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Properties of

K IS nonconvex

k is not everywhere differentiable

K is quasiconvex (i.e. has convex level sets)
k is difference convex

vV v.v. v Yy

k is pseudoconvex
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 as a difference-convex function (from JBHU)

1/An is log-convex (thus convex):

1
In— = —1In\
An n

An iS concave
—In is convex decreasing
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Example: Markovitz model for portfolio selection

Minimize (x,Qx)

() st. x €Ay, (c,x)>b

Q is a covariance matrix (to be inferred)
An:{xeﬁi\zjxj gl},ce]R”andbe]R
Q is constrained to belong to some polytope P

Minimize £(Q)
st. QeSinP
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w8 = 2

kp(A) — k(A) pointwise as p — oo

HE(A): E:l( )

An(A)

is convex !
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An auxiliary function

-
w8 = 2

kp(A) — k(A) pointwise as p — oo
p+1
HE(A) — 1p ( )

An(A)

rp and xf have the same minimizers

is convex !
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An optimization strategy

Replace the original quasiconvex problem
Minimize x(A)

(#) ‘ st. AcQ

by the surrogate convex problem

() ‘ Minimize «p(A)

st. AcQ

and let p — .
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Introduction

An optimization strategy

Replace the original quasiconvex problem
Minimize x(A)

(#) ‘ st. AcQ

by the surrogate convex problem
Minimize xb(A)
§2% p
(Z9) ‘ st. AeQ
and let p — .

Question: can we approach a solution to Problem () with
solutions to the surrogate problems (27,)?
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Introduction

Main results

Theorem (Exact approximation)

Let p 1 oo, and let Ay, be a solution to Problem (7, ). Then
the sequence (Ap,) has a subsequence which converges to a
global solution A of Problem (7).

Theorem (Inexact approximation)

Let px T oo, and letey | 0. Let A, := Aj,t an s-solution to
Problem (%, ). Then the sequence (Ag) has a subsequence
which converges to a global solution A of Problem (22).

VA€ Q, k(A)> k(Ak) — ek
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A function f: R" — R is said to be quasi-convex if it has convex
level sets.
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Quasi-convexity

Definition
A function f: R" — R is said to be quasi-convex if it has convex
level sets.

lev, () .= {x]|f(x) < a}
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Some convexity properties of &, xkp and h‘g

Quasi-convexity

Definition
A function f: R" — R is said to be quasi-convex if it has convex
level sets.
levy(f) := {x|f(x) < a}
Proposition

k, kp and kb are quasi-convex.
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Proof

leva(k) = {AeSiT|k(A)<a}
= {0}U{A €SIt \(A)— al(A) <0}
= levo(A1 — adn)
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leva(k) = {A€S T[k(A)<a}
= {0} U{A€SITM(A) —arn(A) <O}
= levo(Ar — ahn)

A1 convex

— A1 — a)\n convex
An concave
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A1 convex

— A1 — a)\n convex
An concave

p+1

lev(kp) = levg ()\1" - a/\n)
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Some convexity properties of &, xkp and h‘g

leva(k) = {A€S T[k(A)<a}
= {0} U{A€SITM(A) —arn(A) <O}
= levo(Ar — ahn)

A1 convex

— A1 — a)\n convex
An concave

p+1

lev(kp) = levg ()\1" - a/\n)

K,B(A) <a = kp(A) <allP
|€Va(l<&p) Ia/a]_/p( p)
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Some convexity properties of &, xkp and h‘g

Convexity of «p

Proposition
Suppose f: R" — [0, o0] is
e (uasiconvex,
e lower semi-continuous,
e positively homogeneous of degree p > 1
(Vt >0, ¥x € R", f(tx) = tPf(x)).
Then f is convex.
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Some convexity properties of &, xkp and h‘g

Building a convex set

Lemma

The set-valued mapping r — r - C is increasing on R if and
only if C C R" is a convex set containing the origin.
Consequently, if g: R™ — R is concave and nonnegative on its
domain domg, then the set

U (aly)-cx{y})

yedomg

is a convex subset of R" x R™.
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lllustration

building  {_J (g(y)-C x {y})

yedomg

Pierre Maréchal Optimizing condition numbers



Some convexity properties of &, xkp and h‘g

Proof of the proposition

Pierre Maréchal imizing condition numbers



Some convexity properties of &, xkp and h‘g

Proof of the proposition

We can assume WLOG that Ixg: f(Xg) < oo.
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Proof of the proposition

We can assume WLOG that Ixg: f(Xg) < oo.
m f(0) = 0: Since f is lower semi-continuous, one has:

f(0) =f(limtxg) < limf(t —I tPf =0.
(0) = (tlﬂ)] Xo) t'[Q(XO) |m (Xo)

Since f takes its values in [0, oc], one must have f(0) =
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Some convexity properties of &, xkp and h‘g

Proof of the proposition

We can assume WLOG that Ixg: f(Xg) < oo.
m f(0) = O: Since f is lower semi-continuous, one has:

f(0) =f(limtxg) < limf(t —I tPf =0.
(0) = (tlﬂ)] Xo) t'[Q(XO) |m (Xo)

Since f takes its values in [0, o], one must have f(0) = 0.

m Forallr >0, lev,(f) = r¥/P . levy(f):

leve (f) = {x[f(x) <r} = {xyrflf( )gl}
1
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Some convexity properties of &, xkp and h‘g

Proof of the proposition

m 0 levy(f) := 0" (levy(f)) = levo(f):
0T (leva(f)) = 07 {x € R"[f(x) <1}
= [ {BxeR"f(x) <1}

B>0

= [ {X eR"f(x'/B) <1}
B>0

= [leva(f) = levo(f)
B>0
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Some convexity properties of &, xkp and h‘g

Proof of the proposition

m 0 levy(f) := 0" (levy(f)) = levo(f):
0T (leva(f)) = 07 {x € R"[f(x) <1}
= [ {BxeR"f(x) <1}

B>0

= [ {X eR"f(x'/B) <1}
B>0

= [leva(f) = levo(f)
B>0

Hence, the formula lev, (f) = r*/P . levy(f) holds for every r > 0.
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Some convexity properties of &, xkp and h‘g

Proof of the proposition

m epif is convex

epi f

= {(x,1) eR"x Ry |f(x) <r}
= U (evi(f) x {r})

reR4+

= U (P ten(f) x {r}).

reRy
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Some convexity properties of &, xkp and h‘g

Proof of the proposition

m epif is convex
{(x,r) e R" x Ry |[f(x) <r}
= U (evi(f) x {r})

reR4+

= U (rl/p levy(f) x {r}) :

reRy

epi f

The conclusion then follows by the Lemma. =
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Basic facts in nonsmooth analysis

The Clarke directional derivative

Suppose f: R" — R is Lipschitz near xo. Given v, the ratio

f(x +tv) —f(x)
t

(t>0)

is bounded for (x,t) sufficiently close to (xg,0). The Clarke
directional derivative is then defined as

f°(xo; V) = limsup fx+tv) = (x)

XHXO t
t10
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Basic facts in nonsmooth analysis

The Clarke subdifferential

The Clarke subdifferential of f at xq is the subset of R" defined

by
Of(xo) = {€€R" | W e R", (£,v) <f°(xo;V)}.
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Basic facts in nonsmooth analysis

The Clarke subdifferential

The Clarke subdifferential of f at xq is the subset of R" defined
by
f(x0) = {£ € R" | W € R", (£,v) <f°(xo;v)}.

Theorem
Letf: R" — R be locally Lipschitz and xg € R". Then

e 0f(xp) is convex compact;
e foreveryv € R", f°(Xo;v) = max {({,v)|& € Of(xo) }-
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A fundamental result

Letf: R" — R be locally Lipschitz. Rademacher’s theorem
then says that f is differentiable almost everywhere.
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Basic facts in nonsmooth analysis

A fundamental result

Letf: R" — R be locally Lipschitz. Rademacher’s theorem
then says that f is differentiable almost everywhere.

Theorem
Let Q¢ := {x € R"|f is not differentiable at x }. Then of (x) is

the convex hull of the set

Xk € Qf, Xk — X, kIim VT (xk) exists}.
—00

{kli_>mOO ViT(xk)
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Basic facts in nonsmooth analysis

Example

1
f(x) = x?sin =
(x) X

0002

0000
-0.002
-0.004
-0.006-

-0.008-

o f is differentiable on RR;
e f/(0) =0and of (0) = [-1, 1].
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Clarke regularity

Recall that the standard directional derivative is

f(Xo +tv) — f(Xo)
t|0 t

whenever the limit exists.
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Basic facts in nonsmooth analysis

Clarke regularity

Recall that the standard directional derivative is

f(Xo +tv) — f(Xo)
t|0 t

whenever the limit exists.

The function f is said to be Clarke regular at xg (or merely
regular at xo) if, for every v e R", f’(xq; v) exists and

f'(xo; v) = f°(xo; V).
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Basic facts in nonsmooth analysis

Clarke regularity

Recall that the standard directional derivative is

f(Xo +tv) — f(Xo)
t|0 t

whenever the limit exists.

The function f is said to be Clarke regular at xg (or merely
regular at xo) if, for every v e R", f’(xq; v) exists and

f'(x0; V) = 1°(X0; V).
Theorem
Letf: R" — R be continuously differentiable. Then f is Clarke
regular and, for every x, of (x) = {Vf(x)}.
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Basic facts in nonsmooth analysis

Example

e 0f(0) =[-1,1], thus f°(0,1) = sup{¢|¢ € [-1,1]} = 1;
e f/(0,1) = —1.
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Basic facts in nonsmooth analysis

Example

e 0f(0) =[-1,1], thus f°(0,1) = sup{¢|¢ € [-1,1]} = 1,
e f/(0,1) = —1.

f is not regular at 0
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Basic facts in nonsmooth analysis

Quotient rule

Proposition
Let f;,f,: R" — R be Lipschitz near xo. Assume that

e f1(Xo) > 0 and fa(xg) > O;
o f; and —f, are Clarke regular at Xg.

Then, f1 /f, is Clarke regular at xo and

9 <f1> (%) = f2(%0)9f1(Xo) — f1(x0)If2(x0)

fa f2(xo0)
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Basic facts in nonsmooth analysis

Composition rule

Proposition
Let S be a subset of R" and xg € intS. Letf = g o h, where
h:S — Randg: R — R. Assume that
e g is continuously differentiable at h(xp);
e his Lipschitz near Xxg.
Then
0f (o) = 9'(h(X0))oh(Xo)-

Moreover, if g is continuously differentiable in a neighborhood
of h(xp) and h is Clarke regular at X, then f is also Clarke
regular at xg.

Pierre Maréchal Optimizing condition numbers



Basic facts in nonsmooth analysis

A regularity trick

Lemma
Letf: R" — R be locally Lipschitz, xo € R" and o: R — R.
Assume that
e —f is Clarke regular at Xxp;
e (v is continuously differentiable and non-decreasing
at f(xp).

Then —p of is Clarke regular at xg and

I(—p of)(x0) = —¢'(f(%0))If (X0) = ¢ (f (%0))A(—F)(Xo)

Pierre Maréchal Optimizing condition numbers



Basic facts in nonsmooth analysis

The formula is an immediate consequence of the chain rule
(since f is Lipschitz near xg).
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Basic facts in nonsmooth analysis

The formula is an immediate consequence of the chain rule
(since f is Lipschitz near xg). By the Mean Value Theorem
applied to o,

—p(f(xo +tv)) + ¢ (f(x0)) = ¢'(u)(—f (X0 +tv) +F(xo))
for some u € [f(Xo),f(Xo + tv)].

Pierre Maréchal Optimizing condition numbers



Basic facts in nonsmooth analysis

The formula is an immediate consequence of the chain rule
(since f is Lipschitz near xg). By the Mean Value Theorem
applied to o,

—p(f(xo +tv)) + ¢ (f(x0)) = ¢'(u)(—f (X0 +tv) +F(xo))
for some u € [f(xo),f(Xo + tv)]. Now,

—(f(Xo +tv)) + ¢(f(x0))
t
— TR L ) (1) (00v)

(the regularity of —f ensures existence of the limit).
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Basic facts in nonsmooth analysis

The formula is an immediate consequence of the chain rule
(since f is Lipschitz near xg). By the Mean Value Theorem
applied to o,

—p(f(xo +tv)) + o(f(x0)) = ¢'(u)(~F(xo +tv) + f (o))
for some u € [f(xo),f(Xo + tv)]. Now,

—¢(f(xo +tv)) + ¢(f (X0))

t

—f(Xo +tv) +f(Xo) ti0
= (TR ) 1y i v)
(the regularity of —f ensures existence of the limit). Thus,

(o f)(x0iv) = &' (f(x0))(—F) (X0; V).
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Basic facts in nonsmooth analysis

Proof (end)

Since  9(—pof)(xo) = ¢'(f(X0))I(—F)(Xo),

—pof)°(Xg;v) = max S,V
(cpofPbov) = max (sv)

= max '(f(x0))(s",v
jomax  ¢l(1(x0))(s'.v)

= so’(f(xO))S,Earpg>)<(XO)<S’,v>
= ¢'(f(x0))(=F)°(x0: V)
= ¢'(f(x0))(—f) (xo;Vv) [regularity of —f]

= (—pof)(xo:v) [ previous step ]
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Convergence analysis

Subgradients

Proposition
Let A € S;T. Then:

Ok (A) = Au(A)2k(A) [DAa(A) — K(A)IAN(A)]
ORB(A) = K(A)P [( 1)071(A) — Pr(A)IAN(A)]
D) = Ma(A) T w(A) [P Lory(A) - w(A)IA(A)

Pierre Maréchal Optimizing condition numbers



Convergence analysis

Pseudoconvexity
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Convergence analysis

Pseudoconvexity

LetQ c R", x € Qand f: R" — R, Isc and Lipschitz near X.
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Convergence analysis

Pseudoconvexity

LetQ c R", x € Qand f: R" — R, Isc and Lipschitz near X.

(1) We say that f is pseudoconvex at X on Q if
e, f°(X;x—-X)>0 = f(x)>f(X).

We say that f is pseudoconvex on € if f is pseudoconvex at
every X € Qon Q.
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Convergence analysis

Pseudoconvexity

LetQ c R", x € Qand f: R" — R, Isc and Lipschitz near X.

(1) We say that f is pseudoconvex at X on Q if
e, f°(X;x—-X)>0 = f(x)>f(X).

We say that f is pseudoconvex on € if f is pseudoconvex at
every X € Qon Q.

(2) We say that f is strongly pseudoconvex at X on Q if
Ve € Of(X), WxeQ, (Ex—X)>0 = f(x)>f(X).

We say that f is strongly pseudoconvex on Q if f is strongly
pseudoconvex at every X €  on .
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Convergence analysis

Optimality condition for pseudoconvex functions

Theorem .
Letx € Q C R", where Q is closed convex. Let f: R" — R be
lower semicontinuous and Lipschitz near X. If f is
pseudoconvex at X on £, then the following are equivalent:
(a) X is a global minimizer of f on Q;

(b) 0 € af(X) + Ng(X).

Pierre Maréchal Optimizing condition numbers



Convergence analysis

Proof of (b) = (a)
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Convergence analysis

Proof of (b) = (a)

Assume that 0 € 0f (X) + Nq(X):
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Convergence analysis

Proof of (b) = (a)

Assume that 0 € 0f (X) + Nq(X):

There exists & € 0f (X) such that —£y € No(X)
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Convergence analysis

Proof of (b) = (a)

Assume that 0 € 0f (X) + Nq(X):
There exists & € 0f (X) such that —£y € No(X)

VX GQJ <_§07X_)_(>§0
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Convergence analysis

Proof of (b) = (a)

Assume that 0 € 0f (X) + Nq(X):
There exists & € 0f (X) such that —£y € No(X)
VX GQJ <_§07X_)_(>§0

VX € Q, max{(,x —Xx)|£€df(X)} >0

fo(X;x—X)
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Convergence analysis

Proof of (b) = (a)

Assume that 0 € 0f (X) + Nq(X):
There exists & € 0f (X) such that —£y € No(X)
VX GQJ <_§07X_)_(>§0

VX € Q, max{(,x —Xx)|£€df(X)} >0

fo(X;x—X)

vx € Q, f(x)>f(X) [pseudoconvexity]
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Convergence analysis

Optimality condition for x
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Convergence analysis

Optimality condition for x

Proposition
The function « is strongly pseudoconvex. Consequently, A
minimizes « over Q is and only if 0 € dx(A) + Ng(X).
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Convergence analysis
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Convergence analysis

9r(A) = A1 (A) 1 i(A) (0AL(A) — K(A)DAn(A))
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Convergence analysis

9k (A) = M(A) " 1(A) (0A1(A) — K(A)DA(A))

V € dr(A) & V = \(A) 1k(A)( Yy —k(A) Vo )
€M (A) AAn(A)
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Convergence analysis

9r(A) = A1 (A) 1 i(A) (0AL(A) — K(A)DAn(A))

Vedr(A) & V=MA)"wA)( Vi —k(A) Vi)

~~ ~~
€\ (A) An(A)
AL(A) = £(A)An(A) = A(A) =M1 (A) +r(A) (=An(A)+2n(A))
N————
> (V1,A—A) >(—Vn,A—A)
[A1 convex] [—Xn convex]
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Convergence analysis

9r(A) = A1 (A) 1 i(A) (0AL(A) — K(A)DAn(A))

Vear(A) & V =MA) kA Vi —k(A) V)

~~ ~~
€A (A) AAn(A)
A1(A) = K(A)An(A) = A1 (A)=A1(A) +5(A) (= (A)+An(A))
N—————’
>(Vq,A—A) >(—Vn,A-A)
[A1 convex] [—Xn convex]

M(A) — K(A)Aa(A) > (Vi — k(AWVn, A — A) = A (A)k(A) 1V, A - A)
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Convergence analysis

9r(A) = A1 (A) 1 i(A) (0AL(A) — K(A)DAn(A))

Vedr(A) & V=MA)"wA)( Vi —k(A) Vi)

~~ ~~
€\ (A) An(A)
AL(A) = £(A)An(A) = A(A) =M1 (A) +r(A) (=An(A)+2n(A))
N————
> (V1,A—A) >(—Vn,A—A)
[A1 convex] [—Xn convex]

M(A) = K(A)Aa(A) > (Vi — k(AWVn, A — A) = A (A)k(A) "1V, A - A)

A1 (A)k(A)—1V

(V,A—A) >0 = MN(A) = #(A)A(A) >0 < k(A) > x(A)
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Convergence analysis

Our main convergence result
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Convergence analysis

Our main convergence result

Theorem (Exact approximation)

Let py T oo, and let Ay, be a solution to Problem (7, ). Then
the sequence (Ap, ) has a subsequence which converges to a
global solution A of Problem (7).
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Convergence analysis
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Convergence analysis

Since Q2 is compact, taking a subsequence, we can assume that (Ap,)
converges to some A € Q. We shall prove that 0 € dx(A). The conclusion will
follow by the pseudoconvexity argument.
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Convergence analysis

Since Q2 is compact, taking a subsequence, we can assume that (Ap,)
converges to some A € Q. We shall prove that 0 € dx(A). The conclusion will
follow by the pseudoconvexity argument.

Optimality condition for Ay, :

0 € MalAn) ™ k() ( PSEE0M(Rn) — 1(An )N (An) ) +Naln)

Bnpk (Apk)
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Convergence analysis

Since Q2 is compact, taking a subsequence, we can assume that (Ap,)
converges to some A € Q. We shall prove that 0 € dx(A). The conclusion will
follow by the pseudoconvexity argument.

Optimality condition for Ay, :

0€ MalAn) ™ n(An) ( PSE0M (Rn) — 1(An )N () ) +Naln)

Bnpk (Apk)

Thus, there exist V. € 9, (A, ) and V) € O\ (A, ) such that

pk +1

IV k(B VI ) + NalAn)

_ 1-pe
0 € Ma(An) ™ r(An) (
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Convergence analysis

Proof (end)

Reminder: O\ (A) = co{xx " [x € R", |x|| =1, Ax = A (A) - x } (Cox,
Overton, Lewis).
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Convergence analysis

Proof (end)

Reminder: O\ (A) = co{xx " [x € R", |x|| =1, Ax = A (A) - x } (Cox,
Overton, Lewis). Thus 9\ (A) is compact, and it follows that, taking a
subsequence, we can assume that

Vi) —Vieon(A) and VI -V, ean(A),

by closedness of the multifunctions 91 and 9 An.
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Convergence analysis

Proof (end)

Reminder: O\ (A) = co{xx " [x € R", |x|| =1, Ax = A (A) - x } (Cox,
Overton, Lewis). Thus 9« (A) is compact, and it follows that taking a
subsequence, we can assume that

Vi) —Vieon(A) and VI -V, ean(A),

by closedness of the multifunctions 91 and 9 An.
Since Ngq is also a closed multifunction, we can pass to the limit in

o leme 1 _ _
0 € M) % () (PEERVI — wlAp VI ) 4 Na(A,)
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Convergence analysis

Proof (end)

Reminder: O\ (A) = co{xx " [x € R", |x|| =1, Ax = A (A) - x } (Cox,
Overton, Lewis). Thus 9« (A) is compact, and it follows that taking a
subsequence, we can assume that

Vi) —Vieon(A) and VI -V, ean(A),

by closedness of the multifunctions 91 and 9 An.
Since Ngq is also a closed multifunction, we can pass to the limit in

o leme 1 _ _
0 € M) % () (PEERVI — wlAp VI ) 4 Na(A,)

and obtain

0 € A(A) r(A)( \\7L —k(A) i/,”« ) +Na(A) C 9rk(A) + Na(A).

€ar(A) €dxn(A)

€or(A)
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