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A summer academy for undergraduate or young graduate German students was organi-
zed in Rovinj, Croatia in September 2004. One group was working on natural exponential
families. A characteristic of the academy is the fact that lectures are only given by the
students. Each student has to give a lecture 2 or 3 hours long. The instructors (Lutz
Mattner, Gérard Letac) provided list of topics, and books or papers to read before the
lecture. The following rhapsodic document provides help and comments.

I The variance function em.

G as a limit. The variance function VG(m) = em occurs mainly as the limit of the power
variance function VFn(m) = (1 + m

n
)n for n →∞. According to the two basic rules

– Jorgensen rule. If λ ∈ Λ(F ) then VFλ
(m) = mVF (m

λ
)

– Affine rule. If ϕ(x) = ax + b then Vϕ(F )(m) = a2VF (m−b
a

),
the above Fn is obtained by starting from the classical NEF on (0,∞) with variance
function mn, by applying the Jorgensen rule to λ = n and then the affine rule to

ϕ(x) = n
1

n−2 x− n.

In particular MFn = (−n,∞). Thus G exists and MG = R. In particular G is steep.

Laplace transforms. We compute a particular µ ∈ B(G). We have ψ′µ(m) = e−m and
Θ(µ) = (−∞, 0). We choose θ = ψµ(m) = −e−m, m = k′µ(θ) = − log(−θ), we choose
kµ(θ) = −θ log(−θ) + θ and we get

Lµ(θ) = eθ(−θ)−θ.

We observe that D(µ) = (−∞, 0] and that Lµ(0) = 1, that is to say that µ is a probability.
It does not belong to G = F (µ) but it belongs to the so called ”full exponential family”
G generated by µ. The probability µ in particular has no exponential moments, in the
sense that for all α > 0 we have

∫

R
eα|x|µ(dx) = ∞.

The part eθ in the Laplace transform of µ may seem unpleasant. Well, replacing µ by µ1 =
µ ∗ δ−1 ie shifting G on the left of one unit provides the more pleasant Laplace transform
Lµ1(θ) = (−θ)−θ and the less pleasant variance function VG1(m) = em−1. Anyway, the
explicit calculation of µ1 does not seem possible.

The Fourier transforms of the elements of G1. Let us fix θ0 ∈ Θ(µ1) =
(−∞, 0). The Laplace transform of P (θ0, µ1) is

(−s− θ0)
−s−θ0

(−θ0)−θ0
= e−s log(−θ0) 1

(1 + s
θ0

)s+θ0
.
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As a function of s this function is analytic is the half complex plane

{s;<s < −θ0}.
thus, doing s = it with t ∈ R gives the characteristic function of P (θ0, µ1) as

e−it log(−θ0) 1

(1 + it
θ0

)it+θ0
.

The Fourier transforms of µ and µ1. Moving from the Laplace transform to the
Fourier transform for the probabilities µ and µ1 is less easy, since their Laplace transforms
are analytic in the open half complex plane {s;<s < 0} which does not include the
imaginary axis used for the Fourier transform. Denoting −θ0 = ε > 0 for simplicity, we
now compute for real t limε→0(ε − it)ε−it. For this we assume first t > 0 and we observe
that −i = e−i π

2 . We now introduce the analytic function z 7→ u = log z on the complex
domain D = C \ {z;=z = 0,<z ≤ 0} such that z = eu. The most important property is
that log(zz′) = log z + log z′ for z, z′, zz′ in D. With this notation we write

log(ε− it) = log t− i
π

2
+ log(1 +

ei π
2 ε

t
) →ε→0 log t− i

π

2
.

Thus
(ε− it)ε−it = e(ε−it) log(ε−it) →ε→0 e−it(log t−i π

2
) = e−t π

2 e−it log t).

Using the Hermitian symmetry of characteristic functions, the Fourier transform of µ1 is
for all t 6= 0

e−|t|
π
2 e−it log |t|

(See Feller vol 2 page 542, first edition). The Fourier transform of µ is e−|t|
π
2 eit(1−log |t|).

An immediate consequence is that for X and Y independent with the same distribution
µ1 then the distribution of Z = X−Y is the Cauchy distribution 2dz

4z2+π2 since the charac-

teristic function of Z is e−|t|
π
2 . An other important feature of the characteristic function

e−|t|
π
2 eit(1−log |t|) is that it is integrable. It implies that the Fourier inversion is available

and that µ1(dx) has a density f given by the formula

f(x) =
1

2π

∫ ∞

−∞
e−itxe−|t|

π
2 eit(1−log |t|)dt =

1

π

∫ ∞

0

e−t π
2 cos(t(x− 1 + log t))dt.

I do not think that explicit calculation of this density is feasible.

Elements of G1 are infinitely divisible. Since k′′µ1
(θ) = 1

−θ
is the Laplace trans-

form of the positive measure 1(0,∞)(x)dx this implies that the elements of G1 are infini-
tely divisible. Furthermore, this implies that the Lévy measure of P (θ0, µ1) is ν(dx) =
eθ0x 1

x21(0,∞)(x)dx. One notices that ν(dx) is of type 2, that is
∫
R\{0} min(1, x2)ν(dx) < ∞

as any Lévy measure, but ν(dx) is such that
∫

R\{0}
min(1, |x|)ν(dx) = ∞.
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This implies in particular that although the Lévy measure of P (θ0, µ1) is concentrated
on (0,∞), however P (θ0, µ1) is not concentrated on (0,∞) but has R as support interval.
The Laplace transform of P (θ0, µ1) can also be written

e−s log(−θ0) 1

(1 + s
θ0

)s+θ0
= exp(aτs +

∫ ∞

0

(esx − 1− sτ(x))eθ0x dx

x2
)

where τ is any bounded function on R \ {0} such that τ(x) − x = o(x) around 0, and
aτ depends on the chosen τ. This shows that any choice of τ is rather artificial. For an
arbitrary Lévy measure ν, the move to τ to an other τ1 is given by

aτ − aτ1 =

∫

R\{0}
(τ1(x)− τ(x))ν(dx).

For instance Feller vol 2 uses τ(x) = sin x and the Russian literature uses τ(x) = x/(1+x2).
For the Lévy measure ν(dx) = eθ0x 1

x21(0,∞)(x)dx, the computation of aτ for these
classical τ does not seem possible (Feller on page 543 computes something different). But
choosing τ(x) = xe−|x| leads to aτ = − log(1− θ0). For this we use the Frullani integral∫ ∞

0

(f(ax)− f(bx))
dx

x
= f(0) log

b

a

where f is continuous on [0,∞) such that
∫∞
1
|f(x)|dx

x
< ∞ and where a, b > 0. Applying

it to f(x) = e−x and to a = 1− θ0 and b = −s− θ0 leads the result.

−G has a reciprocal family. Consider the image −G of G by the map x 7→ −x. Its
variance function is e−m. Its Lévy measure is concentrated on the negative line, thus −G
admits a reciprocal NEF (say A) whose domain of the means is MA = (0,∞) and whose
variance function is

VA(m) = m3e−
1
m .

Thus A is the family of distributions of the stopping time T = inf{t; X(t) = 1} where
X is a Lévy process such that the distribution of −X(1) is P (θ0, µ) when we let θ0 vary
in (− infty, 0). See Letac Mora 1992 for details about reciprocity. A generating measure
α of A cannot be computed explicitely. Replacing −G by a translate Gb with variance
function e−m+b replaces A by Ab with variance function MAb

= (0,∞)

VAb
(m) = m3e−

1
m

+b = ebVA(m)

on MAb
= (0,∞). This makes a marked difference among other NEF and could be for-

mulated in a sort of (rather trivial) characterization of G.

II The variance function t(1 + m2

t2
)

Theorem. Let t > 0. The natural exponential family Ft with domain of the means R and
variance function t(1 + m2

t2
) is generated by the probability

µt(dx) =
2t−2

π

∣∣∣∣Γ(
t + ix

2

∣∣∣∣
2

1

Γ(t)
dx.
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Its Laplace transform is defined on Θ(µt) = (−π
2
, π

2
) and is (cos θ)−t. In particular, for

t = 1, 2 we have

µ1(dx) =
1

2 cosh πx
2

µ2(dx) =
x

2 sinh πx
2

.

Proof. We adopt the notations of the Letac-Mora paper (1991) : if µ is a positive non

Dirac Radon measure on R consider its Laplace transform

Lµ(θ) =

∫ ∞

−∞
eθxµ(dx) ≤ ∞.

Assume that the interior Θ(µ) of the interval D(µ) = {θ ∈ R; Lµ(θ) < ∞} is not empty.
Write kµ = log Lµ. Then the family of probabilities

F = F (µ) = {P (θ, µ) ; θ ∈ Θ(µ)}

where
P (θ, µ)(dx) = eθx−kµ(θ)µ(dx)

is called the natural exponential family (NEF) generated by µ. Note that F (µ) = F (ν) if
and only if there exists a and b such that ν(dx) = eax+bµ(dx). This implies that F (µ) can
be generated by one of its members as well as sometimes an unbounded measure.

Two basic results are k′µ(θ) =
∫∞
−∞ xP (θ, µ)(dx) and the fact that k′µ is increasing (or

that kµ is convex. The set k′µ(Θ(µ)) = MF is called the domain of the means. We denote
by ψµ : MF → Θ(µ) the reciprocal function of k′µ. Thus F (µ) can be parametrized by MF

by the map from MF to F which is

m 7→ P (ψµ(m), µ) = P (m, F ).

One can prove that the variance VF (m) of P (m,F is

VF (m) = k′′µ(ψµ(m)) =
1

ψ′µ(m)
. (2.1)

The map m 7→ VF (m) from MF to (0,∞) is called the variance function and characterizes
F.

Let us apply these concepts to the finding of a generating measure µ for the variance
function t(1 + m2

t2
). We use 2.1 for writing with m = tu

dθ = ψ′µ(m)dm =
dm

t(1 + m2

t2
)

=
du

1 + u2
= d arctan u.

Thus m = t tan θ = k′µ(θ) and kµ(θ) = −t log cos θ on Θ(µ) = (−π
2
, π

2
). The remark about

F (µ) = F (ν) leads us to ignore the two integration constants in the process. Note that
here kµ(0) = 0 implies that the chosen µ is a probability if it exists.
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The interesting point is now to prove that µ indeed exists and to compute it. For this
the analytic character of the Laplace transform enables us to declare that the Fourier
transform of µ is

s 7→ ϕ(s) =
1

(cosh s)t
.

Luckily, this is an integrable function and the Fourier inversion formula applies : the
density of µ should exists and should be

ft(x) =
1

2π

∫ ∞

−∞
e−isx 1

(cosh s)t
ds.

The trick to compute this integral in a elementary way is to write v = e2s. We get

ft(x) =
2t−2

π

∫ ∞

0

v
t−ix

2
−1dv

(1 + v)t

We rely now on two formulas about the Gamma function

∫ ∞

0

va−1dv

(1 + v)a+b
=

Γ(a)Γ(b)

Γ(a + b)
, Γ(p)Γ(1− p) =

π

sin πp
,

where the real or complex numbers a, b, p, 1 − p have a positive real part. Applying the
first formula to a = t−ix

2
and to b = ā = t+ix

2
and using the fact that Γ(a) = Γ(ā) we

get the announced value of ft(x)dx = µt(dx) which is indeed positive. To get µ1 use
Γ(p)Γ(1 − p) = π

sin πp
with p = 1−ix

2
and the sinus of a complex argument. To get µ2 use

the fact that its density is given by the convolution

1

4

∫ ∞

−∞

dy

cosh π(x−y)
2

cosh πy
2

.

This integral is easily computed by the change of variable v = eπy since we are led to the
integral of a rational fraction of v.

III The Poincaré characterization of natural expo-

nential families

Theorem. Let I = (a, b) be an open interval of the real line. Let ν(dx) be a positive
measure on I. We assume that ν(a, a + ε) and ν(b − ε, b) are positive for all ε > 0. Let
(x,m) 7→ f(x,m) be a real function of class C2 on I2 such that Pm(dx) = ef(x,m)ν(dx) is
a probability on I for all m. Assume that m 7→ Pm is not constant. If (x1, . . . , xn) ∈ In

we write xn = 1
n
(x1 + · · ·+ xn).

Let us assume that for all n ≥ 1 if X1, . . . , Xn are iid with distribution Pm with
unknown m then Xn is a maximal likelihood estimator of m. Then there exist three real
C2 functions a, b, c such that f(x,m) = xa(m) + b(m) + c(x). Finally F = {Pm ; m ∈ I}
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is the natural exponential family generated by ec(x)ν(dx). It satisfies
∫

I
xPm(dx) = m for

all m ∈ I. It is a steep family with I as domain of the means.

Proof. Saying that Xn is the maximal likelihood estimator of m is saying that for all
(x1, . . . , xn) ∈ In the maximum of the function m 7→ ∑n

i=1 f(xi, m) is reached on m = xn

which implies that the derivative is zero on this point. Thus we write for all (x1, . . . , xn) ∈
In

n∑
i=1

∂

∂m
f(xi, xn) = 0.

Now we derive the above expression with respect to xj. For simplicity we write g(x,m) =
∂2

∂x∂m
f(x,m). Since ∂

∂xj
xn = 1

n
we get

g(xj, xn) +
1

n

n∑
i=1

∂2

∂m2
f(xi, xn) = 0.

Thus j 7→ g(xj, xn) does not depend on j. For instance we get that for all (x1, . . . , xn) ∈ In

we have
g(x1, xn) = g(x2, xn). (3.2)

Since 3.2 holds for all n, given (x1, x2,m) in I3 one can always find n ≥ 3 and (x3, . . . , xn)
in In−2 such that m = xn holds. For this, consider the number yn = m+ 2m−x1−x2

n−2
. Since I

is open, there exists n big enough such that yn ∈ I and we shall take x3 = . . . = xn = yn.
Thus there exists a continuous function a′(m) such that g(x,m) = a′(m) for all x from
which we get ∂

∂x
f(x,m) = a(m) + c′(x) for some continuous function c′ and f(x,m) =

xa(m) + b(m) + c(x) for some function b.
Consider now the measure µ(dx) = ec(x)ν(dx). Observe that m 7→ a(m) is not a

constant function. If we had a(m) = a for all m we would get
∫

I
eaxµ(dx) = e−b(m) for all

m ∈ I, m 7→ b(m) would be a constant and Pm would not depend on m, a contradiction.
Consider the interval J = a(I). We just have seen that it has a non empty interior J̇
and this implies that Θ(µ) is not empty. Thus for all m ∈ I we have kµ(a(m)) = −b(m).
Now, since the hypothesis holds for n = 1 we have f(x,m) ≤ f(x, x) which implies
∂

∂m
f(x, x) = xa′(x) + b′(x) = 0. Thus taking derivative of kµ(a(x)) = −b(x) we get

k′µ(a(x)) = x for all x ∈ I. This implies that a is injective and that the image J of I is
open. Thus a is the restriction of ψµ to I. Now, by definition, the domain of the means
of F (µ) is contained in I. Thus they coincide and

∫
I
xPm(dx) = m for all m ∈ I. The

coincidence of the domain of the means and of the interior of of the closed convex support
is one of the definitions of steepness. Thus F = F (µ) is steep.

IV An unpublished paper with V. Seshadri

Infinite divisibility of the hitting time of a right continuous random walk :

Theorem. Let (Xn)n≥1 be a sequence of non Dirac iid random variables valued in
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{1, 0,−1, . . .} such that 0 ≤ E(X1) ≤ ∞. Then T = inf{n; X1 + · · · + Xn = 1} is
infinitely divisible.

Proof. The fact that 0 ≤ E(X1) implies p1 > 0 and implies that Pr(T < ∞) = 1
from classical properties of random walks (see Spitzer (1964)). Denote pn = Pr(X1 = n),
Sn = X1 + · · · + Xn and for |z| ≤ 1 g(z) =

∑∞
n=0 p−n+1z

n = E(z1−X1). Consider the
martingale n 7→ Mn(z) = zn−Sng(z)−n with respect to the natural filtration associated to
(Xn)n≥1. Since T is a regular stopping time with respect to this filtration it is well known
that E(MT (z)) = 1 (see for instance Letac and Mora (1990), Th. 5.6). This is rewritten
as E(wT ) = z where w = z/g(z). The Lagrange formula, under the form stated in Letac
and Mora (1990), Th. 4.1 implies the existence of a positive R and the existence of an
analytic function w 7→ h(w) on the disc DR = {w; |w| < R} valued in the unit disc D1

such that h(w) = wg(h(w)). Furthermore, for any function F analytic in D1 we have

F (h(w)) = F (0) +
∞∑

n=1

wn

n!

[(
d

dz

)n−1

(F ′(z)(g(z))n

]

z=0

. (4.3)

Thus E(wT ) = h(w) is the generating function of the random variable T. Note that T is
concentrated on {1, 2, . . .} and that trivially Pr(T = 1) = p1. We denote α = − log p1.
Proving the infinite divisibility of T is equivalent to proving the infinite divisibility of T−1,
whose generating function is h(w)/w. From Feller (1968) page 290 this is equivalent to
prove that the analytic function f defined in DR by

f(w) = 1 +
1

α
log

h(w)

w
=

1

α
log

h(w)

p1w
=

1

α
log

1

p1g(h(w))

has a power series expansion with non negative coefficients. Let us now consider F (z) =
1− p1

g(z)
. It satisfies F (0) = 0 and

f(w) =
1

α
log

1

1− F (h(w))
=

1

α

∞∑

k=1

1

k
(F (h(w))k.

From this formula, in order to prove that f has non negative coefficients, it is enough to
prove that w 7→ F (g(w)) has non negative coefficients. This is easily achieved by 4.3 :
here for n ≥ 1

[(
d

dz

)n−1

(F ′(z)(g(z))n)

]

z=0

= p1

[(
d

dz

)n−1

(g′(z)(g(z))n−2)

]

z=0

,

which is clearly non negative, since g has non negative coefficients.

References :

Feller, W. (1968) An Introduction to Probability Theory and Its Applications, Vol 1,
3rd Ed., Wiley, New York .
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V Using the above result for simplifying a proof.

In the Letac-Mora paper of 1990, the proof of the following result is rather horrible

Proposition. Let t > 0. Given a NEF F1 concentrated on nonnegative integers such that
0 is charged by F1 then there exists a NEF Gt concentrated on nonnegative integers such
that 0 is charged by Gt and such that the variance functions are related by

VGt(m) =
(m + t)3

t2
VF1(

m

m + t
).

in a neighborhood of 0.

Proof. We prove it first for t = 1. Denote by (0, b1) the domain of the means of F1.
Let (νn)n≥0 be a member of F1. Since F1 charges 0 there exists such a µ such that its
expectation is < 1. Now consider the image F2 of F1 by x 7→ 1 − x. Then the variance
function of F2 is VF2(m) = VF1(1 − m) with domain of the means (1 − b1, 1). Now the
reciprocal family F3 of F2 exists and is concentrated on positive integers. Its domain of
the means is (1,∞) if b1 ≥ 1 and is (1, 1

1−b1
if b1 < 1. Its variance function is VF3(m) =

m3VF2(1/m) = m3VF1((m − 1)/m). Now define G1 as the image of F3 by x 7→ x − 1. Its
domain of the means is (0,∞) or (0, b1

1−b1
according to b1 ≥ 1 or not. Its variance function

is
VG1(m) = VF3(m + 1) = (m + 1)3VF1(

m

m + 1
).

Now to pass to a general t > 0 we use the preceeding result which says that actually F3

is infinitely divisible. This G1 is also infinitely divisible, and there exists a NEF Gt with
variance function

VGt(m) = tVG1(
m

t
) = t(

m

t
+ 1)3VF1(

m
t

m
t

+ 1
) =

(m + t)3

t2
VF1(

m

m + t
).

VI The Wishart integral

(Apologies : this was written in French)
Nous calculons pour commencer une intégrale auxiliaire :

Proposition 1. Soit E et F deux espaces euclidiens de dimensions n et m, et soit a
et b des endorphismes symétriques définis positifs de E et F respectivement. On munit
L = L(E, F ) de la structure euclidienne 〈x, y〉 = tr (x∗y), où x∗ ∈ L(F,E) est l’adjoint
de x, et on munit L de la mesure de Lebesgue dx associée à cette structure euclidienne.
Alors
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1. L’application x 7→ bxa est un endomorphisme symétrique défini positif de L, de
déterminant D = det am det bn.

2. Pour tout y ∈ L on a

∫

L

e−tr (x∗bxa)+2 tr (x∗y)dx =
πmn/2

D1/2
etr (y∗b−1ya−1). (6.4)

3. La fonction sur L définie par x 7→ e−tr (x∗bxa)+2 tr (x∗y) est proportionnelle à la densité
d’une loi gaussienne sur L de covariance x 7→ 1

2
b−1xa−1 et de moyenne b−1ya−1.

Démonstration. Puisque (y∗bxa)∗ = ax∗by il est clair que 〈y, bxa〉 = 〈x, bya〉 et donc que
x 7→ bxa est un endomorphisme symétrique de L. Soit e et f des bases orthonormées de
E et F qui diagonalisent a et b. Notons [a]ee = diag(α1, . . . , αn) et [b]ff = diag(β1, . . . , βm).

Si x ∈ L a pour matrice représentative [x]fe = (xij) alors pour x 6= 0 on a

tr (x∗bxa) =
m∑

i=1

n∑
j=1

αjβix
2
ij > 0, (6.5)

ce qui montre la positivité de x 7→ bxa. Il est clair que ses vecteurs propres sont les fi⊗ej,
lélément de L défini par v 7→ fi〈ej, v〉, et qui est associé à la valeur propre αjβi. Donc son
déterminant est

D =
∏
ij

(αjβi) =

(
m∏

i=1

βi

)n (
n∏

j=1

αj

)m

= (det a)m(det b)n.

Ensuite, pour exploiter 6.5) on écrit

∫ ∞

−∞
e−αjβix

2
ij+2xijyijdxij =

π1/2

(αjβi)1/2
e

y2
ij

αjβi .

En utilisant
∑m

i=1

∑n
j=1

y2
ij

αjβi
= tr (y∗b−1ya−1) ainsi que 6.5) on a le résultat 6.4). La

troisième partie est une conséquence immédiate de 6.4).

Proposition 2. Si Pr est le cône des matrices symétriques d’ordre r définies positives et
si p > (r − 1)/2 alors pour θ ∈ Pr on a

∫

Pr

exp−tr (θx−1)(det x)−p− r+1
2 dx =

∫

Pr

exp−tr (θy)(det y)p− r+1
2 dy =

Γr(p)

(det θ)p
. (6.6)

où dy est la mesure de Lebesgue1 sur Pr définie par dy =
∏

1≤i≤j≤r dyij et où

Γr(p) = π
r(r−1)

4

r∏
j=1

Γ(p− j − 1

2
). (6.7)

1C’est l’usage des statisticiens que nous conservons ici plutôt que de prendre la mesure de Lebesgue
canonique pour la structure euclidienne engendrée par tr (yyT ).
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Remarque. Si p > (r − 1)/2 , θ ∈ Pr et σ ∈ Pr les probabilités sur Pr

(det θ)p

Γr(p)
exp−tr (θx−1)(det x)−p− r+1

2 1Pr(x)dx, (6.8)

1

(det σ)pΓr(p)
exp−tr (σ−1y)(det y)p− r+1

2 1Pr(y)dy

sont respectivement appelées loi inverse Wishart ordinaire de paramètres p et θ, et loi
de Wishart ordinaire de paramètres p et σ. Il est évident que si X = Y −1 alors Y suit
une loi de Wishart ordinaire de paramètres (p, σ) si et seulement si X suit une loi inverse
Wishart ordinaire de paramètres (p, θ) avec θ = σ−1.

Démonstration. La première égalité de 6.6) découle du changement de variable y = x−1

dont la différentielle est h 7→ −x−1hx−1, un endomorphisme de l’espace des matrices
réelles symétriques d’ordre r. En imitant la démonstration de la partie 1 de la Proposition
1, on voit que le déterminant de cet endomorphisme est (−1)r(det x)−r−1, ce qui permet
de calculer le jacobien de x 7→ x−1 et de montrer cette première égalité. Puisque la
démonstration de Bartlett de la deuxième égalité de 6.6) figure dans tous les ouvrages
d’analyse multivariée, nous allons en donner une autre. On procède par récurrence sur r.
Pour r = 1, c’est la définition de la fonction gamma. Supposons le résultat vrai pour tous
les entiers < r et soit m et n des entiers > 0 tels que m + n = r. Ecrivons alors y et θ
dans Pr ainsi :

y =

[
y1 y12

y21 y2

]
, θ =

[
θ1 θ12

θ21 θ2

]

avec y1 ∈ Pm et y2 ∈ Pn, et notons y′1 = y1 − y12y
−1
2 y21. L’égalité habituelle

y =

[
1 y12y

−1
2

0 1

] [
y′1 0
0 y2

] [
1 0

y−1
2 y21 1

]
,

montre que y ∈ Pr si et seulement si y′1 ∈ Pm et y2 ∈ Pn. On a alors

∫

Pr

exp−tr (θy)(det y)p− r+1
2 dy

(1)
=

∫

Pm×Pn×Rnm

e−tr (θ1y′1)−tr (θ2y2)+tr (θ1y12y−1
2 y21)−2tr (θ21y12)

×(det y′1)
p− 1

2
(r+1)(det y2)

p− 1
2
(r+1)dy′1dy12dy2

(2)
= πmn/2(det θ1)

−n/2

∫

Pm×Pn

e−tr (θ1y′1)−tr (y2(θ2−θ21θ−1
1 θ12))

×(det y′1)
p− 1

2
(r+1)(det y2)

p− 1
2
(n+1)dy′1dy12dy2

(3)
= πmn/2(det θ1)

−n/2 Γm(p− n
2
)

(det θ1)
p−n

2

Γn(p)

(det(θ2 − θ21θ
−1
1 θ12))p

(4)
= πmn/2 Γm(p− n

2
)Γn(p)

(det(θ)p

(5)
=

Γr(p)

(det θ)p
.
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Dans cette suite d’égalités, (1) vient du changement de variable y 7→ (y′1, y2, y12) de
jacobien 1, l’égalité (2) vient de l’intégrale par rapport à dy12 calculée en appliquant la
Proposition 1 à (a, b, y) = (θ1, y

−1
2 , θ12). L’égalité (3) vient de l’hypothèse de récurrence,

(4) de det θ = (det θ1)(det(θ2− θ21θ
−1
1 θ12)) et (5) de la définition 6.7) de la fonction Γr(p).

La puissance de π est la bonne, puisque si r = m + n on a

m(m− 1)

4
+

n(n− 1)

4
+

mn

2
=

r(r − 1)

4
. (6.9)

La Proposition 2 est donc montrée.

VII Lévy processes, reciprocity and the Zolotarev

formula.

Proving the existence of an NEF with a given variance function V defined on an open
subset M of the linear space E can be a difficult problem. The steps are

1. Finding ψ : M → E∗ such that (V (m))−1 = ψ(m) (assuming the necessary condition
on V that the bilinear map on E defined by (u, v) 7→ V (m)(V (m)u)(v) is symmetric
in (u, v)).

2. Inverting the map m 7→ ψ(m) in order to get the differential of the cumulant function
k′.

3. Computing the cumulant function k and L = exp k.

4. Checking that L is the Laplace transform of some positive measure.

The hard parts are steps 2 and 4. The Lagrange formula is often helpful for step 2. But
the best tool for step 4 is the finding of a probabilistic interpretation.

Let us formalize in a definition the link between two exponential families on R appea-
ring in (??). Suppose that the NEF F1 on R with domain of the means MF1 is such that
M̃F1 = MF1 ∩ (0,∞) is not empty. Then the NEF F2 on R is called the reciprocal NEF of
F1 if V2(m) = m3V1(

1
m

) for all m ∈ M̃F2 .
Not all NEF have reciprocal : the NEF generated by a positive stable distribution

whose parameter is in (0, 1) has no reciprocal. But suppose that we want to prove the
existence of a NEF with variance function m3+m2. By translation this is equivalent to the
existence of a NEF F2 with variance function m(m− 1)2 which would be the reciprocal of
F1 with variance function (1−m)2 with F1 concentrated on (−∞, 1). The NEF F1 exists,
this is nothing but the NEF generated by the Lebesgue measure restricted to (−∞, 1).
Actually we have the following result (Letac-Mora (1990)) :

Theorem 5 : Let (X(t)t≥0 be a Lévy process with Lévy measure concentrated on the
negative line. Let T (x) be the hitting time of x > 0. Then the exponential families F1

and F2 respectively generated by the distribution of X(1) and the distribution of T (1)
(restricted to (0,∞)) are reciprocal. Furthermore the distributions of X(t) (restricted to
the positive line) and Tx are related by the following Zolotarev’s formula, which indicates
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the coincidence of two measures on (0,∞)2

xP (X(t) ∈ dx)dt = tP (T (x) ∈ dt)dx. (7.10)

This magic formula (7.10) has actually been given by Zolotarev (1964). Borovkov
(1964) and Dozzi and Vallois (1997) give other proofs. I have learned the above elegant
formulation in Bertoin (1999). Let us insist on the fact that (7.10) is not an absolutely
continuous measure on (0,∞)2 : only the margins have densities. For instance, if X(t) =
at − bN(t), where a > 0 and b > 0 and N(t) is a Poisson process with intensity λ then
the measure (7.10) is concentrated on the lines x = at− bn where n ∈ N.

As an example, we apply the theorem to X(t) = t − Y (t) where Y is the standard
gamma process (E(e−sY (t)) = (1 + s)−t). The variance for X(1) being (1−m)2, then the
existence of the variance function m(m−1)2 follows. A result similar to Theorem 5 can be
obtained with the right continuous random walks in the integers (see Letac-Mora (1990)),
providing a relatively explicit generating measure for F2 (the Ressel Kendall distribution
in our example). The same is true for the random walk case, where Lagrange replaces
Zolotarev.

However, it is false to think that any reciprocal pair has a similar probabilistic inter-
pretation. Problem :

Why do we have always a kind of Zolotarev formula in case of reciprocity ?

To be more specific, let us say that two measures µ1 and µ2 in M(R) are reciprocal if the
sets

Θ̃(µi) = {θ ∈ Θ(µi); kµi
(θ) > 0}

are not empty and such that the map θ 7→ −kµi
(θ) is a one to one map from Θ̃(µi)

onto Θ̃(µ3−i) whose inverse is θ 7→ −kµ3−i
(θ). Needless to say, under these circumstances,

the NEF’s F (µ1) and F (µ2) are reciprocal. A tentative of clarification is offered by the
following conjecture (which is even not quite correct, see example 2 below).

Conjecture : Let µ(dx) and ν(dt) in M(R) be reciprocal. Denote by λ(dx) and η(dt)
the measures on [0,∞) of the form

∑∞
n=0 δan+b or 1[0,∞)(x)dx such that 1[0,∞)(x)µ(dx)

and 1[0,∞)(t)ν(dt) are absolutely continuous with respect to λ(dx) and η(dt) respectively
(assuming the existence of λ(dx) and η(dt)). Then the following equality between measures
on Λ(ν)× Λ(µ) holds :

xµt(dx)η(dt) = tνx(dt)λ(dx). (7.11)

Let us give now examples of reciprocity where neither the conditions of Theorem 5
nor the conditions of its right continuous random walks analog are fulfilled.

Example 1 : We take µ(dx) = λ(dx) = 1(0,∞)dx. Thus the Jorgensen set Λ(µ) is (0,∞),

and we have µt(dx) = xt−1

Γ(t)
λ(dx). The reciprocal measure of µ is ν(dt) = 1

Γ(t+1)
η(dt) where

η(dt) =
∑∞

n=0 δn(dt). The Jorgensen set Λ(ν) is (0,∞), and we have νx(dt) = xt

Γ(t+1)
η(dt).

Clearly (7.11) is satisfied, and the reciprocity is the reciprocity of the Poisson NEF and
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the exponential distributions NEF with respective variance functions Vν(m) = m and
Vµ(m) = m2. We are not in the conditions of application of Theorem 5. The result lacks
of a probabilistic explanation.

Example 2 : We take µ(dx) =
∑∞

n=0
1
n!

δn−1(dx). Thus Mµ = (−1,∞) and Vµ(m) =
m + 1 : this is a shifted Poisson family. The Jorgensen set is (0,∞) and

µt(dx) =
∞∑

n=0

tn

n!
δn−t(dx).

The reciprocal family has therefore a variance function equal to Vν(m) = m2(1+m) which
is a Ressel Kendall family.

One can prove (see Letac-Mora (1990)) that the reciprocal measure ν of µ has a
Jorgensen set equal to (0,∞) and that the measures νx(dt) are explicitly given by

νx(dt) =
xtx+t−1

Γ(x + t + 1)
η(dt)

where η(dt) = 1(0,∞)(t)dt. In this case the conjecture is not quite satisfied, since the
reference measure λ(dx) is the restriction to the positive line of

∑
a∈N−t

δa(dx),

which depends a little bit of t. Up to this (7.11) is satisfied.

Example 3 : We take µ as the distribution of the difference of two independent Poisson
random variables with means 1/2. Thus Mµ = R and Vµ(m) = (m2 + 1)1/2, λ(dx) =∑∞

n=0 δn(dx), µ is infinitely divisible and since we have

et cosh θ−t =
∑
n∈Z

µt(n)enθ,

thus µt(n) = e−tI|n|(t) where

Ix(t) =
∞∑

n=0

1

n!Γ(n + x + 1

(
t

2

)2n+x

.

The reciprocal family does exist and has variance function Vν(m) = m2(m2 + 1)1/2. It is
generated by the reciprocal measure ν(dt) = e−t 1

t
I1(t)η(dt) where η(dt) = 1(0,∞(t)dt. See

Feller (1966) pages 414, formula (3.8) and page 427, example (d). This is also infinitely
divisible and (7.11) holds.
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