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Abstract. We propose a stochastic technique to solve the problem inverse of seismic to-
mography in heterogeneous media with known and unknown reflector depths. This technique
combines a Bayesian algorithm with simulated annealing. The advantage of this technique
is that it allows to reconstruct a velocity-depth model that minimizes the travel times error,
keeping in view the physical restrictions imposed by the properties of the model. Instead
of working directly in an infinite dimensional frame, we discretize the problem. Hence, at
step n the inverse problem consists to estimate the amplitude values of the unknown velocity
at n sites. The main result is that asymptotically, the Bayesian procedure is equivalent to
selecting a quasi solution of original inverse problem that maximizes a convex criterion.

1. Introduction

This work deals with slowness field estimation in seismic tomography. One of the main issue
in seismology is estimating the exact nature of a soil. It is usually performed by estimating
the different velocities at which a sound wave may propagate through the different layers of
the medium, each speed corresponding to different soils. For this, the following experiment
is conducted. At a fixed point called the source, an explosion is generated, while at some
observation points called the receivers, are measured the time necessary for the sound waves
to reach these different points. So we observe travel times of several waves propagating
in an heterogeneous field, namely U ⊂ R

2. These times depend on an unknown function
S⋆ : U → R describing the inverse of the velocity of the wave propagation in a medium U . It
is a characteristic of the field to be studied and is called the slowness field. Hence consider
the following mathematical model

T obs
i = Φ(S⋆, ri) + ǫi, i = 1, . . . , k. (1)

For i = 1, . . . , k, T obs
i is the observed travel time, needed for the ray i following the path ri to

travel through the field, measured with observation noise. In the whole paper ǫi, i = 1, . . . , k
are assumed to be an i.i.d sample of a Gaussian random variable N (0, 1).

Hence we are facing a nonlinear inverse problem since we aim at building an estimate of
the slowness field (or in an equivalent way of the slowness field), observed through its image
by a non linear operator Φ.

Seismic Reflexion Tomography has been widely studied in the literature. As it is very well
known, seismic tomography problems lead to mathematical models that belong to the family
of ill-posed problems. Since the operator Φ is not continuously invertible, solutions of the
inverse problem are unstable under data perturbations. Let ‖.‖ be the quadratic norm over
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the set U . So, even in a deterministic framework, finding S such that for a small δ > 0,
‖Φ(S, r(S))−Φ(S⋆, r(S⋆)‖ ≤ δ does not assure that S and S⋆ are close. So, to deal with this
issue, regularization methods replace an ill-posed problem by a family of well-posed problems.
Their solution, called regularized solutions, are used as approximations of the desired solution
of the inverse problem. These methods always involve some parameter measuring the closeness
of the regularized and the original (unregularized) inverse problem. Rules (and algorithms)
for the choice of these regularization parameters as well as convergence properties of the
regularized solutions are central points in the theory of these methods, since they allow to
find the right balance between stability and accuracy. We refer to [10] or [22] for general
methods to solve ill-posed inverse problems. In the linear case, rates of convergence are given
in [6] or [11]. Nonlinear inverse problems are tackled in a restrictive case in [20] or in [18] but
seismic tomography is an even more complicated issue as shown later in that paper.

In the framework of this study, the problem is very ill-posed in the sense that the operator is
unknown and depends of the function to be estimated. Indeed reflection laws for sound wave
imply that the path itself depends on the parameter of interest S⋆ and r = r(S⋆). So, standard
techniques for solving inverse problem can not be applied. To the authors knowledge few is
done in the statistical literature. However the situation we are facing is similar to inverse
problems where some generalized moments of an unknown positive measure are observed. To
reconstruct the measure, first it is discretized and then estimated on each cell. In their work,
Gamboa and Gassiat in [13], [9] or [14] use Bayesian procedures to tackle such issue. More
recently Gozlan in [15], extends previous results by adding thiner constraints.

Here, following the same ideas, we introduce a construction called the maximum entropy
which relies on a suitable sequence of finite-dimensional discretized inverse problems. This
Bayesian procedure is well suited for such difficult ill-posed issued. Indeed the ill-posedness
entails for all admissible data either that there is no unique solution or that the solution does
not depend continuously on the data. So Bayesian techniques enable us to restrict the space
of parameter by adding a constraint corresponding to a suitable a priori. That is the reason
why Bayesian methods have gained a strong popularity in seismic tomography since Bayesian
inference can naturally give us all the necessary tools to solve real inverse problems.

The slowness function to be reconstructed is a function S(x, y) defined on a compact set
U ⊂ R

2. We divide the region of interest U into a matrix of cells cn
i , i = 1, . . . , n and

approximate the value of the slowness function in that box by the value at the center of the
box, say si. Hence our goal in this paper is to estimate the values of S = (s1, . . . , sn) from
the observed travel times T obs

1 , . . . , T obs
k . To this discretized function is associated a measure

on U . Due to the physical nature of the issue, Bayesian techniques define probabilities on the
space of models (a priori information) conditioned on the observed data. For example, in a
seismic survey we may have a fairly accurate idea of the realist ranges of seismic velocity (or
slowness) and after discretization take these initial values and consider the associated measure
as a prior. Then we need to be able to build, using a prior for the slowness field, a sample of
travel times corresponding to this distribution. It is achieved using a linear approximation of
the medium, using a tracing ray algorithm.

Then, we take as an estimator the posterior mean of the distributions which are constrained
to provide realistic travel times, realistic with respect to the real observed travel times. As
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a matter of fact, for a given small constant δ > 0, we will add the constraint that for each
simulated travel time T (S) with prior S, we have

‖T obs − T (S)‖ ≤ δ.

Our aim in this article is to estimate seismic velocity in varying media, from wave travel
times. The medium is composed of layers with different characteristics. So, we will consider
two main cases; the homogeneous case, where to each layer is associated a velocity and the
heterogeneous case where velocity is not constant in a layer but may vary. The estimator we
define, is similar to the estimator given in [13]. Using their result, we prove consistency in the
homogeneous case. In the heterogeneous case, there is no unique minimizer of the previous
constraint and hence we use a penalized criterion to select among the different candidates. It
is solved computationnaly using a stochastic minimization program, a simulated annealing.
Such method is sensitive to initialization points. A good starting point is given by previous
Bayesian estimator. The combination of these two algorithms provides a good estimator of
the field of slowness in both cases. So, stochastic algorithms provide a constructive method
to solve such very ill-posed inverse problems.

The paper falls into 5 main parts. In Section 2, we present the inverse problem and explain
how to simulate the propagation of a wave in a discretized environment, given a slowness field.
Section 3 is devoted to the construction of the Bayes procedure. In Section 4 we give the
asymptotic properties of the estimator, while simulations are given in Section 5. We consider
simulation for the three cases: homogeneous and heterogeneous cases with known layer and
heterogeneous case with unknown layer. In this last case, we apply our algorithm to estimate
both the slowness and the number of layers in the medium.

2. Seismic Travel Time Tomography: presentation of the model

Definition of travel times:

The time needed by a sonic wave to travel from a source to a receiver is called the travel time.
The travel time of a seismic wave is the integral of slowness along a ray path connecting the
source and the receiver, as follows

T = Φ(S, r) =

∫

r

S(x) dl, (2)

where r denotes an arbitrary ray path, x ∈ R
2 is the position vector and dl is its differential

path length. Here the term slowness, S, stands for the inverse of the wave velocity. It is more
convenient to write inversion and tomography formulas in terms of wave slowness models,
because the pertinent equations are linear in slowness. The calculation of ray travel times
between known end points through a given velocity structure is often called the forward
problem. It has been widely studied, see for instance the work by [4] or [12].

When more than one ray path exist between a given source and receiver, the path with
minimum travel time is the one usually required because first-arrivals are always easier to
identify on a seismogram. The equation (2) is formulated by Fermat’s principle, which states
that of all the paths that join two points A and B in a velocity medium, the true ray paths
will be stationary in time. In other words, the correct ray path between two points is one
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which minimizes T (S, r) with respect to the path r, i.e,

T (S) = inf
r

∫

r

Φ(S, r) dl =

∫

r∗
S(x) dl (3)

with r∗ the particular path that produces a mimimum travel time.
The difficulty in performing this integration is that, first, the path taken by the seismic

energy depends on the velocity structure r⋆ = r⋆(S). Moreover, the path needs to be known
in order to evaluate the integral. This means that the inverse problem can be very difficult
to solve. So, Equation (3) is nonlinear since the integration path depends on the slowness.

There are three basic approaches used in tomography literature, defined as
(i) linear tomography,
(ii) iterative nonlinear tomography,
(iii) fully nonlinear tomography.

In linear tomography, the relationship between travel time residual and velocity pertur-
bation is linearized around a reference model and corrections to the velocity field are made
under this assumption. Thus, ray paths are determined only once (through the initial or
reference model) and are not retraced. Iterative nonlinear tomography also ignores the path
dependence of the velocity correction in the inversion step, but accounts for the nonlinearity
of the problem by iteratively applying corrections and retracing rays until, for example, the
data are satisfied, or the rate of data fit improvement per iteration satisfies a given tolerance.
Fully nonlinear tomography locates a solution without relying on linearization in any way, but
is rarely done in practice. Fully nonlinear inversion is required for problems with significant
slowness variations across the region of interest.

In this problem we suppose that the ray paths are known a priori, i.e, we suppose that,
for a fixed S, there is none dependence of ray on the slowness distributions. However, in
our methodology, we will allow ourselves to let S change, according to some constraints and
construct a convergent estimator in a Bayesian scheme.

Discretization of the slowness field:

Let cn
j , j = 1, . . . , n be a discretization of a 2-D cell model U such that the sequence of discrete

measures Pn := 1
n

∑n

j=1 δcn
j

converge weakly to some given probability measure P on U. We
assume that P does not allocate any weight at any point of U . Physically, at step n, U is
considered as n sites or cells( think is as an image, where a site is a pixel ), where to each
site cn

j is associated a slowness sj . For sake of simplicity, we will write cj although the cells
change when the discretization level increases. Given a discretized model of slowness with n
cells c1, . . . , cn and S = (s1, . . . , sn), consider the slowness function

∀M ∈ U, Sn(M) =
1

n

n∑

j=1

sjδcj
(M),

and the corresponding associated measure

νn =
1

n

n∑

j=1

sjδcj
.
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let lij be the length of the i−th ray path through the cell cj

lij =

∫
1ri∩cj

dl.

Thus, the equation T (S) = Φ(S, r) can then be written as

T =
n∑

j=1

sjlij , i = 1, , . . . , k (4)

The discretized model (4) can be rewritten, using matrix notation as

T = AS; (5)

where S, T y A are defined as follows

S =





s1

s2

...
sn




; T =





T1

T2

...
Tk




; A =





l11 l12 ... l1n

l21 l22 ... l2n

...
...

...
...

lk1 lk2 ... lkn




. (6)

Hence Equation (5) may be viewed as a discretized form of the equation (3). In linear
tomography, for a given slowness field we are able to compute A and T. The assumption here
is that the ray paths are known a priori, which is justified under a linear approximation that
ignores the dependence of the ray paths on the slowness distribution. In this work the ray
paths are assumed to be straight lines connecting sources and receivers The principal problem
is that the matrix A is often poorly conditioned. Indeed, the matrix A = (lij) is in general
very sparse for topographic problems because every ray intersects only a small fraction of
the cells. This is in particular the case in three dimensions where the relative number of
intersected cells is much smaller than in two dimensions. In Figure 1, is shown an example
of discretization with some propagating waves in the medium.
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Figure 1. Wave in a discretized medium

Our aim is to estimate S⋆ by comparing the values of travel times obtained for different S
and selecting among them the one closest to the true measurements. Hence, we need to be
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able to compute the travel times for different values of S. This is the purpose of the tracing
ray.

Tracing Rays with Shooting scheme:

The seismic ray tracing problem is based on a ”shooting rays” method, see for example [25] or
[7]. Shooting methods of ray tracing rely on formulating the ray equation as an initial value
problem, where a complete ray path can be determined provided the source coordinates and
initial ray direction are known. That is, the shooting angles of the ray at the source point are
increased until the ray ends sufficiently close to the receiver. The problem is then solved by
shooting rays through the medium from the source and using information from the computed
paths to update the initial ray trajectories so that they more accurately target the receivers.

We present the problem of tracing rays in 2D heterogeneous media. Each optimization
problem is obtained by applying Fermat’s principle to an approximation of the travel time
equation from a fixed source to a fixed receiver. We assume a piecewise linear raypath which
simplifies of the problem. Figure 2 shows an example of shooting ray diagram. We only
drew rays which reach a receiver. Actually, many simulated waves are lost in the sense that
they can not be measured by the receivers given in our model. This point is crucial in the
simulations since it increases drastically the number of simulations. Moreover, the cells at the
bottom of the medium are less visited by the rays than the cells of the first layer. It implies
that it is more difficult to estimate velocities far from the surface than the velocities in the
first layers.
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−500
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Figure 2. Example of shooting ray with two layers

3. Estimation method: statistical model

Consider the following statistical model. We assume that the data are noisy and observe

T obs
i =

∫

r⋆
i

S⋆(x) dl + εi, i = 1, . . . , k, (7)

where T obs
1 , T obs

2 , . . . , T obs
k is a set of observed travel times, from k source-receiver pairs in

a medium, U ⊂ R2, with slowness S⋆(x). Let r⋆
i be the Fermat ray path connecting the
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ith source-receiver pair, i.e, the ray follows the trajectory of minimum travel time between
the source and the receiver, as explained in Section 2. The inverse problem can be seen as
recovering an unobservable signal S⋆ on U based on observations T obs

i . Throughout the paper,
we shall denote T obs = (T obs

i )k
i=1 and we shall suppose that the observations noise εi are i.i.d.

realizations of a certain random variable ε. We will focus on the case where the distribution of
ε is assumed to be Gaussian. It is a loss of generality but due to the very ill-posedness of the
model (even for ε = 0 the problem is in general highly not invertible and there is no unique
solution), it is important to restrict the law of the noise and just focus on the estimation
problem (7).

In a deterministic framework, the best possible accuracy, regardless of any discretization
and noise corruption is determined by some a priori smoothness assumption on the exact
solution S⋆. The statistical model (7) is formulated as the problem of finding the best-
approximate solution of T ⋆

i =
∫

r⋆
i

S⋆(x) dl in the situation where only perturbed data T obs are

available with

‖T ⋆ − T obs‖ ≤ δ.

Here, δ is called the noise level.

A common approach is to minimize the l2-norm (squared) of the error

‖T (S) − T obs‖2 =
k∑

i=1

[(T (S) − T obs)i]
2 (8)

where T (S) denote travel times for admissible S, calculated using the technique of the ray
shooting tool described previously. Admissible means here that a constraint must be added
to this minimization otherwise the corresponding estimator will not be consistent due to ill-
posedness of the problem. Here, introducing a Bayesian prior is well suited to model this
constraint.

Using ideas arising from the large deviations theory, we propose and study a general
Bayesian method to solve the inverse problem of seismic tomography (7). A Bayesian in-
terpretation can be given using the distribution of Gaussian process as priors on the function
S, as Wahba shows, for instance in [29]. Other priors are possible in order to take into account
the correlations into a medium but we want to be able to apply our procedure in the case
where few information is available and so where a Gaussian prior can be a good initial guess.

Hence we construct an estimator using the following scheme.

• We discretize the medium and try to estimate the finite dimensional parameter Sn =
(s1, . . . , sn).

• For well chosen slowness fields (i.e depending on a prior), S
(i)
n = (s

(i)
1 , . . . , s

(i)
n ), i =

1, . . . , N , we compute the approximate travel times T (S(i)) using the tracing ray.
• For a given δ > 0, we keep the admissible travel times, satisfying the constraint and

define

In = {i = 1, . . . , N, ‖T obs − T (i)‖ ≤ δ}.
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• The Bayesian estimator is then defined as

Ŝbay
n =

1

Card(In)

∑

i∈In

S(i)
n . (9)

This algorithm computes a Bayesian estimator similar to the one studied by Gamboa and
Gassiat in [13]. As n, the discretization level, grows to infinity, this algorithm provides an
estimator, converging to the set of minimizers of (8) under the admissibility constraint for a
fixed δ, as shown in the next section.

If the medium is homogeneous, then the minimizer is unique, which guarantees the conver-
gence of the estimator, to the true slowness field S⋆.

If the medium is heterogeneous, the set of minimizers is non trivial and local minima may
exist. Hence, to get consistency of our method, we must select among all the minimizers, the
closest to the true parameters. For this, we consider the maximum entropy estimator defined
as solution of the minimization problem:

ŜPen
n = arg min

S, ‖T obs−T (S)‖≤δ

(
‖T obs − T (S)‖2 + λJ(S)

)
(10)

where λ is a smoothing parameter and J is a suitable functional. Provided an appropriate
starting point is chosen, this minimization can be conducted and enables us to construct an
estimator of S⋆. This initial starting point is given by the Bayes estimator Ŝn, close enough
to the solution. In the next section, we discuss the choice of the penalty function.

4. Asymptotic behavior of slowness field estimator

Solving any inverse problem requires understanding the uncertainties in the data. We also
need methods to incorporate a prior information to eliminate unreasonable models that fit
the data. In this section we present two methodologies to solve the inverse problem that can
be used to include priori information in the inversion process.

4.1. Bayesian procedure.

Maximum entropy on the mean (MEM) is a construction where the inverse problem (7)
is approximated by a sequence of finite-dimensional problems, which are obtained by a dis-
cretization of the space U. The MEM estimator is then obtained as the limit of the discretized
estimators defined for the finite-dimensional problems. The MEM construction gives a nat-
ural and practical way of introducing nonlinear but convex constraints considered as prior
information. Often, one may want to incorporate some prior information on the slowness
model S, for example we may know from previous experiments that S has known support. A
way to incorporate this kind of prior information is to consider a probability P on U which
heavily weights areas where we suspect S to be concentrated.

To solve the inverse problem, we consider a Bayesian reconstruction method which is used
usually in statistics. To compute a Bayesian estimator for the inverse problem (7) we proceed
as follows. To each site cn

j , j = 1, . . . , n is associated a random variable sj (sj is a random
slowness). We assume that Fn is the prior distribution of the random vector Sn = (s1, ...., sn).
In this work we suppose that the unknown slowness S is positive and that S has a density
function f (with respect to some known probability P). The density of the prior information
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is bounded a(x) < f(x) < b(x). These values correspond to bounds given by engineers in
petroleum industry. Then, for every j, we choose the support of the distribution Fj of sj to
be included in [a(cn

j ), b(cn
j )] and if we have no more information define Fn =

⊗n

j=1 Fj, and
choose for Fn a uniform probability on U . Alternatively, without any knowledge, we often
assume that the prior distribution on the S is Gaussian.

We define at step n the corresponding discrete random measure

νn :=
1

n

n∑

j=1

sjδcn
j
. (11)

We point out that there is a clear correspondence between the measure νn = 1
n

∑n

i=1 siδci
and

the slowness Sn = (s1, . . . , sn). Hence to the Bayesian estimator of the slowness field defined
in (9) is associated the Bayes estimator of the measure ν̂bay

n . Large deviation theory enable to
prove weak convergence of the measure, which implies the convergence of the corresponding
slowness field.

Let us now introduce the estimator of the unknown S⋆ when noisy data are observed, as

ν̂bay
n = EFn

(νn | ‖T obs − T (Sn)‖2 < δ2). (12)

where Fn is the empirical prior distribution of νn. That is, at step n we only considerer
positive measures supported by cn

i , i = 1, . . . , n.

For every level n of the discretization of the space U , ν̂bay
n is a Bayesian estimator with a

prior Fn. We then have a sequence of n-dimensional Bayesian problems with a k-dimensional
observation. It is important to remark that we are not interested, in this article, in the
asymptotic behavior of the estimate when the number of the observations increases nor when
the noise level decreases, i.e, we are not interested in the asymptotic on the size of the sample.
Our asymptotic will be on the number of sites, namely n.

In order to understand the asymptotic behaviour of the Bayes estimate, we need to in-
troduce the MEM estimate: at stage n, we choose the distribution P MEM

n of Sn using a
maximum entropy principle. We refer to [13] or [Dacunha-Castelle and Duflo (1986)] for
general references. Set

ν̂MEM
n := IEP MEM

n
(νn).

So for fixed n, ν̂n
MEM is the maximum entropy reconstruction of S with reference measure

Fn. When n tends to infinity, under some additional assumptions, we can prove that ν̂bay
n is

convergent.

We assume that the following assumptions hold:

Assumption 4.1.

(1) U is a compact metric space; the set M(U) of finite Borel measures on U is endowed
with the topology of weak convergence,

(2) P is a probability measure on U having full support,
(3) The inverse problem has at least one solution,
(4) Φ is a continuous function on U with linear independents components
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In [13], F. Gamboa and E. Gassiat establish the following theorem, which proves weak
consistency of the Bayes estimate and states the equivalence between MEM and the infinite-
dimensional Bayesian estimator (defined as the limit of the finite-dimensional Bayesian esti-
mators).

Theorem 4.2. (Gamboa, Gassiat, [13] Theorem 2.3) Let U be a compact metric space, P a
probability measure on U and cn

i , i = 1, ..., n such that 1
n

∑n

i=1 δcn
i
→ P . Under Assumptions

4.1, the Bayesian estimator ν̂bay
n , for δ > 0 and n sufficiently large, is well defined. It weakly

converges to ν̂MEM
∞ , the unique accumulation point of the sequence ν̂MEM

n .

Proof. The proof follows directly from [8] and using large deviation principle for νn. �

The links between the methodology we propose and the Bayesian measure estimator are
obvious. Actually, taking the average of admissible slowness field is equivalent to consider
the posterior mean of the distribution, conditionnaly to the rare event defined as admissible
travel times. The problem has been linearized since, to compute the travel times from given
slowness field, we used the shooting ray approximation defined in Section 2, which, implicitly
linearizes the inverse problem around a good approximation for the slowness field. As a result,
Theorem 4.2 can be applied and shows that the Bayesian estimator Ŝbay

n , defined in (9), is
convergent to the set of minimizers of the entropy of the distribution of S under the constraint
‖T obs − T (S)‖ ≤ δ. If the field is homogeneous for each layer, then the minimum is unique,
which implies the convergence of Bayes estimator towards the unknown slowness field.

If the layers are heterogeneous, hence we lose concavity of the constraint and the set of
minimizers is non trivial. That is the reason we try to penalize the selection criterion in order
to select the best approximation among all the different solutions.

We point out that this type of Bayes estimator is equivalent to selecting a quasi solution
of the original inverse problem that maximizes a criterion. By conditioning by a rare event,
i.e only considering the values of S such that ‖T (S) − T obs‖ ≤ δ, we are able to let the
corresponding empirical measure to concentrate around the true values. Hence the smaller
the δ, the more accurate will be the estimate, as quoted in [15]. On the other hand, the
drawback of this method is that if δ is too small, a very large number of simulations with the

tracing ray S
(j)
n , j = 1, . . . , N is needed to find a sample of admissible travel times. Hence the

convergence will be slower. Finding the optimal value is a difficult issue. In the simulations we
chose δ = 0.01 which empirically guaranteed a traliteraturede-off between rate of convergence
and accuracy of the estimate. Moreover we have to take into account that we use travel
times, so we need that the simulated waves reach the receivers, which is not the case for all
simulation and so increases also the number of needed simulations.

4.2. Regularized procedure.

Heterogeneous layers imply the existence of local maxima, which prevent consistency of
Bayes estimator. Hence we aim at choosing the best solution among the admissible solutions.
For this, define the following criterion

γ(S) = ‖T obs − T (S)‖2 + λJ(S)
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where λ is a parameter and J is a suitable functional. In the , many penalty function are
investigated depending on the goal of our study. We refer to [24], [28] or [19] for some study
of penalized M-estimation. Our construction allows us to clarify the correspondence between
Bayesian rules and regularization technique, and justifies the choice of the entropy as a penalty
function.

Under the Gaussianity assumption of the observation errors,

T obs|S ∼ N (T (S), Ik) .

Hence if we are interesting in the maximum a posteriori, we aim at maximizing the logarithm
of the posterior distribution with respect to the observations T obs. Define p(S) the prior
density of the slowness field S, ϕ(T obs|S) the Gaussian density of the data knowing the travel
times and f(S|T obs) the posterior density of the slowness field. We obtain

sup
S

log f(S|T obs) = sup
S

(
log ϕ(T obs|S) + log p(S)

)

= inf
S

(
‖T obs − T (S)‖2 − log p(S)

)

= inf
S

γ(S),

if we set − log p(S) = λJ(S). Hence the penalty is the entropy of the prior distribution. Links
between maximum entropy estimators and Bayesian estimators are also highlighted in this
framework in [14]. In our case, we minimize this functional for all admissible slowness fields,
defined as S such that ‖T obs − T (S)‖ ≤ δ for a fixed δ > 0 and for T (S) calculated by the
ray shooting scheme described in Section 2. Hence the estimator is defined as

ŜPen = inf
{S, ‖T obs−T (S)‖≤δ}

γ(S). (13)

There are several ways to conduct this minimization. In this work, the reconstruction is
implemented by iterative minimization of the objective function. As with many complex
model-based estimations, the objective is non concave, and different initial conditions lead
to different reconstruction corresponding to different local maxima. So we use a stochastic
algorithm ”annealing” for the optimization. This algorithm is well studied in [17] or [16] for
example. It belongs to the class of stochastic minimizing algorithms, depending on a param-
eter often called temperature which may vary in order to avoid local optima. Annealing is
designed to seek approximate global maxima to the objective, and thus robustify the problem
to initial conditions. Hence finding a good starting point is crucial to get convergence of the
algorithm. Here the initial guess is given by the Bayesian estimator Sbay

n defined previously.
Indeed, convergence results ensure that the Bayesian estimate belongs to the set of minimizers
of the objective function and the stochastic algorithm enables us to avoid local minima and
find the global minimizer among them. In the next section, we present simulations using this
estimation procedure and evaluate its performance.

5. Numerical Results

The principal objective in this article is to estimate velocities and reflector depths in ho-
mogeneous and heterogeneous media. We propose a stochastic technique which combines a
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Bayesian algorithm with simulated annealing. This combination allows to reconstruct a good
model of speeds and depths for both homogeneous and heterogeneous means.

The purpose of this section is to present some numeric results obtained when implementing
this combination. Three examples are presented in order to show the abilities of our technique.
The first example is the seismic reflexion tomography problem in 2D homogeneous media.
Here we show numerically that the solutions ( obtained with the mere Bayesian method)
converge to a global minimum. Then, in the following example, we give results obtained
with the combination of the two methods ( Bayesian algorithm and annealing simulated), in
heterogeneous media. In these two first examples, we assume that we known the different
layers in the medium. Indeed, the velocity does not change too much within one layer in
the heterogeneous case, and only the vertical variation are of great importance. As a result,
the uniform prior is a good prior in this case. In the last example, we apply our estimation
technique to the very general case where both the velocity field and the structure of the
medium (i.e the position of the different layers) are unknown. Hence, the problem is far more
complicated and the estimation procedure provides the estimated slowness, starting with a
non informative prior, a Gaussian prior in this case.

In the numeric results we will present the values of the speeds, since it is but easy to
interpret and the slowness field is computed by simply taking the inverse of the velocity field.
In this work, it is assumed that reflectors are flat and horizontal and that the layers are also
horizontal. Considering different shapes for the layers is more realistic but far beyond the
objectives of the estimation procedure. We refer to [4] for more references on this topic.

5.1. Seismic Tomography in Homogeneous Media.

We present the synthetic model designed especially to show the ability that has the Bayesian
algorithm to solve problems of seismic reflection tomography in homogeneous media. Consider
a media that measures 3000 meters of wide and 1000 meters of depth. The medium has two
plane layers whose depths are known, namely z1 = 500 and z2 = 1000. In this case, we are
only interested in reconstructing the velocity field. In the surface, there is one source, located
at the origin, and an arrangement of six equally spaced receivers.

We observe the following travel times with known paths through one or two layers in Table
1.

Table 1. Synthetic observed travel times, T obs

layers/receivers 1 2 3 4 5 6
1 0.5804 0.7336 0.9271 1.1616 1.3834 1.6331
2 0.9251 0.9987 1.1130 1.2454 1.4059 1.5690

In the special case of homogeneous medium, the problem of seismic inversion is linear (since
the path of the rays are straight). So, it is not necessary to use an simulated annealing
algorithm, since the mean of the solutions obtained with the Bayesian algorithm minimizes
the quadratic norm of the travel times error.

Now, we discretize the medium into uniform cells, with a constant velocity in each cell.
As the algorithm of Bayesian reconstruction requires of the generation of random speeds
V = 1/S, then in this example we generate uniform speeds between vmin and vmax, being
respectively the known minimum speed and maximum of a layer. We will assume that the
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speeds corresponding to the first layer are between 1800 and 2100 m.s−1, and in the second
layer between 2500 and 2800 m.s−1. Then different speeds are generated uniformly in each
layer with the restriction that ”to more depth, bigger speed”. With such prior we generate
rays reaching the receivers and compute the travel times.

In first step, in Figure 3, we present the surface of the quadratic-norm of the travel times
error ϕ(S) = ‖T obs − T (S)‖, corresponding to the models considered in the partition. One
can observe that there is a global minimum reached in the point (1919, 4; 2964, 4). It is
important to remark that the surface it is not continuous. Indeed, the quadratic norm of the
error is not defined for all the slowness models in the chosen range, because these slowness
fields do not satisfy the physical properties imposed in the problem. The white bands of the
surface of the errors quadratic norm correspond to the areas where the rays are not traced.
Now, numerically, we can assure that, for media with homogeneous layers, there is a global
minimum (as in Gamboa-Gassiat [13]). In a second step we compute the Bayesian estimator,
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Sbay
n , which converges to this minimum. Here we have chosen δ = 0.001 and set n = 100.

We have generated 400 rays and we observe that 12% of the times we find a solution. Using
the average of the admissible distributions for the slowness field, restrained by the posterior
condition ‖T obs − T (S)‖ ≤ δ, we obtain the Bayesian estimator. In Table 2, we compare the
true velocities, the speed values of the Bayesian estimate, the quadratic error of the velocities
and the quadratic error of the travel times.

Table 2 : Results obtained with the Bayesian Method.

Range true Velocities Estimates mean error travel times error
1800-2100 1919.38032554 1919.93564754 0.00028932358 0.00080078142
2600-2800 2649.39057969 2643.94563385 0.00205516916 0.00547901016

In this table, we can see that the average velocity error is smaller, in the first layer, than 10−3

and smaller than 10−2 in the second layer. Such error is acceptable for industrial purpose
since in both cases the error is smaller than 1%. We point out that the error is greater in
the second layer than in the first. A reason for this result could be that fewer rays from the
deeper layers are observed, resulting in a slower rate of convergence. Moreover, we can point
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out that the travel times error is of order 0.8 m.s−1 in the first layer and 5.4 m.s−1 in the
second layer.

As a result, the Bayesian estimator gives very good result and is easy to compute once the
tracing ray tool is implemented.

5.2. Seismic Tomography in Heterogeneous Media with known layers.

To illustrate some of ideas of the combination a Bayesian algorithm with simulated anneal-
ing we present a computational example of reflection tomography in heterogeneous media.
The example consists of a simulation designed to demonstrate the effects of the velocities
variations in each layer. The simulated region contains flat reflectors (unknowns) and lateral-
vertical velocity changes in the three layers. In this case the rays are curves of stationary
travel time. It is important to remark that the velocities (or slowness) are constant in each
cell and thus the ray paths result straight in each cell.

We consider a medium of 3000 meters of length and 500 meters of depths with two layers.
At the surface are located as in the previous example one source and six equally spaced
receivers. The observed travel times are given in Table 3.

Table 3 : Observed travel times T obs

layers/receivers 1 2 3 4 5 6
1 0.5953 0.7500 0.9502 1.1802 1.4303 1.6787
2 .8973 .9212 1.1202 1.5020 1.9231 2.1027

As previously, we take a uniform prior to generate admissible rays. The bounds are (1800, 1850)
for the first layer and (1900, 1950) for the second layer. We display in Figure 4 the quadratic
norm of travel times errors. As expected, there are numerous local minima. Hence the objec-
tive function is non convex for heterogeneous media. Hence, first we compute the Bayesian
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estimator using as prior the uniform distribution, which enables to find admissible travel
times, i.e satisfying the condition

‖T obs − T (S)‖ < 0.01. (14)
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In order to select among the sets of these realizations, we solve the penalized minimization
program with annealing. We needed 400 iterations of the algorithm as starting point the
Bayesian estimator. The convergence of the algorithm is achieved after 17.69 seconds. In
Table 5 we show the quadratic error of the estimates and the quadratic error of the travel
times.

We point out that the l2-norm of the errors is of order 10−4, so the algorithm computes
close estimators of the true discretized velocities.

Table 5 : Velocity field error and travel times error in heterogeneous media

Rank Quadratic error Travel times errors
1800-1850 0.00100143 7.71192605e-004
1900-1950 0.00076514 7.71192605e-004

We also point out that the solutions are good approximations of the velocities but that the
rays corresponding to these estimations are admissible. It shows that the estimates are good
approximations in the sense that the estimated travel times are close to the true travel times.

5.3. Heterogeneous media with unknown layers.

Consider an heterogeneous medium with horizontal and vertical variations of velocities.
This example is very complicated since we aim at finding estimators of the velocity field
which provides admissible travel times and which are close to the true values of the unknown
velocity field. In this case, we need to generate a larger amount of models for the rays and then
choose among them the closest to the observations. A large amount of simulated slowness
field with the corresponding travel times is needed.

The true medium is made of three layers corresponding to major difference between the
velocities. Each layer is made of two sub-layers with small velocities variations. The velocities
range from 1800 and 2100 m.s−1 in the first layer, from 2600 and 2900 m.s−1 for the second
layer and from 3400 and 3700 m.s−1 in the third layer. Within one layer there are small
horizontal variations, ranging from −30 to 30. We will consider a discretization with 10
columns, so the parameter of interest is of size 60. We generate slowness field with Gaussian
priors.

We present in Table 6 the results obtained with the two algorithms: the Bayesian proce-
dure taken as a starting point of the annealing algorithm. Namely, we consider n = 100, the
discretization level and run the algorithm with k = 1000 ray samples giving admissible travel
times with the corresponding priors. Then we obtain the different values for the cells and
compute the estimate in the 60 real cells by averaging the values in the cells of the discretiza-
tion. So, we present the quadratic error of the velocities for each layer. We also estimate the
position of the layer by finding the depth where there is a significative change in the slowness
field, i.e when the horizontal average of the velocities of a line change. We get 3 major changes
at position p to be compared with the true position of the layers.

Table 6 : Estimation of depth and velocities in an unknown heterogeneous media
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layers/receivers true layer position estimated position average l2 error
1 500 508 0.0058
2 1000 1006.3 0.0062
3 1500 1512 0.0076

In the following figure 5, we show the image of the estimation error of the velocities for each
true cell of the discretized medium. We can show that, for all cells, the error is less than 0.02.
Nevertheless, there are large differences between the cells. It can be explained by the fact
that there are not the same number of rays going through each cell, hence the estimator does
not converge at the same rate for all cells and is not as accurate uniformly in the medium.
Figure 5 shows the velocities error in a 2D heterogeneous media with three layers. Most of the
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velocity structure can be well determined. However, certain velocity features are determined
relatively poorly.

We developed a robust algorithm able to solve difficult tomography problems accurately
The Bayesian algorithm provides solutions in homogeneous media, and the perceptual errors

of the velocities are always smaller than 1%. In heterogeneous media, solutions obtained with
the Bayesian algorithm are not always solutions, but the perceptual errors of the velocities
are smaller than 2% in some of the cells over the mesh.

The Bayesian algorithm yields good initial estimates when the positions of the reflectors
are not known.

The combination of both algorithms allows us to reconstruct a model (in heterogeneous me-
dia) that minimizes the l2-norm of the error plus a penalty term, incorporating the restrictions
imposed by the physical properties of the pattern.

6. Conclusions

Seismic tomography is a difficult issue since it implies solving a severely ill-posed problem
with an implicit unknown operator. Bayesian techniques enable to find an approximated so-
lution that undergoes the physical conditions of the slowness field. For homogeneous medium,



BAYESIAN METHODS FOR THE SEISMIC TOMOGRAPHY 17

we prove the consistency of a one step Bayesian estimator, while for heteregoneous medium,
we use this estimator as a starting point for an annealing algorithm and construct a two-step
estimator. If consistency is not proved theoretically in this case, yet simulations are very
efficient and the results we obtain are very encouraging. Hence, this Bayesian procedure gives
rise to a fast algorithm and provides a more robust alternative to determinist algorithms.

Changing the prior may improve the results on a practical point of view. For instance,
introducing dependency between cells in the prior distribution, according to seismic models,
as cited in [23] or [21], could lead to faster convergence as shown in a forthcoming work.

Letting δ decreases to zero could also improve the asymptotic behaviour of the Bayesian
estimator. However, when conditioning by very rare events, it becomes more difficult to sim-
ulate rays satisfying to the condition. As a result far more simulations are needed in able to
get a consistent estimator.
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