 ×D1 onto itself, commuting to the first projection, i.e. φ(θ, p) = (θ,φ(θ, p)), and

such that restricted to ∂D1 × ∂D1 , induces the identity map in homology. Then φ extends to a homeomorphism Φ from D1 × D1 onto
itself, commuting also to the first projection.

Proof. As for Lemma 4.11, there exists a continuous map

t ∈ [0,1] �→ Φ̃t ∈ C0(S1,Aut
(
S1)),

such that Φ̃0(θ)(ϑ) = ϑ and Φ̃1(θ)(ϑ) = φ(θ,ϑ). We put Φ(z′, z′′) := (z′,Φ(z′, z′′)), with

Φ
(
z′, z′′) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|z′′| · Φ̃|z′|( z′

|z′| )(
z′′
|z′′| ), if |z′| � |z′′| � 1,

|z′′| · Φ̃
1+|z′|− |z′′ |

|z′ |
( z′
|z′| )(

z′′
|z′′| ), if |z′|2 � |z′′| � |z′|,

|z′|2 · φ( z′
|z′| ,

z′′
|z′|2 ), if |z′′| � |z′|2 � 1.

�

Consider now the case that D1 and D ′
1 := κ(D1) are the strict transforms of irreducible components of S and S ′ re-

spectively. The adjacent components D0 ∈ Comp(D), respectively D ′
0 := κ(D0) ∈ Comp(D′), have valence � 3. Denote {s} :=

D0 ∩ D1 and {s′} := D ′
0 ∩ D ′

1, C := {D0, D1}, C′ := {D ′
0, D ′

1} and put MC := Ms ∪ M D1 , T C := Ts ∪ T D1 , M′
C′ := M′

s′ ∪ M′
D ′

1

and T ′
C′ := T ′

s′ ∪ T ′
D ′

1
. With the same notations we construct as in (31) a biholomorphism gs : W s ∩ Tη → W ′

s′ ∩ T ′
η′ . For the

same reasons as in Lemma 4.10, it verifies the equalities gs∗(ck) = c′k , k = 0,1, where ck , respectively c′k , are the homology
classes in H1(MC,Z), respectively H1(M′

C′ ,Z), of an arbitrary fibre of the Hopf fibration ρDk restricted to Ms ∩ M Dk ,
respectively ρ ′

D ′
k

restricted to M′
s′ ∩ M′

D ′
k
. Notice that the restriction of h3 to MC ∩ ∂B (which is a connected component

of the boundary of Mη), taking values in M′
C′ ∩ ∂B′ , verifies also the equality17

h3∗(ck) = c′k in H1
(

M′
C′ ,Z

)
, k = 0,1.

Indeed, by construction h3 and h are fundamentally equivalent, so that their actions on the fundamental group Γ differ
by an inner automorphism. By passing to the homology we have then h∗ = h3∗ . Theorem 3.16 claims that the image by h∗
of the meridian mD1 of the peripheral subgroup P ⊂ Γ associated to C is just the meridian mD ′

1
∈ P ′ ⊂ Γ ′ . Since the

isomorphisms P ∼= H1(MC,Z) and P ′ ∼= H1(M′
C′ ,Z) identify mD1 to c1 and m′

D ′
1

to c′1 we obtain the equality h3∗(c1) = c′1.

On the other hand, from Remark 3.9 follows that the natural inclusion H1(MC,Z) ↪→ H1(B D0) sends c0 into the homology
class of cD0 ∈ π1(B D0) ⊂ Γ represented18 by a fibre of the Seifert fibration of D0. We have an analogous description for M′

C .
Since h3 conjugates the Seifert fibrations of B D0 and B ′

D ′
0
, it follows that h3∗(c0) = c′0.

Let H D1 : T D1 → T ′
D ′

1
be a homeomorphism whose restriction to M C ∩ B coincides with h3 and commutes to the Hopf

fibrations, i.e. H D1 (K D1 ) = K ′
D ′

1
and H D1 ◦ ρD1 = ρ ′

D ′
1

◦ H D1 . As in the previous step 3, we construct a homeomorphism

G C : T C → T ′
C′ extending gs , which coincides with H D0 when restricted to MC ∩ M D0 and with H D1 when restricted to

MC ∩ ∂B.

17 With the identifications given by the natural inclusions, i.e. H1(MC ∩ ∂B,Z) � H1(MC,Z) and H1(M′
C′ ∩ ∂B′,Z) � H1(M′

C′ ,Z).
18 Here we use that the fixed desingularisations of S and S ′ are minimal and therefore v(D0) = v(D ′

0) � 3.
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4.4.4. Modification by Dehn twists
We will now modify the homeomorphism G obtained in (28), by composing it at the right with a homeomorphism

Ψ : Tη → Tη which is the identity over each block T D , D ∈ R, in such a way that G ◦ Ψ satisfies Theorem 2.9. Denoting by
C =: {D j}l

j=0 a chain of C, a dead branch or a pair of components associated to a strict transform, and putting ΨC := Ψ|T C ,
it suffices to prove the following assertion:

(!!) There exists a homeomorphism ΨC : T C → T C , ΨC(T C ∩ D) = T C ∩ D, whose support is contained in the interior of (Ωs0 \ {s0}),
{s0} := D0 ∩ D1 , such that ΨC|MC and G−1 ◦ h3 : MC → MC are homotopic relatively to the boundary of MC , i.e. there is
a homotopy Ft : MC → MC , t ∈ [0,1], such that F0 = G−1 ◦ h3 , F1 = Ψ|MC and Ft(m) = m, for all t ∈ [0,1] and m ∈ ∂MC .

Recall that to every continuous map K from a manifold with boundary bord X into itself, which is the identity when
restricted to a subset A ⊂ X , we can associate a variation morphism relative to A, cf. [1], by means of

varK : H1(X, A;Z) → H1(X,Z), [δ] �→ [
K (δ) − δ

]
.

This morphism is an invariant of the relative to A homotopy class of K . Notice that if K∗ : H1(X,Z) → H1(X,Z) denotes
the morphism induced by K and i∗ : H1(X,Z) → H1(X, A;Z) that of the inclusion (X,∅) ⊂ (X, A), we have the equality
K∗ = idH1(X,Z) + varK ◦ i∗ . We will use the following result.

Proposition 4.13. Two homeomorphisms χ0 and χ1 : MC → MC whose restrictions to ∂MC are the identity, are homotopic rela-
tively to ∂MC , if and only if their variation morphisms are equal:

varχ0 = varχ1 : H1(MC, ∂MC ;Z) → H1(MC,Z).

Notice that if C is a dead branch then (MC, ∂MC) is homeomorphic to (S1 × D1,S
1 × S1) and H1(MC, ∂MC ;Z) = 0.

To obtain (!!), we then define ΨC = idT C . If C is not a dead branch then Assertion (!!) follows directly from the following
realisation lemma.

Lemma 4.14. Assume that C is a chain or it is associated to a strict transform. Then for each morphism L : H1(MC, ∂MC ;Z) →
H1(MC,Z), there exists a homeomorphism Ψ : T C → T C with support contained in

◦
Ω s0 \ {s0}, satisfying ΨC(T C ∩ D) = T C ∩ D and

such that L is the variation morphism of the restriction of Ψ to M C , i.e. L = varΨ|M C
.

Proof. Clearly H1(MC, ∂MC,Z) = Zd is generated by the homotopy class of an arbitrary path δ joining the two connected
components of ∂MC . Thanks to the formula19 varχ1◦χ2 = varχ1 + varχ2 , it suffices to construct Ψ for L = Lk : [δ] �→ ck ,
k = 0,1, where c0 and c1 are the meridians associated to D0 and D1. Indeed, they are a Z-basis of H1(MC,Z), by Proposi-
tion 3.6. For k = 0 or 1, we fix as in (29) local coordinates (u, v) at the point s0 such that the map f ◦ E is monomial and
v = 0 is a reduced local equation of Dk . The homeomorphism (Dehn twist) Ψ : T C → T C defined by

u ◦ Ψ = u, v ◦Ψ =
{

e2iπ(3|u|−1) · v, if 1
3 � |u| � 2

3 ,

v, otherwise,

fulfils the desired properties. �
Proof of Proposition 4.13. The proof consists to suitably apply Eilenberg’s classification theorem, cf. [24, Theorem V.6.7],
which we recall here:

Theorem 4.15. Let Y be an (n − 1)-connected topological space whose group π = πn(Y ) is abelian, let (X, A) be a relative CW-
complex and let f0 : X → Y be a continuous map. Assume that

(1) Y is q-simple for n + 1 � q � dim(X, A),
(2) Hq(X, A;πq(Y )) = 0 for n + 1 � q � dim(X, A),
(3) Hq+1(X, A;πq(Y )) = 0 for n + 1 � q � dim(X, A)− 1.

Then the correspondence f �→ ( f0, f )∗ın(Y ) induces a bijection between the set of relative to A homotopy classes of extensions of f0|A
and the cohomology group Hn(X, A;π).

In this statement ın(Y ) ∈ Hn(Y ;π) ∼= Hom(Hn(Y ),π) is identified to the inverse of the Hurewicz isomorphism
πn(Y )

∼−→ Hn(Y ). If Y is a CW-complex, then ın(Y ) sends each n-cell of Y into the unique element of π = πn(Y ) ob-
tained by collapsing the (n − 1)-skeleton of Y to the base point. On the other hand, we denote by T = S1 × S1 and

19 Indeed, varχ1χ2 d = [χ1χ2δ − δ] = [χ1χ2δ − χ2δ] + [χ2δ − δ] = varχ1 d + varχ2 d because [χ2δ] = [δ] = d in H1(MC, ∂MC ;Z).
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I = [0,1] and we consider the map F( f0, f1) : X × ∂I ∪ A × I → Y defined by F( f0, f1)(x, t) = ft(x) if x ∈ X and t ∈ ∂I and
by F( f0, f1)(a, t) = f0(a) = f1(a) if a ∈ A and t ∈ I. Then we have ( f0, f1)

∗ = (i∗×)−1 ◦ ∂∗ ◦ F ∗
( f0, f1)

, where

∂∗ : Hn(X × ∂I ∪ A × I;π) → Hn+1(X × I, X × ∂I ∪ A × I;π)

is the connecting morphism and i∗× : Hn(X, A;π) → Hn+1(X × I, X × ∂I ∪ A × I;π) is the isomorphism induced by the
product by the dual of the natural generator i ∈ H1(I, ∂I), using that (X × I, X × ∂I ∪ A × I) = (X, A)× (I, ∂I).

If C is a chain, respectively a dead branch, we apply the theorem with X = Y := M C which is homeomorphic to T × I,
respectively to X = Y ∼= D × S1. Hence, it is an Eilenberg–MacLane space K (π,1), with π = π1(T × I) = H1(T × I) ∼= Z2

(resp. π = Z). The hypotheses of the previous theorem are trivially satisfied. We also put A := ∂M C ∼= T × ∂I, respectively
A ∼= ∂D × S1 and f0 = id.

If C is a dead branch then

H1(X, A;π) = H1(D × S1, ∂D × S1,Z
)= H1((D, ∂D) × (S1,∅))= 0,

by the relative Künneth formula and by the fact that Hi(D, ∂D) = 0 for i = 0,1. In this case, we obtain that all the extensions
of the identity map on A are homotopic relatively to A.

In the case that C is a chain (of C or a pair of components associated to a strict transform) we obtain that the set of rel-
ative to A homotopy classes of extensions of the identity are in one-to-one correspondence with H1(T× I,T× ∂I;Z2) ∼= Z2.
It suffices to show that if f : T × I → T × I is an extension of the identity on T × ∂I such that var f = 0, then
(id, f )∗ı1(T × I) = (id, id)∗ı1(T × I). In fact, to avoid working with the connecting morphism, it suffices to see that

F ∗
(id, f )ı

1(T × I) = F ∗
(id,id)ı

1(T × I) ∈ H1(T × I × ∂I ∪ T × ∂I × I;Z2).
Since T × I × ∂I ∪ T × ∂I × I = T × ∂(I × I), we see that

H1(T × I × ∂I ∪ T × ∂I × I) ∼= H1(T) ⊕ H1
(
∂(I × I)

)∼= Z3,

hence H1(T × I × ∂I ∪ T × ∂ I × I;Z2) ∼= Hom(H1(T × I × ∂I ∪ T × ∂I × I),Z2) ∼= Z3 ⊗ Z2.
Recall that c0, c1 is a basis of H1(T × I) = H1(T) such that c0 ⊂ D∗ × {eiθ } and c1 ⊂ {z} × S1. Let e be a generator of

H1(∂(I × I)) ∼= Z. It is easy to see that ı1(T × I) ∈ H1(T × I;π1(T × I)) ∼= Hom(H1(T × I), H1(T × I)) can be identified with
the identity map and consequently F ∗

(id, f )ı
1(T × I) ∼= F(id, f )∗ , where

F(id, f )∗ : H1
(
T × ∂(I × I)

)∼= Zc0 ⊕ Zc1 ⊕ Ze → Zc0 ⊕ Zc1 ∼= H1(T × I)

is represented by a matrix of the form(
1 0 k
0 1 m

)
,

where (m,k) ∈ Z2 verify that var f (d) = kc0 + mc1 and d is the generator of H1(T × I,T × ∂I;Z) ∼= Z joining the two
connected components of T × ∂I. The proof of the proposition is now complete. �
5. Mapping class group of a germ of curve

Given a germ of plane curve S we denote by

• G S the set of markings of S by itself, which is a group with the composition;
• ΓS the fundamental group of the pointed Milnor tube Tη \ S;
• Out(ΓS ) := Aut(ΓS)/Inn(ΓS) the group of exterior automorphisms of ΓS ;
• Outg(ΓS ) the subgroup of Out(ΓS) consisting of geometric exterior automorphisms, see Definition 3.17.

Theorem 5.1. The map ∗ : G S → Out(ΓS ) sending each marking [h] to its action h∗ into the fundamental group ΓS , is an isomorphism
onto Outg(ΓS ).

Proof. The map ∗ is well defined precisely because when considering the outer automorphism group we are eliminating
the ambiguity in the choice of h in its fundamental class [h]. The map is trivially a monomorphism of groups thanks to
Proposition 2.8 because Tη \ S is a K (ΓS ,1) space. Finally, that the image of ∗ is Outg(ΓS ) follows from Corollary 3.20. �
Corollary 5.2. Every element of Outg(ΓS ) can be realised by an excellent homeomorphism of (Tη, S) onto itself.

Let AS be the weighted dual tree of the minimal resolution of singularities of S and let SS be the permutation group of
the set of irreducible components of S . There exist two well-defined natural morphisms σ : G S → SS and σ̄ : Aut(AS ) → SS .
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The existence of an excellent homeomorphism in each homotopy class of G S and the fact that σ̄ is one-to-one, proved in
the next lemma, allows us to consider a well-defined morphism

α : G S → Aut(AS)

such that σ = σ̄ ◦ α.

Lemma 5.3. With the precedent notations we have that

(i) σ̄ is one-to-one, and consequently kerσ = kerα;
(ii) α is onto and therefore Imσ = Im σ̄ .

Proof. The first assertion can easily proved by induction on the number r of irreducible components of S . The case r = 1 is
proved by induction on the number g of Puiseux pairs of S . When g = 1 a completely explicit description of the situation
shows that σ̄ is one-to-one in this case. The second assertion can also be proved by induction on the number of irreducible
components of S . When S is irreducible then Aut(AS ) = {id} by Assertion (i). If Si and S j are two irreducible components
of S exchanged by g ∈ Aut(AS ) then the weighted subtrees corresponding to the resolutions of Si and S j are isomorphic. In
this case, it is easy to see that there is a homeomorphism from (Tη, D) onto itself which induces g and which is the identity
outside of a neighbourhood of the part of the divisor D not intersecting the subtrees corresponding to Si and S j . �

Always with the notations (3), (4), (26), (27), for each chain C ∈ C we put K C := T C ∩ D, Tη(∂K C) = Tη(∂(K C ∩ D0)) ∪
Tη(∂(K C ∩ DlC +1)).

Definition 5.4. For each element B ∈ B := R ∪ C we consider the group G B of homotopy classes relatively to K B ∪ Tη(∂K B)

of homeomorphisms from T B onto itself, preserving K B and which are the identity on Tη(∂K B).

Every element of G B induces an excellent marking whose support is contained in Tη(K B). Hence we have a well-defined
morphism

β :
⊕
B∈B

G B → G S .

Proposition 5.5. Fix D ∈ R and C ∈ C.

(i) The group G D is isomorphic to the group A(D•) of relative to S(D) homotopy classes of homeomorphisms of D fixing point-
wise S(D).

(ii) Each element of G C is a Dehn twist along C , cf. Section 4.4.4. In particular, G C ∼= Z2 .

Proof. To prove Assertion (i) we trivialise Tη(K D) ∼= K D × D and we express an excellent representative of an arbitrary
element f of G D under the form ( f , g), where f : K D → K D is a homeomorphism which is the identity on ∂K D and g : K D →
Homeo(D,0) � S1. Since g|∂K D is constant equal to idD it follows that ( f , g) is isotopic to ( f , idD). Thus, f = [( f , g)] is
completely determined by [ f ] ∈ A(D•). Conversely, each element [ f ] ∈ A(D•) determines a unique element [( f , idD)] ∈ G D .
On the other hand, Assertion (ii) follows directly from Proposition 4.13. �

The pure mapping class group A(D•) can be identified to the quotient of the Artin pure braid group on v(D) strands
over the 2-sphere by its centre (which is isomorphic to Z/2Z), see for instance [2]. It can also be compared with the pure
braid group on v(D) − 1 strands over the disk. We call the elements of G D Artin twist over D .

After Proposition 5.5, Theorem B claims that the image of β is the kernel G 0
S of σ , in other words, the Artin twists and

the Dehn twists generate the finite index subgroup G 0
S of the mapping class group G S .

Proof of Theorem B. By Theorem A every element of G 0
S can be represented by an excellent homeomorphism f : Tη → Tη

fixing each irreducible component of D and which is the identity20 over the boundary of each block Tη(K D) and Tη(C).
By Seifert–Van Kampen theorem, the fundamental group ΓS is the amalgamated product of the fundamental groups
ΓS(D) = π1(B D), D ∈ R, of the Seifert blocks in the JSJ decomposition of Mη over the fundamental groups of the es-
sential tori ΓS(C) = π1(TC), C ∈ C. Let D ∈ R be a terminal vertex of the JSJ tree of Mη , cf. Remark 3.11, and let C ∈ C be
its adjacent chain. By composing f by suitable elements of G D and GC we can assume that f∗ :ΓS → ΓS is the identity over
ΓS(D) ⊃ ΓS(C). We conclude by reasoning by induction on the number of Seifert blocks on which f∗ is not the identity.

20 This is possible thanks to the fact that f is holomorphic in a neighbourhood of each singularity of D.
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This proves that the subgroups G D and GC generate G 0
S . On the other hand, their direct product structure follows from the

fact that they have disjoint supports. �
The following example shows that the epimorphism of Theorem B is not one-to-one in general. Thus, it could exist other

relations between the generators of G D and GC apart from those just we make explicit.

Example 5.6. The curve S defined by the equation

f (x, y) = (y2 − x3)2 − αx5 y − βx2 y3 = 0

is irreducible for generic (α,β), it has two Puiseux pairs, the exceptional divisor of its minimal desingularisation consists of
five lines, Ei , i = 1, . . . ,5, numbered in order of appearance, and having intersection matrix⎛⎜⎜⎜⎝

−3 0 1 0 0
0 −2 1 0 0
1 1 −3 0 1
0 0 0 −2 1
0 0 1 1 −1

⎞⎟⎟⎟⎠ .

In this case, there are two irreducible components E3 and E5 having valence three with two (resp. one) adjacent dead
branches E1, E2 (resp. E4). There is only one chain, C , having length 0, which correspond to the point E3 ∩ E5. The fun-
damental group ΓS of a pointed Milnor tube of f admits as generators the homotopy classes a1, b1, c1, b2, c2, d of loops
contained in Hopf fibres of the components E1, E2, E3, E4, E5 and S respectively. The relations of these generators are
generated by

a3
1 = c1 = b2

1, a1b1c2 = c3
1, c2 = b2

2, c1b2d = c2

and

[c1,a1] = [c1,b1] = [c1, c2] = [c2,b2] = [c2,d] = 1. (33)

By taking suitably the base point, the action on ΓS of a Dehn twist along C of type (p,q) has the form

a1 �→ a1, b1 �→ b1, c1 �→ c1, b2 �→ cp
1 b2c−p

1 , c2 �→ c2, d �→ cp
1 dc−p

1 .

After relations (33), it coincides with the inner automorphism associated to the element cp
1 cq

2 ∈ ΓS . Thus, in this case,
β(GC) ⊂ ker(∗) which is trivial.
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