Optimizing condition numbers

PIERRE MARÉCHAL

Toulouse (France)

Joint work with Jane Ye

Victoria (Canada)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{\rho}$ and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

$$(\mathscr{P}) \quad \begin{vmatrix} \mathsf{Minimize} & \kappa(A) \\ \mathsf{s.t.} & \mathbf{A} \in \Omega \end{vmatrix}$$

Ω compact convex subset of S_n^+ (not containing the null matrix)

< 日 > < 回 > < 回 > < 回 > < 回 > <

æ

$$(\mathscr{P}) \quad \begin{vmatrix} \mathsf{Minimize} & \kappa(A) \\ \mathsf{s.t.} & A \in \Omega \end{vmatrix}$$

Ω compact convex subset of S_n^+ (not containing the null matrix)

 $\kappa(A)$ condition number of A

< 日 > < 回 > < 回 > < 回 > < 回 > <

æ

$$(\mathscr{P}) \quad \begin{vmatrix} \mathsf{Minimize} & \kappa(A) \\ \mathsf{s.t.} & A \in \Omega \end{vmatrix}$$

Ω compact convex subset of S_n^+ (not containing the null matrix)

 $\kappa(A)$ condition number of A

 $\kappa(A) = \begin{cases} \lambda_1(A)/\lambda_n(A) & \text{if } \lambda_n(A) > 0\\ \infty & \text{if } \lambda_n(A) = 0 \text{ and } \lambda_1(A) > 0\\ 0 & \text{if } A = 0 \end{cases}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

$$(\mathscr{P}) \quad \begin{vmatrix} \mathsf{Minimize} & \kappa(A) \\ \mathsf{s.t.} & A \in \Omega \end{vmatrix}$$

Ω compact convex subset of S_n^+ (not containing the null matrix)

 $\kappa(A)$ condition number of A

 $\kappa(A) = \begin{cases} \lambda_1(A)/\lambda_n(A) & \text{if } \lambda_n(A) > 0\\ \infty & \text{if } \lambda_n(A) = 0 \text{ and } \lambda_1(A) > 0\\ 0 & \text{if } A = 0\\ \lambda_1(A) \ge \ldots \ge \lambda_n(A) \text{ eigenvalues of } A \end{cases}$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● ● ● ●

$$(\mathscr{P}) \quad \begin{vmatrix} \mathsf{Minimize} & \kappa(A) \\ \mathsf{s.t.} & A \in \Omega \end{vmatrix}$$

Ω compact convex subset of S_n^+ (not containing the null matrix)

 $\kappa(A)$ condition number of A

 $\kappa(A) = \begin{cases} \lambda_1(A)/\lambda_n(A) & \text{if } \lambda_n(A) > 0\\ \infty & \text{if } \lambda_n(A) = 0 \text{ and } \lambda_1(A) > 0\\ 0 & \text{if } A = 0\\ \lambda_1(A) \ge \ldots \ge \lambda_n(A) \text{ eigenvalues of } A \end{cases}$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● ● ● ●

Introduction Some convexity properties of κ_{ρ} , κ_{ρ} and κ_{ρ}^{β} Basic facts in nonsmooth analysis Convergence analysis

Properties of κ

Pierre Maréchal Optimizing condition numbers

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{\rho}$ and κ_{ρ}^{β} Basic facts in nonsmooth analysis Convergence analysis

• κ is nonconvex

Pierre Maréchal Optimizing condition numbers

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

• κ is nonconvex

• κ is not everywhere differentiable

イロン イヨン イヨン ・

- κ is nonconvex
- \triangleright κ is not everywhere differentiable
- κ is quasiconvex (i.e. has convex level sets)

<ロ> <同> <同> < 同> < 回> < □> < □> <

- κ is nonconvex
- \triangleright κ is not everywhere differentiable
- κ is quasiconvex (i.e. has convex level sets)
- κ is difference convex

< 日 > < 回 > < 回 > < 回 > < 回 > <

- κ is nonconvex
- \triangleright κ is not everywhere differentiable
- κ is quasiconvex (i.e. has convex level sets)
- κ is difference convex
- κ is pseudoconvex

κ as a difference-convex function (from JBHU)

Pierre Maréchal Optimizing condition numbers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

κ as a difference-convex function (from JBHU)

$$\kappa = \frac{\lambda_1}{\lambda_n} = \frac{1}{2} \left[\left(\lambda_1 + \frac{1}{\lambda_n} \right)^2 - \left(\lambda_1^2 + \frac{1}{\lambda_n^2} \right) \right]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

κ as a difference-convex function (from JBHU)

$$\kappa = \frac{\lambda_1}{\lambda_n} = \frac{1}{2} \left[\left(\lambda_1 + \frac{1}{\lambda_n} \right)^2 - \left(\lambda_1^2 + \frac{1}{\lambda_n^2} \right) \right]$$

 $1/\lambda_n$ is log-convex (thus convex):

$$\ln \frac{1}{\lambda_n} = -\ln \lambda_n$$

Pierre Maréchal Optimizing condition numbers

イロト イヨト イヨト ・ ヨトー

æ

κ as a difference-convex function (from JBHU)

$$\kappa = \frac{\lambda_1}{\lambda_n} = \frac{1}{2} \left[\left(\lambda_1 + \frac{1}{\lambda_n} \right)^2 - \left(\lambda_1^2 + \frac{1}{\lambda_n^2} \right) \right]$$

 $1/\lambda_n$ is log-convex (thus convex):

$$\ln \frac{1}{\lambda_n} = -\ln \frac{\lambda_n}{\lambda_n}$$

 λ_n is concave

イロト イヨト イヨト ・ ヨトー

κ as a difference-convex function (from JBHU)

$$\kappa = \frac{\lambda_1}{\lambda_n} = \frac{1}{2} \left[\left(\lambda_1 + \frac{1}{\lambda_n} \right)^2 - \left(\lambda_1^2 + \frac{1}{\lambda_n^2} \right) \right]$$

 $1/\lambda_n$ is log-convex (thus convex):

$$\ln \frac{1}{\lambda_n} = -\ln \lambda_n$$

 λ_n is concave

- In is convex decreasing

イロト イヨト イヨト イヨト

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{\rho}$ and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Example: Markovitz model for portfolio selection

Pierre Maréchal Optimizing condition numbers

æ

Example: Markovitz model for portfolio selection

Pierre Maréchal Optimizing condition numbers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: Markovitz model for portfolio selection

Q is a covariance matrix (to be inferred)

Pierre Maréchal Optimizing condition numbers

Example: Markovitz model for portfolio selection

Q is a covariance matrix (to be inferred)

$$\Delta_n = \left\{ oldsymbol{x} \in \mathbb{R}^n_+ | \sum_j oldsymbol{x}_j \leq oldsymbol{1}
ight\}$$
, $oldsymbol{c} \in \mathbb{R}^n$ and $oldsymbol{b} \in \mathbb{R}$

Example: Markovitz model for portfolio selection

Q is a covariance matrix (to be inferred)

$$\Delta_n = \Big\{ m{x} \in \mathbb{R}^n_+ | \sum_j m{x}_j \leq m{1} \Big\}, \, m{c} \in \mathbb{R}^n ext{ and } m{b} \in \mathbb{R}$$

Q is constrained to belong to some polytope P

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

.

Example: Markovitz model for portfolio selection

Q is a covariance matrix (to be inferred)

$$\Delta_n = \Big\{ m{x} \in \mathbb{R}^n_+ | \sum_j m{x}_j \leq m{1} \Big\}, \, m{c} \in \mathbb{R}^n ext{ and } m{b} \in \mathbb{R}$$

Q is constrained to belong to some polytope P

 $\begin{vmatrix} \text{Minimize} & \kappa(\mathsf{Q}) \\ \text{s.t.} & \mathsf{Q} \in S_n^+ \cap P \end{vmatrix}$

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{\rho}$ and κ_{ρ}^{β} Basic facts in nonsmooth analysis Convergence analysis

An auxiliary function

Pierre Maréchal Optimizing condition numbers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{\rho}$ and κ_{ρ}^{β} Basic facts in nonsmooth analysis Convergence analysis

An auxiliary function

$$\kappa(A) = \frac{\lambda_1(A)}{\lambda_n(A)}$$

Pierre Maréchal Optimizing condition numbers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

Some convexity properties of κ , κ_p and κ_p^p Basic facts in nonsmooth analysis Convergence analysis

An auxiliary function

$$\kappa(A) = \frac{\lambda_1(A)}{\lambda_n(A)}$$

$$\kappa_{p}(A) = \frac{\lambda_{1}^{\frac{p+1}{p}}(A)}{\lambda_{n}(A)}$$

Pierre Maréchal Optimizing condition numbers

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{\rho}$ and κ_{ρ}^{β} Basic facts in nonsmooth analysis Convergence analysis

An auxiliary function

$$\kappa(\mathbf{A}) = \frac{\lambda_1(\mathbf{A})}{\lambda_n(\mathbf{A})}$$

$$\kappa_{p}(A) = \frac{\lambda_{1}^{\frac{p+1}{p}}(A)}{\lambda_{n}(A)}$$

$$\kappa_{
m
ho}({
m A})
ightarrow \kappa({
m A})$$
 pointwise as ${
m
ho}
ightarrow \infty$

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

An auxiliary function

$$\kappa(\mathbf{A}) = \frac{\lambda_1(\mathbf{A})}{\lambda_n(\mathbf{A})}$$

$$\kappa_{p}(A) = \frac{\lambda_{1}^{\frac{p+1}{p}}(A)}{\lambda_{n}(A)}$$

 $\kappa_{p}(A) \rightarrow \kappa(A)$ pointwise as $p \rightarrow \infty$

$$\kappa_p^p(A) = rac{\lambda_1^{p+1}(A)}{\lambda_n^p(A)}$$
 is convex !

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

An auxiliary function

$$\kappa(\mathbf{A}) = \frac{\lambda_1(\mathbf{A})}{\lambda_n(\mathbf{A})}$$

$$\kappa_{p}(A) = \frac{\lambda_{1}^{\frac{p+1}{p}}(A)}{\lambda_{n}(A)}$$

 $\kappa_{\mathcal{P}}(\mathcal{A})
ightarrow \kappa(\mathcal{A})$ pointwise as $\mathcal{P}
ightarrow \infty$

$$\kappa_p^p(A) = rac{\lambda_1^{p+1}(A)}{\lambda_n^p(A)}$$
 is convex !

 κ_p and κ_p^p have the same minimizers

Introduction Some convexity properties of κ_{ρ} , κ_{ρ} and κ_{ρ}^{β} Basic facts in nonsmooth analysis Convergence analysis

An optimization strategy

Pierre Maréchal Optimizing condition numbers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An optimization strategy

Replace the original quasiconvex problem(\mathscr{P})Minimize $\kappa(A)$ s.t. $A \in \Omega$

by the surrogate convex problem

$$(\mathscr{P}_{p}) \quad \begin{vmatrix} \text{Minimize} & \kappa_{p}^{p}(A) \\ \text{s.t.} & A \in \Omega \end{vmatrix}$$

and let $p \to \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

An optimization strategy

Replace the original quasiconvex problem (\mathscr{P}) Minimize $\kappa(A)$ $\mathfrak{s.t.} A \in \Omega$

by the surrogate convex problem

$$(\mathscr{P}_p) \quad \begin{vmatrix} \text{Minimize} & \kappa_p^p(A) \\ \text{s.t.} & A \in \Omega \end{vmatrix}$$

and let $p \to \infty$.

Question: can we approach a solution to Problem (\mathscr{P}) with solutions to the surrogate problems (\mathscr{P}_p)?

Introduction Some convexity properties of κ_{ρ} , κ_{ρ} and κ_{ρ}^{β} Basic facts in nonsmooth analysis Convergence analysis

Main results

Pierre Maréchal Optimizing condition numbers

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

Main results

Theorem (Exact approximation)

Let $p_k \uparrow \infty$, and let \bar{A}_{p_k} be a solution to Problem (\mathscr{P}_{p_k}) . Then the sequence (\bar{A}_{p_k}) has a subsequence which converges to a global solution \bar{A} of Problem (\mathscr{P}) .
Main results

Theorem (Exact approximation)

Let $p_k \uparrow \infty$, and let \bar{A}_{p_k} be a solution to Problem (\mathscr{P}_{p_k}) . Then the sequence (\bar{A}_{p_k}) has a subsequence which converges to a global solution \bar{A} of Problem (\mathscr{P}) .

Theorem (Inexact approximation)

Let $p_k \uparrow \infty$, and let $\varepsilon_k \downarrow 0$. Let $\bar{A}_k := \bar{A}_{p_k}^{\varepsilon_k}$ an ε_k -solution to Problem (\mathscr{P}_{p_k}). Then the sequence (\bar{A}_k) has a subsequence which converges to a global solution \bar{A} of Problem (\mathscr{P}).

(ロ) (部) (E) (E) (E)

Main results

Theorem (Exact approximation)

Let $p_k \uparrow \infty$, and let \bar{A}_{p_k} be a solution to Problem (\mathscr{P}_{p_k}) . Then the sequence (\bar{A}_{p_k}) has a subsequence which converges to a global solution \bar{A} of Problem (\mathscr{P}) .

Theorem (Inexact approximation)

Let $p_k \uparrow \infty$, and let $\varepsilon_k \downarrow 0$. Let $\bar{A}_k := \bar{A}_{p_k}^{\varepsilon_k}$ an ε_k -solution to Problem (\mathscr{P}_{p_k}). Then the sequence (\bar{A}_k) has a subsequence which converges to a global solution \bar{A} of Problem (\mathscr{P}).

$$orall A \in \Omega, \quad \kappa(A) \geq \kappa(ar{A}_k) - arepsilon_k$$

(ロ) (部) (E) (E) (E)

Quasi-convexity

Pierre Maréchal Optimizing condition numbers

イロン イヨン イヨン ・

Quasi-convexity

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be *quasi-convex* if it has convex level sets.

・ロト ・四ト ・ヨト ・ヨト

æ

Quasi-convexity

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be *quasi-convex* if it has convex level sets.

$$\operatorname{lev}_{\alpha}(f) := \{ \boldsymbol{x} | f(\boldsymbol{x}) \leq \alpha \}$$

・ロト ・四ト ・ヨト ・ヨト

æ

Quasi-convexity

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be *quasi-convex* if it has convex level sets.

$$\operatorname{lev}_{\alpha}(f) := \{ \boldsymbol{x} | f(\boldsymbol{x}) \leq \alpha \}$$

Proposition

 κ , κ_p and κ_p^p are quasi-convex.

르

Pierre Maréchal Optimizing condition numbers

Proof

$$lev_{\alpha}(\kappa) := \{A \in S_n^{++} | \kappa(A) \le \alpha\}$$

= $\{0\} \cup \{A \in S_n^{++} | \lambda_1(A) - \alpha \lambda_n(A) \le 0\}$
= $lev_0(\lambda_1 - \alpha \lambda_n)$

Proof

$$\begin{split} \operatorname{lev}_{\alpha}(\kappa) &:= \left\{ \boldsymbol{A} \in \boldsymbol{S}_{n}^{++} | \kappa(\boldsymbol{A}) \leq \alpha \right\} \\ &= \left\{ \boldsymbol{0} \right\} \cup \left\{ \boldsymbol{A} \in \boldsymbol{S}_{n}^{++} | \lambda_{1}(\boldsymbol{A}) - \alpha \lambda_{n}(\boldsymbol{A}) \leq \boldsymbol{0} \right\} \\ &= \operatorname{lev}_{\boldsymbol{0}}(\lambda_{1} - \alpha \lambda_{n}) \end{split}$$

$$\left.\begin{array}{c}\lambda_{1} \text{ convex}\\\lambda_{n} \text{ concave}\end{array}\right\} \Longrightarrow \lambda_{1} - \alpha \lambda_{n} \text{ convex}$$

Pierre Maréchal Optimizing condition numbers

Proof

$$\begin{split} \operatorname{lev}_{\alpha}(\kappa) &:= \left\{ \boldsymbol{A} \in \boldsymbol{S}_{n}^{++} | \kappa(\boldsymbol{A}) \leq \alpha \right\} \\ &= \left\{ \boldsymbol{0} \right\} \cup \left\{ \boldsymbol{A} \in \boldsymbol{S}_{n}^{++} | \lambda_{1}(\boldsymbol{A}) - \alpha \lambda_{n}(\boldsymbol{A}) \leq \boldsymbol{0} \right\} \\ &= \operatorname{lev}_{\boldsymbol{0}}(\lambda_{1} - \alpha \lambda_{n}) \end{split}$$

$$\left.\begin{array}{c}\lambda_{1} \text{ convex}\\\lambda_{n} \text{ concave}\end{array}\right\} \Longrightarrow \lambda_{1} - \alpha \lambda_{n} \text{ convex}$$

$$\operatorname{lev}_{\alpha}(\kappa_{p}) = \operatorname{lev}_{0}\left(\lambda_{1}^{\frac{p+1}{p}} - \alpha\lambda_{n}\right)$$

Proof

$$\begin{split} \operatorname{lev}_{\alpha}(\kappa) &:= \left\{ \boldsymbol{A} \in \boldsymbol{S}_{n}^{++} | \kappa(\boldsymbol{A}) \leq \alpha \right\} \\ &= \left\{ \boldsymbol{0} \right\} \cup \left\{ \boldsymbol{A} \in \boldsymbol{S}_{n}^{++} | \lambda_{1}(\boldsymbol{A}) - \alpha \lambda_{n}(\boldsymbol{A}) \leq \boldsymbol{0} \right\} \\ &= \operatorname{lev}_{\boldsymbol{0}}(\lambda_{1} - \alpha \lambda_{n}) \end{split}$$

$$\left. \begin{array}{c} \lambda_1 \text{ convex} \\ \lambda_n \text{ concave} \end{array} \right\} \Longrightarrow \lambda_1 - \alpha \lambda_n \text{ convex}$$

$$\operatorname{lev}_{\alpha}(\kappa_{p}) = \operatorname{lev}_{0}\left(\lambda_{1}^{\frac{p+1}{p}} - \alpha\lambda_{n}\right)$$

$$\kappa_{p}^{p}(A) \leq \alpha \iff \kappa_{p}(A) \leq \alpha^{1/p} \ \operatorname{lev}_{\alpha}(\kappa_{p}^{p}) = \operatorname{lev}_{\alpha^{1/p}}(\kappa_{p})$$

Proposition

Suppose $f \colon \mathbb{R}^n \to [0,\infty]$ is

- quasiconvex,
- lower semi-continuous,
- positively homogeneous of degree $p \ge 1$ $(\forall t > 0, \forall x \in \mathbb{R}^n, f(tx) = t^p f(x)).$

Then *f* is convex.

(ロ) (部) (E) (E) (E)

Building a convex set

Lemma

The set-valued mapping $r \mapsto r \cdot C$ is increasing on \mathbb{R}_+ if and only if $C \subset \mathbb{R}^n$ is a convex set containing the origin. Consequently, if $g \colon \mathbb{R}^m \to \overline{\mathbb{R}}$ is concave and nonnegative on its domain dom g, then the set

is a convex subset of $\mathbb{R}^n \times \mathbb{R}^m$.

· 세례 M 세 문 M 세 문 M / 문

Illustration

Proof of the proposition

Pierre Maréchal Optimizing condition numbers

イロン イヨン イヨン ・

Proof of the proposition

We can assume wLOG that $\exists x_0 : f(x_0) < \infty$.

Proof of the proposition

We can assume wLOG that $\exists x_0 : f(x_0) < \infty$.

• f(0) = 0: Since f is lower semi-continuous, one has:

$$f(0) = f(\lim_{t\downarrow 0} tx_0) \le \lim_{t\downarrow 0} f(tx_0) = \lim_{t\downarrow 0} t^{\rho}f(x_0) = 0.$$

Since *f* takes its values in $[0, \infty]$, one must have f(0) = 0.

Proof of the proposition

We can assume wLOG that $\exists x_0 : f(x_0) < \infty$.

• f(0) = 0: Since f is lower semi-continuous, one has:

$$f(0) = f(\lim_{t\downarrow 0} tx_0) \le \lim_{t\downarrow 0} f(tx_0) = \lim_{t\downarrow 0} t^{\rho}f(x_0) = 0.$$

Since *f* takes its values in $[0, \infty]$, one must have f(0) = 0.

• For all r > 0, $lev_r(f) = r^{1/p} \cdot lev_1(f)$:

$$lev_{r}(f) = \{x | f(x) \le r\} = \{x | r^{-1}f(x) \le 1\}$$
$$= \{x | f(r^{-1/p}x) \le 1\}$$
$$= \{r^{1/p}x' | f(x') \le 1\} = r^{1/p}lev_{1}(f)$$

Proof of the proposition

• $0 \cdot \operatorname{lev}_1(f) := 0^+(\operatorname{lev}_1(f)) = \operatorname{lev}_0(f)$: $0^+(\text{lev}_1(f)) = 0^+ \{ x \in \mathbb{R}^n | f(x) \le 1 \}$ $= \bigcap \left\{ \beta \mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) \le 1 \right\}$ $\beta > 0$ $= \bigcap \left\{ \mathbf{x}' \in \mathbb{R}^n | f(\mathbf{x}'/\beta) \leq 1 \right\}$ $\beta > 0$ $= \bigcap \operatorname{lev}_{\beta^p}(f) = \operatorname{lev}_0(f)$ $\beta > 0$

Proof of the proposition

• $0 \cdot \operatorname{lev}_1(f) := 0^+(\operatorname{lev}_1(f)) = \operatorname{lev}_0(f)$: $0^+(\text{lev}_1(f)) = 0^+ \{ x \in \mathbb{R}^n | f(x) < 1 \}$ $= \bigcap \left\{ \beta \mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) \le 1 \right\}$ $\beta > 0$ $= \bigcap \left\{ \mathbf{x}' \in \mathbb{R}^n | f(\mathbf{x}'/\beta) \leq 1 \right\}$ $\beta > 0$ $= \bigcap \operatorname{lev}_{\beta^p}(f) = \operatorname{lev}_0(f)$ $\beta > 0$

Hence, the formula $\operatorname{lev}_r(f) = r^{1/p} \cdot \operatorname{lev}_1(f)$ holds for every $r \ge 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Proof of the proposition

• epi f is convex

epi
$$f = \{(x, r) \in \mathbb{R}^n \times \mathbb{R}_+ | f(x) \le r\}$$

 $= \bigcup_{r \in \mathbb{R}_+} (\operatorname{lev}_r(f) \times \{r\})$
 $= \bigcup_{r \in \mathbb{R}_+} (r^{1/p} \cdot \operatorname{lev}_1(f) \times \{r\}).$

Proof of the proposition

epi f is convex

epi
$$f = \{(x, r) \in \mathbb{R}^n \times \mathbb{R}_+ | f(x) \le r\}$$

 $= \bigcup_{r \in \mathbb{R}_+} (\operatorname{lev}_r(f) \times \{r\})$
 $= \bigcup_{r \in \mathbb{R}_+} (r^{1/p} \cdot \operatorname{lev}_1(f) \times \{r\}).$

The conclusion then follows by the Lemma.

르

The Clarke directional derivative

Pierre Maréchal Optimizing condition numbers

The Clarke directional derivative

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is Lipschitz near x_0 . Given v, the ratio

$$\frac{f(x+tv)-f(x)}{t} \quad (t>0)$$

is bounded for (x, t) sufficiently close to $(x_0, 0)$. The Clarke directional derivative is then defined as

$$f^{\circ}(x_0; v) = \limsup_{\substack{x \to x_0 \\ t \downarrow 0}} \frac{f(x + tv) - f(x)}{t}$$

(ロ) (部) (E) (E) (E)

The Clarke subdifferential

Pierre Maréchal Optimizing condition numbers

イロン イヨン イヨン ・

The Clarke subdifferential

The Clarke subdifferential of *f* at x_0 is the subset of \mathbb{R}^n defined by $\partial f(x_0) = \{\xi \in \mathbb{R}^n \mid \forall v \in \mathbb{R}^n, \langle \xi, v \rangle \leq f^{\circ}(x_0; v)\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

The Clarke subdifferential

The Clarke subdifferential of *f* at x_0 is the subset of \mathbb{R}^n defined by $\partial f(x_0) = \{\xi \in \mathbb{R}^n \mid \forall v \in \mathbb{R}^n, \langle \xi, v \rangle \leq f^{\circ}(x_0; v)\}.$

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be locally Lipschitz and $x_0 \in \mathbb{R}^n$. Then

- $\partial f(x_0)$ is convex compact;
- for every $v \in \mathbb{R}^n$, $f^{\circ}(x_0; v) = \max\{\langle \xi, v \rangle | \xi \in \partial f(x_0)\}.$

A fundamental result

Pierre Maréchal Optimizing condition numbers

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ● ④ < @

A fundamental result

Let $f : \mathbb{R}^n \to \mathbb{R}$ be locally Lipschitz. Rademacher's theorem then says that *f* is differentiable almost everywhere.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

크

A fundamental result

Let $f: \mathbb{R}^n \to \mathbb{R}$ be locally Lipschitz. Rademacher's theorem then says that *f* is differentiable almost everywhere.

Theorem

Let $\Omega_f := \{x \in \mathbb{R}^n | f \text{ is not differentiable at } x\}$. Then $\partial f(x)$ is the convex hull of the set

$$\bigg\{\lim_{k\to\infty} \nabla f(\boldsymbol{x}_k) \ \bigg| \ \boldsymbol{x}_k \in \Omega_f, \ \boldsymbol{x}_k \to \boldsymbol{x}, \ \lim_{k\to\infty} \nabla f(\boldsymbol{x}_k) \ \boldsymbol{exists}\bigg\}.$$

(ロ) (部) (E) (E) (E)

Example

$$f(x) = x^2 \sin \frac{1}{x}$$

<ロ> <同> <同> < 同> < 回> < □> < □> <

3

Pierre Maréchal Optimizing condition numbers

Example

$$f(x) = x^2 \sin \frac{1}{x}$$

< 17 ▶

| ◆ 臣 → | ◆ 臣 → |

르

- f is differentiable on \mathbb{R} ;
- f'(0) = 0 and $\partial f(0) = [-1, 1]$.

Clarke regularity

Pierre Maréchal Optimizing condition numbers

Clarke regularity

Recall that the standard directional derivative is

$$f'(x_0; v) = \lim_{t \downarrow 0} \frac{f(x_0 + tv) - f(x_0)}{t}$$

whenever the limit exists.

・ロト ・四ト ・ヨト ・ヨト

Clarke regularity

Recall that the standard directional derivative is

$$f'(x_0; v) = \lim_{t \downarrow 0} \frac{f(x_0 + tv) - f(x_0)}{t}$$

whenever the limit exists.

The function *f* is said to be Clarke regular at x_0 (or merely regular at x_0) if, for every $v \in \mathbb{R}^n$, $f'(x_0; v)$ exists and

$$f'(x_0; v) = f^{\circ}(x_0; v).$$

イロト イヨト イヨト ・ ヨトー

크

Clarke regularity

Recall that the standard directional derivative is

$$f'(x_0; v) = \lim_{t \downarrow 0} \frac{f(x_0 + tv) - f(x_0)}{t}$$

whenever the limit exists.

The function *f* is said to be Clarke regular at x_0 (or merely regular at x_0) if, for every $v \in \mathbb{R}^n$, $f'(x_0; v)$ exists and

$$f'(\mathbf{x}_0;\mathbf{v})=f^\circ(\mathbf{x}_0;\mathbf{v}).$$

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable. Then f is Clarke regular and, for every x, $\partial f(x) = \{\nabla f(x)\}$.

Pierre Maréchal Optimizing condition numbers

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• $\partial f(0) = [-1, 1]$, thus $f^{\circ}(0, 1) = \sup \{\xi | \xi \in [-1, 1]\} = 1;$ • f'(0, 1) = -1.

- $\partial f(0) = [-1, 1]$, thus $f^{\circ}(0, 1) = \sup \{\xi | \xi \in [-1, 1]\} = 1;$
- f'(0,1) = -1.

f is not regular at 0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quotient rule

Proposition

Let $f_1, f_2 \colon \mathbb{R}^n \to \overline{\mathbb{R}}$ be Lipschitz near x_0 . Assume that

- $f_1(x_0) \ge 0$ and $f_2(x_0) > 0$;
- f_1 and $-f_2$ are Clarke regular at x_0 .

Then, f_1/f_2 is Clarke regular at x_0 and

$$\partial \left(\frac{f_1}{f_2}\right)(\mathbf{x}_0) = \frac{f_2(\mathbf{x}_0)\partial f_1(\mathbf{x}_0) - f_1(\mathbf{x}_0)\partial f_2(\mathbf{x}_0)}{f_2^2(\mathbf{x}_0)}$$

(ロ) (部) (E) (E) (E)

Composition rule

Proposition

Let S be a subset of \mathbb{R}^n and $x_0 \in \text{int } S$. Let $f = g \circ h$, where $h: S \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$. Assume that

- g is continuously differentiable at h(x₀);
- h is Lipschitz near x₀.

Then

 $\partial f(x_0) = g'(h(x_0))\partial h(x_0).$

Moreover, if g is continuously differentiable in a neighborhood of $h(x_0)$ and h is Clarke regular at x_0 , then f is also Clarke regular at x_0 .

(ロ) (部) (E) (E) (E)

A regularity trick

Lemma

Let $f : \mathbb{R}^n \to \mathbb{R}$ be locally Lipschitz, $x_0 \in \mathbb{R}^n$ and $\varphi : \mathbb{R} \to \mathbb{R}$. Assume that

- -f is Clarke regular at x_0 ;
- φ is continuously differentiable and non-decreasing at f(x₀).

Then $-\varphi \circ f$ is Clarke regular at x_0 and

 $\partial(-\varphi \circ f)(\mathbf{x}_0) = -\varphi'(f(\mathbf{x}_0))\partial f(\mathbf{x}_0) = \varphi'(f(\mathbf{x}_0))\partial(-f)(\mathbf{x}_0).$

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{\rho}$ and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Proof

The formula is an immediate consequence of the chain rule (since *f* is Lipschitz near x_0).

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{\rho}$ and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Proof

The formula is an immediate consequence of the chain rule (since *f* is Lipschitz near x_0). By the Mean Value Theorem applied to φ ,

 $-\varphi(f(x_0 + tv)) + \varphi(f(x_0)) = \varphi'(u)(-f(x_0 + tv) + f(x_0))$ for some $u \in [f(x_0), f(x_0 + tv)].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Proof

The formula is an immediate consequence of the chain rule (since *f* is Lipschitz near x_0). By the Mean Value Theorem applied to φ ,

 $-\varphi\big(f(\mathbf{x}_0+t\mathbf{v})\big)+\varphi\big(f(\mathbf{x}_0)\big)=\varphi'(\mathbf{u})\big(-f(\mathbf{x}_0+t\mathbf{v})+f(\mathbf{x}_0)\big)$

for some $u \in [f(x_0), f(x_0 + tv)]$. Now,

$$\frac{-\varphi(f(x_0+tv))+\varphi(f(x_0))}{t} = \varphi'(u) \frac{-f(x_0+tv)+f(x_0)}{t} \xrightarrow{t\downarrow 0} \varphi'(f(x_0))(-f)'(x_0;v)$$

(the regularity of -f ensures existence of the limit).

Proof

The formula is an immediate consequence of the chain rule (since *f* is Lipschitz near x_0). By the Mean Value Theorem applied to φ ,

 $-\varphi\big(f(\mathbf{x}_0+t\mathbf{v})\big)+\varphi\big(f(\mathbf{x}_0)\big)=\varphi'(\mathbf{u})\big(-f(\mathbf{x}_0+t\mathbf{v})+f(\mathbf{x}_0)\big)$

for some $u \in [f(x_0), f(x_0 + tv)]$. Now,

$$\frac{-\varphi(f(x_0+tv))+\varphi(f(x_0))}{t} = \varphi'(u) \frac{-f(x_0+tv)+f(x_0)}{t} \xrightarrow{t\downarrow 0} \varphi'(f(x_0))(-f)'(x_0;v)$$

(the regularity of -f ensures existence of the limit). Thus,

$$(-\varphi \circ f)'(\mathbf{x}_0; \mathbf{v}) = \varphi'(f(\mathbf{x}_0))(-f)'(\mathbf{x}_0; \mathbf{v}).$$

Proof (end)

Since $\partial (-\varphi \circ f)(\mathbf{x}_0) = \varphi'(f(\mathbf{x}_0))\partial (-f)(\mathbf{x}_0),$

$$(-\varphi \circ f)^{\circ}(x_0; v) = \max_{s \in \partial(-\varphi \circ f)(x_0)} \langle s, v \rangle$$

$$= \max_{s' \in \partial(-f)(x_0)} \varphi'(f(x_0)) \langle s', v \rangle$$

$$= \varphi'(f(x_0)) \max_{s' \in \partial(-f)(x_0)} \langle s', v \rangle$$

$$= \varphi'(f(\mathbf{x}_0))(-f)^{\circ}(\mathbf{x}_0;\mathbf{v})$$

$$= \varphi'(f(x_0))(-f)'(x_0; v) \quad [\text{regularity of } -f]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

 $= (-\varphi \circ f)'(\mathbf{x}_0; \mathbf{v}) \qquad [\text{ previous step }]$

Subgradients

Proposition Let $A \in S_n^{++}$. Then:

$$\partial \kappa(A) = \lambda_1(A)^{-1} \kappa(A) \left[\partial \lambda_1(A) - \kappa(A) \partial \lambda_n(A) \right]$$
$$\partial \kappa_p^p(A) = \kappa(A)^p \left[(p+1) \partial \lambda_1(A) - p \kappa(A) \partial \lambda_n(A) \right]$$
$$\partial \kappa_p(A) = \lambda_1(A)^{\frac{1-p}{p}} \kappa(A)^p \left[\frac{p+1}{p} \partial \lambda_1(A) - \kappa(A) \partial \lambda_n(A) \right]$$

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{\rho}$ and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Pseudoconvexity

Pierre Maréchal Optimizing condition numbers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Pseudoconvexity

Let $\Omega \subset \mathbb{R}^n$, $\bar{x} \in \Omega$ and $f \colon \mathbb{R}^n \to \overline{\mathbb{R}}$, lsc and Lipschitz near \bar{x} .

Pierre Maréchal Optimizing condition numbers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction Some convexity properties of $\kappa_{\mu} \kappa_{\rho}$ and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Pseudoconvexity

Let $\Omega \subset \mathbb{R}^n$, $\bar{x} \in \Omega$ and $f \colon \mathbb{R}^n \to \mathbb{\bar{R}}$, lsc and Lipschitz near \bar{x} .

(1) We say that f is pseudoconvex at \bar{x} on Ω if

$$orall \mathbf{x} \in \Omega, \quad f^{\circ}(\bar{\mathbf{x}}; \mathbf{x} - \bar{\mathbf{x}}) \geq \mathbf{0} \implies f(\mathbf{x}) \geq f(\bar{\mathbf{x}}).$$

We say that *f* is pseudoconvex on Ω if *f* is pseudoconvex at every $\bar{x} \in \Omega$ on Ω .

Introduction Some convexity properties of $\kappa_{\mu} \kappa_{\rho}$ and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Pseudoconvexity

Let $\Omega \subset \mathbb{R}^n$, $\bar{x} \in \Omega$ and $f \colon \mathbb{R}^n \to \mathbb{\bar{R}}$, lsc and Lipschitz near \bar{x} .

(1) We say that f is pseudoconvex at \bar{x} on Ω if

$$orall oldsymbol{x} \in \Omega, \quad f^{\circ}(oldsymbol{\bar{x}}; oldsymbol{x} - oldsymbol{\bar{x}}) \geq \mathbf{0} \implies f(oldsymbol{x}) \geq f(oldsymbol{\bar{x}}).$$

We say that *f* is pseudoconvex on Ω if *f* is pseudoconvex at every $\bar{x} \in \Omega$ on Ω .

(2) We say that f is strongly pseudoconvex at \bar{x} on Ω if

 $\forall \xi \in \partial f(\bar{\boldsymbol{x}}), \quad \forall \boldsymbol{x} \in \Omega, \quad \langle \xi, \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle \geq 0 \implies f(\boldsymbol{x}) \geq f(\bar{\boldsymbol{x}}).$

We say that *f* is strongly pseudoconvex on Ω if *f* is strongly pseudoconvex at every $\bar{x} \in \Omega$ on Ω .

・ロト ・回 ト ・ 回 ト ・ 回 ト

Optimality condition for pseudoconvex functions

Theorem

Let $\bar{\mathbf{x}} \in \Omega \subset \mathbb{R}^n$, where Ω is closed convex. Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be lower semicontinuous and Lipschitz near $\bar{\mathbf{x}}$. If f is pseudoconvex at $\bar{\mathbf{x}}$ on Ω , then the following are equivalent:

(a)
$$\bar{\mathbf{x}}$$
 is a global minimizer of f on Ω ;

(b) $0 \in \partial f(\bar{x}) + N_{\Omega}(\bar{x}).$

イロト イヨト イヨト イヨト

э

Introduction Some convexity properties of κ_{ρ} , κ_{ρ} and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Proof of $(b) \Rightarrow (a)$

Pierre Maréchal Optimizing condition numbers

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Proof of $(b) \Rightarrow (a)$

Assume that $0 \in \partial f(\bar{x}) + N_{\Omega}(\bar{x})$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Proof of $(b) \Rightarrow (a)$

Assume that $0 \in \partial f(\bar{x}) + N_{\Omega}(\bar{x})$:

There exists $\xi_0 \in \partial f(\bar{x})$ such that $-\xi_0 \in N_{\Omega}(\bar{x})$

Proof of $(b) \Rightarrow (a)$

Assume that $0 \in \partial f(\bar{x}) + N_{\Omega}(\bar{x})$:

There exists $\xi_0 \in \partial f(\bar{x})$ such that $-\xi_0 \in N_{\Omega}(\bar{x})$

$$\forall \mathbf{x} \in \Omega, \quad \langle -\xi_0, \mathbf{x} - \bar{\mathbf{x}} \rangle \leq 0$$

Proof of $(b) \Rightarrow (a)$

Assume that $0 \in \partial f(\bar{x}) + N_{\Omega}(\bar{x})$:

There exists $\xi_0 \in \partial f(\bar{x})$ such that $-\xi_0 \in N_{\Omega}(\bar{x})$

$$\forall \pmb{x} \in \Omega, \quad \langle -\xi_{\pmb{0}}, \pmb{x} - oldsymbol{ar{x}}
angle \leq \pmb{0}$$

$$orall oldsymbol{x} \in \Omega, \quad \underbrace{\max\left\{\langle \xi, oldsymbol{x} - oldsymbol{ar{x}}
ight
angle \| \xi \in \partial f(oldsymbol{ar{x}})
ight\}}_{f^\circ(oldsymbol{ar{x}};oldsymbol{x} - oldsymbol{ar{x}})} \ge 0$$

Proof of $(b) \Rightarrow (a)$

Assume that $0 \in \partial f(\bar{x}) + N_{\Omega}(\bar{x})$:

There exists $\xi_0 \in \partial f(\bar{x})$ such that $-\xi_0 \in N_{\Omega}(\bar{x})$

$$\forall \boldsymbol{x} \in \Omega, \quad \langle -\xi_0, \boldsymbol{x} - oldsymbol{ar{x}}
angle \leq \boldsymbol{0}$$

$$\forall x \in \Omega, \quad \underbrace{\max\left\{\langle \xi, x - \bar{x} \rangle | \xi \in \partial f(\bar{x})\right\}}_{f^{\circ}(\bar{x}; x - \bar{x})} \ge 0$$

 $\forall x \in \Omega, f(x) \ge f(\bar{x})$ [pseudoconvexity]

Introduction Some convexity properties of κ_{ρ} , κ_{ρ} and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Optimality condition for κ

Pierre Maréchal Optimizing condition numbers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{\rho} and \kappa_{\rho}^{\rho}$ Basic facts in nonsmooth analysis Convergence analysis

Optimality condition for κ

Proposition

The function κ is strongly pseudoconvex. Consequently, \bar{A} minimizes κ over Ω is and only if $0 \in \partial \kappa(\bar{A}) + N_{\Omega}(\bar{x})$.

イロト イヨト イヨト イヨト

크

Pierre Maréchal Optimizing condition numbers

 $\begin{array}{l} \text{Introduction}\\ \text{Some convexity properties of } \kappa, \kappa_\rho \text{ and } \kappa_\rho^p\\ \text{Basic facts in nonsmooth analysis}\\ \text{Convergence analysis} \end{array}$

$$\partial \kappa(\bar{A}) = \lambda_1(\bar{A})^{-1} \kappa(\bar{A}) (\partial \lambda_1(\bar{A}) - \kappa(\bar{A}) \partial \lambda_n(\bar{A}))$$

Pierre Maréchal Optimizing condition numbers

Introduction Some convexity properties of $\kappa_{\sigma,\kappa_{\rho}}$ and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Proof

$$\partial \kappa(\bar{A}) = \lambda_1(\bar{A})^{-1} \kappa(\bar{A}) \left(\frac{\partial \lambda_1(\bar{A})}{\partial \lambda_1(\bar{A})} - \kappa(\bar{A}) \frac{\partial \lambda_n(\bar{A})}{\partial \lambda_n(\bar{A})} \right)$$
$$V \in \partial \kappa(\bar{A}) \Leftrightarrow V = \lambda_1(\bar{A})^{-1} \kappa(\bar{A}) \left(\underbrace{V_1}_{\in \partial \lambda_1(\bar{A})} - \kappa(\bar{A}) \underbrace{V_n}_{\partial \lambda_n(\bar{A})} \right)$$

Introduction Some convexity properties of $\kappa_{\sigma,\kappa_{\rho}}$ and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Proof

$$\partial \kappa(\bar{A}) = \lambda_{1}(\bar{A})^{-1}\kappa(\bar{A})(\partial\lambda_{1}(\bar{A}) - \kappa(\bar{A})\partial\lambda_{n}(\bar{A}))$$

$$V \in \partial \kappa(\bar{A}) \Leftrightarrow V = \lambda_{1}(\bar{A})^{-1}\kappa(\bar{A})(\underbrace{V_{1}}_{\in\partial\lambda_{1}(\bar{A})} - \kappa(\bar{A})\underbrace{V_{n}}_{\partial\lambda_{n}(\bar{A})})$$

$$\lambda_{1}(A) - \kappa(\bar{A})\lambda_{n}(A) = \underbrace{\lambda_{1}(A) - \lambda_{1}(\bar{A})}_{\geq \langle V_{1}, A - \bar{A} \rangle} + \kappa(\bar{A})(\underbrace{-\lambda_{n}(A) + \lambda_{n}(\bar{A})}_{\geq \langle -V_{n}, A - \bar{A} \rangle})$$

$$\sum_{[\lambda_{1} \text{ convex}]} \sum_{[-\lambda_{n} \text{ convex}]} \underbrace{-\lambda_{n} \text{ convex}}_{[-\lambda_{n} \text{ convex}]}$$

Proof

$$\partial \kappa(\bar{A}) = \lambda_{1}(\bar{A})^{-1}\kappa(\bar{A})(\partial\lambda_{1}(\bar{A}) - \kappa(\bar{A})\partial\lambda_{n}(\bar{A}))$$

$$V \in \partial \kappa(\bar{A}) \Leftrightarrow V = \lambda_{1}(\bar{A})^{-1}\kappa(\bar{A})(\underbrace{V_{1}}_{\in\partial\lambda_{1}(\bar{A})} - \kappa(\bar{A})\underbrace{V_{n}}_{\partial\lambda_{n}(\bar{A})})$$

$$\lambda_{1}(A) - \kappa(\bar{A})\lambda_{n}(A) = \underbrace{\lambda_{1}(A) - \lambda_{1}(\bar{A})}_{[\lambda_{1} \text{ convex}]} + \kappa(\bar{A})(\underbrace{-\lambda_{n}(A) + \lambda_{n}(\bar{A})}_{[-\lambda_{n} \text{ convex}]})$$

$$A) = (\bar{A})\lambda_{n}(A) \geq (V_{1} - \kappa(\bar{A}))V_{1}(A - \bar{A})$$

$$\lambda_{1}(A) - \kappa(\bar{A})\lambda_{n}(A) \geq \langle \underbrace{V_{1} - \kappa(\bar{A})V_{n}}_{\lambda_{1}(\bar{A})\kappa(\bar{A})^{-1}V}, A - \bar{A} \rangle = \lambda_{1}(\bar{A})\kappa(\bar{A})^{-1}\langle V, A - \bar{A} \rangle$$

Proof

$$\partial \kappa(\bar{A}) = \lambda_{1}(\bar{A})^{-1}\kappa(\bar{A})(\partial\lambda_{1}(\bar{A}) - \kappa(\bar{A})\partial\lambda_{n}(\bar{A}))$$

$$V \in \partial \kappa(\bar{A}) \Leftrightarrow V = \lambda_{1}(\bar{A})^{-1}\kappa(\bar{A})(\underbrace{V_{1}}_{\in\partial\lambda_{1}(\bar{A})} - \kappa(\bar{A})\underbrace{V_{n}}_{\partial\lambda_{n}(\bar{A})})$$

$$\lambda_{1}(A) - \kappa(\bar{A})\lambda_{n}(A) = \underbrace{\lambda_{1}(A) - \lambda_{1}(\bar{A})}_{\geq \langle V_{1}, A - \bar{A} \rangle} + \kappa(\bar{A})(\underbrace{-\lambda_{n}(A) + \lambda_{n}(\bar{A})}_{\geq \langle -V_{n}, A - \bar{A} \rangle})$$

$$\sum_{[\lambda_{1} \text{ convex}]} \underbrace{[-\lambda_{n} \text{ convex}]}$$

$$\lambda_1(A) - \kappa(\bar{A})\lambda_n(A) \geq \langle \underbrace{V_1 - \kappa(\bar{A})V_n}_{\lambda_1(\bar{A})\kappa(\bar{A})^{-1}V}, A - \bar{A} \rangle = \lambda_1(\bar{A})\kappa(\bar{A})^{-1}\langle V, A - \bar{A} \rangle$$

$$\langle V, A - \bar{A} \rangle \geq 0 \implies \lambda_1(A) - \kappa(\bar{A})\lambda_n(A) \geq 0 \iff \kappa(A) \geq \kappa(\bar{A})$$

Introduction Some convexity properties of κ_{ρ} , κ_{ρ} and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Our main convergence result

Pierre Maréchal Optimizing condition numbers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our main convergence result

Theorem (Exact approximation)

Let $p_k \uparrow \infty$, and let \bar{A}_{p_k} be a solution to Problem (\mathscr{P}_{p_k}) . Then the sequence (\bar{A}_{p_k}) has a subsequence which converges to a global solution \bar{A} of Problem (\mathscr{P}) .

(ロ) (部) (E) (E) (E)

Pierre Maréchal Optimizing condition numbers

Proof

Since Ω is compact, taking a subsequence, we can assume that (\bar{A}_{p_k}) converges to some $\bar{A} \in \Omega$. We shall prove that $0 \in \partial \kappa(\bar{A})$. The conclusion will follow by the pseudoconvexity argument.

Proof

Since Ω is compact, taking a subsequence, we can assume that (\bar{A}_{p_k}) converges to some $\bar{A} \in \Omega$. We shall prove that $0 \in \partial \kappa(\bar{A})$. The conclusion will follow by the pseudoconvexity argument.

Optimality condition for \bar{A}_{ρ_k} :

$$0 \in \underbrace{\lambda_1(\bar{A}_{\rho_k})^{\frac{1-\rho_k}{\rho_k}}\kappa(\bar{A}_{\rho_k})\left(\frac{\rho_k+1}{\rho_k}\partial\lambda_1(\bar{A}_{\rho_k})-\kappa(\bar{A}_{\rho_k})\partial\lambda_n(\bar{A}_{\rho_k})\right)}_{\partial\kappa_{\rho_k}(\bar{A}_{\rho_k})} + N_{\Omega}(\bar{A}_{\rho_k})}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□
Introduction Some convexity properties of κ , κ_p and κ_p^p Basic facts in nonsmooth analysis Convergence analysis

Proof

Since Ω is compact, taking a subsequence, we can assume that (\bar{A}_{ρ_k}) converges to some $\bar{A} \in \Omega$. We shall prove that $0 \in \partial \kappa(\bar{A})$. The conclusion will follow by the pseudoconvexity argument.

Optimality condition for \bar{A}_{p_k} :

$$0 \in \underbrace{\lambda_{1}(\bar{A}_{\rho_{k}})^{\frac{1-\rho_{k}}{\rho_{k}}}\kappa(\bar{A}_{\rho_{k}})\left(\frac{\rho_{k}+1}{\rho_{k}}\frac{\partial\lambda_{1}(\bar{A}_{\rho_{k}})-\kappa(\bar{A}_{\rho_{k}})\partial\lambda_{n}(\bar{A}_{\rho_{k}})}{\partial\kappa_{\rho_{k}}(\bar{A}_{\rho_{k}})}\right)}_{\partial\kappa_{\rho_{k}}(\bar{A}_{\rho_{k}})} + N_{\Omega}(\bar{A}_{\rho_{k}})$$

Thus, there exist $V_1^{(k)} \in \partial \lambda_1(\bar{A}_{p_k})$ and $V_n^{(k)} \in \partial \lambda_n(\bar{A}_{p_k})$ such that

$$0 \in \lambda_1(\bar{A}_{\rho_k})^{\frac{1-\rho_k}{\rho_k}} \kappa(\bar{A}_{\rho_k}) \left(\frac{\rho_k + 1}{\rho_k} V_1^{(k)} - \kappa(\bar{A}_{\rho_k}) V_n^{(k)} \right) + N_\Omega(\bar{A}_{\rho_k})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{p}$ and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Proof (end)

Reminder: $\partial \lambda_k(A) = \operatorname{co} \left\{ xx^\top | x \in \mathbb{R}^n, \|x\| = 1, Ax = \lambda_k(A) \cdot x \right\}$ (Cox, Overton, Lewis).

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{\rho}$ and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Proof (end)

Reminder: $\partial \lambda_k(A) = \operatorname{co} \{ xx^\top | x \in \mathbb{R}^n, \|x\| = 1, Ax = \lambda_k(A) \cdot x \}$ (Cox, Overton, Lewis). Thus $\partial \lambda_k(A)$ is compact, and it follows that, taking a subsequence, we can assume that

$$V_1^{(k)} \to \overline{V}_1 \in \partial \lambda_1(\overline{A}) \text{ and } V_n^{(k)} \to \overline{V}_n \in \partial \lambda_1(\overline{A}),$$

by closedness of the multifunctions $\partial \lambda_1$ and $\partial \lambda_n$.

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{p}$ and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Proof (end)

Reminder: $\partial \lambda_k(A) = \operatorname{co} \{ xx^\top | x \in \mathbb{R}^n, \|x\| = 1, Ax = \lambda_k(A) \cdot x \}$ (Cox, Overton, Lewis). Thus $\partial \lambda_k(A)$ is compact, and it follows that, taking a subsequence, we can assume that

$$V_1^{(k)} \to \overline{V}_1 \in \partial \lambda_1(\overline{A}) \text{ and } V_n^{(k)} \to \overline{V}_n \in \partial \lambda_1(\overline{A}),$$

by closedness of the multifunctions $\partial \lambda_1$ and $\partial \lambda_n$.

Since N_{Ω} is also a closed multifunction, we can pass to the limit in

$$\mathsf{0}\in\lambda_1(\bar{A}_{\mathcal{P}_k})^{\frac{1-\rho_k}{\rho_k}}\kappa(\bar{A}_{\mathcal{P}_k})\left(\frac{\rho_k+1}{\rho_k}V_1^{(k)}-\kappa(\bar{A}_{\mathcal{P}_k})V_n^{(k)}\right)+\mathsf{N}_\Omega(\bar{A}_{\mathcal{P}_k}).$$

Introduction Some convexity properties of $\kappa_{\rho} \kappa_{p}$ and κ_{ρ}^{ρ} Basic facts in nonsmooth analysis Convergence analysis

Proof (end)

Reminder: $\partial \lambda_k(A) = \operatorname{co} \{ xx^\top | x \in \mathbb{R}^n, \|x\| = 1, Ax = \lambda_k(A) \cdot x \}$ (Cox, Overton, Lewis). Thus $\partial \lambda_k(A)$ is compact, and it follows that, taking a subsequence, we can assume that

$$V_1^{(k)} \to \overline{V}_1 \in \partial \lambda_1(\overline{A}) \text{ and } V_n^{(k)} \to \overline{V}_n \in \partial \lambda_1(\overline{A}),$$

by closedness of the multifunctions $\partial \lambda_1$ and $\partial \lambda_n$. Since N_{Ω} is also a closed multifunction, we can pass to the limit in

$$0 \in \lambda_1(\bar{A}_{p_k})^{\frac{1-p_k}{p_k}} \kappa(\bar{A}_{p_k}) \left(\frac{p_k+1}{p_k} V_1^{(k)} - \kappa(\bar{A}_{p_k}) V_n^{(k)}\right) + N_{\Omega}(\bar{A}_{p_k}).$$

and obtain

$$0 \in \lambda_{1}(\bar{A})^{-1}\kappa(\bar{A})(\underbrace{\bar{V}_{1}}_{\in \partial \lambda_{1}(\bar{A})} - \kappa(\bar{A}), \underbrace{\bar{V}_{n}}_{\in \partial \lambda_{n}(\bar{A})}) + N_{\Omega}(\bar{A}) \subset \partial\kappa(\bar{A}) + N_{\Omega}(\bar{A}).$$