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Cholevsky for a rooted tree. Let E be a finite
dimensional real linear space and let L(E) be

the space of the linear endomorphisms of E. A
homogeneous cone is an proper open convex

cone C of E such that the group of the au-
tomorphisms of C, namely

G = {g ∈ L(E); g(C) = C}
acts transitively on C. Note that g ∈ G is in-

vertible since it transforms an open set into
an open set.

Example : the cone C of positive definite ma-

trices as a subset of the space of symme-
tric matrices of order q. If a is a non sin-

gular matrix of order q with transposed a∗
and x 7→ ga(x) = a∗xa then ga ∈ G. Take

a = x−1/2y1/2 for ga(x) = y.
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If P is a symmetric positive definite matrix of

order q the Cholevsky decomposition writes

P = T ∗T where T is an upper triangular ma-

trix with positive diagonal and where T ∗ is

the transposed matrix of T. Such a decompo-

sition is unique. This result is generally consi-

dered as a consequence of the Schmidt ortho-

normalisation process. We are going to find

it back as a consequence of a general theo-

rem which considers a certain partial order on

{1, . . . , q}.
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Trees and rooted trees.

A tree is a connected graph (A, E) without

cycles.

Example :
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Now select a vertex w of the tree A and call it

root. The pair (A, w) is called a rooted tree.

The choice of a root endows the set A of

vertices with the following structure of partial

order ¹ : we write x ¹ y if the unique path

from x to w contains y. Clearly, this binary

relation on A is a partial ordering.
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Consider the example where a root has been

chosen. We have x ¹ y if one can travel from

x to y while following arrows.
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If A has q vertices, it is possible to number

them with (1, . . . , q) such that i ¹ j implies

i ≤ j. This obviously leads to q = w. Here

is an acceptable numbering among others for

the preceding example :
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Here is the Cholevsky decomposition theorem
for rooted trees :

Theorem 1.1. Let (A, w) be a rooted tree
such that A = {1, . . . , q}. Let P = (p(x, y))x,y∈A

be a real symmetric matrix of order q. Let
G be the set of T = (t(x, y))x,y∈A such that
t(x, y) 6= 0 implies x ¹ y, such that t(x, x) > 0
for all x ∈ A. Then the following properties
are equivalent

1. P is positive definite and such that if p(x, y) 6=
0 then either x ¹ y or y ¹ x.

2. There exists a matrix T ∈ G such that
T ∗T = P.

Under these circumstances T ∈ G is unique.
Furthermore G is a group. Finally if w1 ∈ A

let

A1 = {x ∈ A; x ¹ w1},
and let P1 and T1 be the respective restric-
tions of P and T to A1×A1. Then P1 = T ∗1T1.
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Corollary 1.2. Let (A, w) be a rooted tree

and let C be the set of positive definite ma-

trices P = (p(x, y))x,y∈A such that if p(x, y) 6=
0 then either x ¹ y or y ¹ x. Then C is a ho-

mogeneous cone.

Proof of the corollary. Let E be the linear

space of symmetric matrices S = (s(x, y))x,y∈A

such that s(x, y) 6= 0 imply that x and y are

comparable. Clearly C is an open convex cone

whose closure does not contain any line.
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If T ∈ G the automorphism group A = {g ∈
L(E); g(C) = C} of C contains all gT defi-

ned by gT (x) = T ∗xT. To see this one ob-

serves directly that gT ∈ L(E) (we skip this

calculation) and that g(T )(C) ⊂ C, a rather

obvious fact. For seeing that g(T )(C) = C

we choose an arbitrary element P of C. The

theorem says that there exists T ∈ G such that

T ∗T = P that we reformulate in gT (Iq) = P :

this shows gT ∈ A. Finally, to see that A acts

transitively on C we select two points P and

P1 in C and we write them P = T ∗T and

P1 = T ∗1T1 with T and T1 in G. Since G is a

group then S = T−1T1 is in G and gS(P ) = P1

proves the result.
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Proof of Theorem 1.1. Have a look to

http ://www.lsp.ups-tlse/Fp/Letac/deug105.pdf

page 77, a second year course in linear alge-

bra and in French.

2 ⇒ 1. Clearly P = T ∗T is a semi positive de-

finite matrix since for all column vector X we

have X∗PX = (TX)∗(TX) ≥ 0. To see that P

is positive definite one puts a numbering on

A such that x ¹ y implies x ≤ y. With such a

choice the matrix T = (t(x, y))x,y∈A is upper

triangular since t(x, y) 6= 0 ⇒ x ¹ y ⇒ x ≤ y.

This implies detT =
∏

x∈A t(x, x) > 0 hence

detP = (detT )2 > 0 , hence the positive de-

finiteness of P.
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For all x and y of A, from the definition of

the matrix product and from the definition of

the transposed matrix T ∗ one has p(x, y) =∑
z∈A t(z, x)t(z, y). The definition of T implies

p(x, y) =
∑

z¹x; z¹y

t(z, x)t(z, y). (1)

Suppose that there exists a pair (x, y) such

that p(x, y) 6= 0 and such that x 6¹ y and y 6¹
x. Then equality 1 would imply the existence

of a z ∈ A such that t(z, x)t(z, y) 6= 0, thus

such that z ¹ x and z ¹ y. The path from

z to the root w being unique, such a path

would use both x and y. In this case x et y

would be comparable : a contradiction.
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1 ⇒ 2. We proceed by induction on the size q

of the tree. For q = 1 this is obvious. Suppose

that the result is true for any tree of size

≤ q − 1. We chose a numbering of A such

that x ¹ y implies x ≤ y. As a consequence

there is no x 6= 1 such that x ¹ 1. In other

terms 1 is minimal. Write A′ = A\{1} : it is a

tree with root w. Let us now write the matrix

P by blocks

P =

[
a b
b∗ c

]

=

[
1 0

b∗a−1 Iq−1

] [
a 0
0 c− b∗a−1b

] [
1 a−1b
0 Iq−1

]

where a is a number and where c is a square

matrix of order q − 1. The vector b is a row

vector b = (b(y))y∈A′. From the definition of

P it satisfies b(y) 6= 0 only if 1 ¹ y.
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The fact that P is positive definite implies

that a > 0 and that the symmetric matrix

c − b∗a−1b is positive definite. Now, the im-

portant remark is the following : if the entry

(x, y) of the square matrix b∗a−1b is not zero

then b(x)b(y) 6= 0, which implies 1 ¹ x and

1 ¹ y. Since A is a rooted tree this implies

that either x ¹ y or y ¹ x. As a consequence

one can apply the induction hypothesis to A′
and to the positive definite matrix c− b∗a−1b.

We write it (T ′)∗T ′ where T ′ = (t(x, y))x,y∈A′
satisfies t(x, x) 6= 0. Finally we define

T =

[
a1/2 a−1/2b
0 T ′

]

which satifies P = T ∗T by an immediate cal-

culation as well as the other asked properties.
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We have now to show the uniqueness of T.

We show it first in the particular case P = Iq.

Then T ∗T = Iq implies that T is orthogo-

nal and upper triangular (assuming that the

numbering of A is such that x ¹ y implies

x ≤ y). Such a matrix T is necessarily diago-

nal with entries ±1 on the diagonal. However

t(x, x) > 0 for all x ∈ A implies that T is the

identity matrix Iq and uniqueness is therefore

shown in this particular case P = Iq.

To reach the general case we now introduce

the set G of all matrices T = (T (x, y))x,y∈A

such that T (x, y) 6= 0 implies x ¹ y and such

that T (x, x) > 0 for all x ∈ A. We show that

G is a group namely that TS ∈ G and that

T−1 ∈ G if T and S are in G. This will lead

to the desired conclusion since P = S∗S =

T ∗T implies (ST−1)∗ST−1 = Iq and therefore

ST−1 = Iq by the preceding remark.
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With obvious notations we have

(TS)(x, y) =
∑

z∈A

T (x, z)S(z, y) =
∑

x¹z¹y

T (x, z)S(z, y)

and (TS)(x, x) = T (x, x)S(x, x). This shows

that TS is in G. Now S = T−1 does exist since

detT 6= 0 as we have seen before. However,

checking that S is in G is by no means ob-

vious. Actually this is seen by induction and

by writing (assuming that 1 is minimal)

T =

[
a b
0 T ′

]
, S = T−1 =

[
a−1 −a−1b(T ′)−1

0 (T ′)−1

]
.

This allows us to make our induction argu-

ment and complete the proof of uniqueness

of T.
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To conclude the proof let w1, A1, P1 and T1

as in the statement of the theorem. We write

the matrices P and T by blocks corresponding

to A1 and A \A1 as follows :

P =

[
P1 P12
P21 P2

]
, T =

[
T1 T12
T21 T2

]
.

One observes that for x /∈ A1 and y ∈ A1 then

t(x, y) = 0 from the definition of T and A1.

This implies T21 = 0. Hence

P = T ∗T =

[
T ∗1 0
T ∗12 T ∗2

] [
T1 T12
0 T2

]

=

[
T ∗1T1 T ∗1T12
T ∗12T1 T ∗12T12 + T ∗2T2

]
.

This shows P1 = T ∗1T1. The proof is now com-

plete.
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Posets and their Hasse diagrams. A poset is

a finite set V with a binary relation ¹ which

is transitive : x ¹ y and y ¹ z implies x ¹ z

and anti reflexive : x ¹ y and y ¹ x implies

x = y. Traditionally one writes x ≺ y for x ¹ y

and x 6= y. The Hasse diagram H = (V, E)

associated to the poset (V,¹) is the directed

graph with V as set of vertices and edges

x → y when the pair (x, y) is such that x ≺ y

and such that x ¹ z ¹ y implies either z = x or

z = y. The knowledge of the Hasse diagram

of a poset gives obviously the knowledge of

the poset since x ¹ y if and only if there

exists n ≥ 0 and a path x = x0 → x1 → · · · →
xn−1 → xn = y.
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For example, the Hasse diagram of the poset

diamond

•1
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²²

•2
²²•3 //•4

is •1 //

²²

•2
²²•3 //•4
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Two important examples of posets are given

by the rooted trees (A, w). The root w in-

duces on A a natural partial order which is

defined by x ¹ y if and only if the unique path

from w to y contains x. The Hasse diagram

of this order is obtained by the following set

of arrows : i → j if i ∼ j and if the unique

path from w to j contains i. In this case, w is

the minimum point of the partial order. The

opposite partial order induced by a root w

of a tree is simply called ”the opposite natu-

ral order” (that is x ¹ y if the unique path

from w to x contains y.) The root w is now

the maximum point of the partial order. In

section 1 we have been using the opposite

natural order.
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Sandglass posets. A poset (V,¹) is a sand-
glass poset if for all w ∈ V the Hasse diagrams
of the two subposets

A+
w = {x ∈ V ;w ¹ x}, A−w = {x ∈ V ;x ¹ w}

are rooted trees with root w such that A+
w

has the natural order and A−w has the opposite
natural order. For instance

•1 //

²²

•2

•3 •4oo

OO

is an sandglass poset, while the preceding
example is not. Of course a rooted tree ei-
ther with its natural order or with its opposite
natural order is a sandglass poset.

Proposition 2.1. Let (V,¹) be a poset. Then
it is a sandglass poset if and only if for all w

and w1 in V such that w ¹ w1 then {x ∈
V ; w ¹ x ¹ w1} = {x1, . . . , xk} is a chain,
that is has a numerotation such that

w = x1 ≺ x2 ≺ . . . ≺ xn = w1.
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Some examples :
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The algebra A and the groups G and G1 of a

poset

Given an arbitrary poset (V,¹) denote by A
the algebra of this poset, namely the linear

space of functions a : V × V → R such that

a(x, y) = 0 if x 6¹ y. With the product

c(x, y) =
∑

z∈V

a(x, z)b(z, y) =
∑

x¹z¹y

a(x, z)b(z, y)

it is clear that A is an associative algebra

which is a subalgebra of the algebra of real

(n, n) matrices, by writing A = (a(x, y))x,y∈V .
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Proposition 2.1. Let a ∈ A. Then a is inver-

tible in A if and only if for all x ∈ V one has

a(x, x) 6= 0.

Proof. Adapt the proof given inside the proof

of Theorem 1.1 above from a rooted tree

with its opposite natural order to an arbitrary

poset.

The set of invertible a is therefore a group

that we denote by G. For instance if V is

•1 → •2 → . . . → •n
then G is the group of UPPER triangular ma-

trices.

The subgroup of G such that furthermore for

all x ∈ V one has a(x, x) = 1 is denoted by

G1.
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The homogeneous cone C of a sandglass po-

set. Let (V,¹) be a fixed sandglass poset. Gi-

ven a (n, n) symmetric matrix S = (s(x, y))x,y∈V

we denote P = π(S) = (p(x, y))x,y∈V0
the ma-

trix defined by p(x, y) = s(x, y) when x ¹ y or

y ¹ x If x 6¹ y and y 6¹ x then p(x, y) = 0.

Consider now the cone C1 of positive defi-

nite matrices S = (s(x, y))x,y∈V of the special

form S = T ∗T where T ∈ G and its image

C = π(C1) by π. Here, T ∗ denotes the trans-

posed matrix.
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Example. We start from the sandglass po-

set :

•2 •4

•1
OO

•3
bbEEEEEEEE

OO

The group G is the set of matrices of real

numbers such that ti > 0, i = 1, . . . ,4 :

T =




t1 t12 0 0
0 t2 0 0
0 t32 t3 t34
0 0 0 t4



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The cone C1 is the set of symmetric matrices

of the form

T ∗T =




t21 t12t1 0 0
t12t1 t212 + t22 + t232 t32t3 t32t34

0 t32t3 t23 t34t3
0 t32t34 t34t3 t234 + t24




The cone C is the cone of matrices of the

form

π(T ∗T ) =




t21 t12t1 0 0
t12t1 t212 + t22 + t232 t32t3 0

0 t32t3 t23 t34t3
0 0 t34t3 t234 + t24



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Remark 3.1. Thus the π operation passes

from S to P simply by erasing entries (x, y)

such that x and y are not comparable and by

replacing them by 0. For creating the cone

C we apply this process to special symmetric

matrices, namely the T ∗T when T ∈ G. The

present remark points out that if the poset is

a rooted tree with its opposite natural order,

then π(T ∗T ) = T ∗T. The proof has been given

in the part 1 ⇒ 2 of the proof of Theorem

1.1. Thus for this special poset C = C1.
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Theorem 3.1. Let (V,¹) be a sandglass po-

set. Let S = (s(x, y))x,y∈V be a symmetric

matrix. The following facts are equivalent

1. S = T ∗T where T ∈ G
2. If P = π(S) then for any maximal point

w ∈ V the restriction of P to the set A−w×
A−w where A−w = {x ∈ V ; x ¹ w} is positive

definite.

Furthermore the map π from C1 to C is in-

jective.

Comments. This is the fundamental theo-

rem, and 2 ⇒ 1 is the hard point. Consider

the particular case where (V,¹) is a rooted

tree with its opposite natural order. As poin-

ted before, then π(T ∗T ) = T ∗T . This shows

that Theorem 3.1 is a generalization of Theo-

rem 1.1. We use Theorem 1.1 in the proof of

Theorem 3.1.
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Example. :

•2 •4

•1
OO

•3
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π(T ∗T ) =




t21 t12t1 0 0
t12t1 t212 + t22 + t232 t32t3 0

0 t32t3 t23 t34t3
0 0 t34t3 t234 + t24




Since the ti > 0 one easily sees that if X ∈
C then the equation in T ∈ G written as

π(T ∗T ) = X or as :




t21 t12t1
t12t1 t212 + t22 + t232 t32t3

t32t3 t23 t34t3
t34t3 t234 + t24




=




x1 x12
x12 x2 x32

x32 x3 x34
x34 x4




has only one solution in t.

27



Condition 2 of the theorem 3.1 says that in

this example X is in the cone C if and only if

the two matrices




x1 x12 0
x12 x2 x32
0 x32 x3


 ,

[
x3 x34
x34 x4

]

are positive definite. Let us insist on the fact

that C1 here is not convex, while C is :

Corollary 3.2. C is a convex homogeneous

open cone.

Proof. Convexity and openness come from

property 2. Homogeneity comes from the fact

that G operates on C by gT1
(P ) = π(T ∗1ST1)

if P = π(S) and this is clearly transitive.
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Proof of Theorem 3.1. 1 ⇒ 2. Let w be a

maximal point and consider the rooted tree

A−w = {x ¹ w}. From the remark 3.1 the res-

triction of S = T ∗T to A−w×A−w is not modified

by π and therefore is positive definite.

2 ⇒ 1. Let P = π(S) such that the restriction

Pw of P to A−w ×A−w is positive definite for all

maximal w of V. By Theorem 1.1 there exists

a matrix

Tw = (tw(x, y))
x,y∈A−w

such that tw(x, y) 6= 0 implies x ¹ y and such

that Pw = T ∗wTw. We use it to determine a

matrix T ∈ G such that P = π(T ∗T ). For this,

consider an other maximal point w′ and sup-

pose that x and y are both in A−w and A−
w′. Let

us show that under this condition we have

tw(x, y) = tw′(x, y). This is true if x 6¹ y since

in this case tw(x, y) = tw′(x, y) = 0.
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If x ¹ y we are going to apply the last part of

Theorem 1.1 to y = w1. Denote

A1 = {t ∈ A−w; t ¹ y}, A′1 = {t ∈ A−
w′; t ¹ y}

and observe that actually A1 = A′1. Denote

by P1, T1 and by P ′1, T ′1 the respective res-

trictions of Pw, Tw and Pw′, Tw′ to A1 × A1.

Note that actually P1 = P ′1. Theorem 1.1 says

that P1 = T ∗1T1 = (T ′1)∗T ′1. Now, we have pro-

ved in Theorem 1.1 that such a decomposi-

tion is unique. Therefore T1 = T ′1 and finally

tw(x, y) = tw′(x, y) also when x ¹ y.
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We now define the matrix T = (t(x, y))x,y∈V

by t(x, y) = 0 if x 6¹ y and by t(x, y) = tw(x, y)

if x ¹ y ¹ w if w is a maximal element. We

have shown that actually it does not depend

on a particular maximal element w of V. Since

Pw = T ∗wTw for all w this implies that P =

π(T ∗T ) and proves 2 ⇒ 1.

We finally observe that π : C1 → C is injec-

tive. This comes from the formula Pw = T ∗wTw

which shows that the knowledge of P gives

the knowledge of Pw thus the knowledge of

Tw and therefore the knowledge of T and the

knowledge of S = T ∗T.
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Why the sandglass ? A natural question is

the following : in Section 2 we started with a

certain poset : a sandglass poset. What hap-

pens if we relax the sandglass condition ? The

answer is the cone C is not convex.To see this

we start from the following poset :

•1
""EE

EE
EE

EE
//

²²

•2
²²•3 //•4

We consider similarly the algebra A of this

poset, namely the set of real matrices of the

form

T =




t1 t12 t13 t14
0 t2 0 t24
0 0 t3 t34
0 0 0 t4




The group G is the set of T ∈ A such that

ti > 0 with i = 1, . . . , n. The projection π of

the symmetric matrices S = (sij) of order 4

simply erases the entries s23 and s32. Thus if

T ∈ G an easy calculation gives π(T ∗T ) =

32






t21 t12t1 t13t1 t14t1
t12t1 t22 + t212 0 t12t14 + t24t2
t13t1 0 t23 + t213 t13t14 + t34t3
t14t1 t12t14 + t24t2 t13t14 + t34t3 t24 + t214 + t224 + t234




.

Denote

C = {π(T ∗T ); T ∈ G}.
Clearly C is stable by dilations. But we are

going to see that the sum of two elements

of C is not necessarily in C. In other terms,

C is not a convex cone. The production of a

particular pair P, P ′ of C such that P +P ′ /∈ C

is a painful calculation.
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The link with Gaussian graphical models

Let us recall a simple fact about a centered

Gaussian variable X = (Xv)v∈V where V is a

finite set. Denote by Σ the covariance of X.

If I ⊂ V we write XI = (Xv)v∈I . If I and J are

subsets of V we write ΣI×J the restriction of

Σ to I × J. We rather denote ΣI instead of

ΣI×I .

Proposition 4.1 Let I, J, K be three disjoint

non empty subsets of V . Then XI and XJ are

independent knowing XK if and only if

(ΣI∪J∪K)−1
I×J = 0

and if and only if

ΣI×J = ΣI×K(ΣK)−1ΣK×J
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We apply this principle to the particular case

where V is a irreducible sandglass (that means

that for each w ∈ V then each of the trees

V ±w has either two points or has no vertex

with only one child). In this case the triplets

(I, J, K) that we consider are associated to a

vertex w ∈ V and therefore denoted (Iw, Jw, Kw)

and they have the form

1. The set Iw is the singleton {w} (BLUE)

2. The set Jw is V \ (V −w ∪ V +
w ). (GREEN)

3. The set Kw is V −w \ {w} (RED)

•1 •2

•3
;;wwwwwwww •4

OO <<yyyyyyyy •5
OObbEEEEEEEE

•6 •7

•8
OO <<yyyyyyyy •9

OObbEEEEEEEE

<<yyyyyyyy
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We have now the fundamental result

Theorem 4.2. Let (V,¹) be an irreducible

sandglass. Consider the set M of invertible

covariance matrices Σ such that the Gaus-

sian distribution N(0,Σ) is such that for all

w ∈ V the random variables XIw and XJw

are conditionally independent knowing XKw.

Then Σ 7→ P = π(Σ) is a bijective mapping

between M and the homogeneous cone C as-

sociated to (V,¹).
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In the previous statement, if Jw is empty then

the condition of conditional independence di-

sappears. If Kw is empty then XIw and XJw

are independent.

Example :

•4 •5 •6 •7

•2
bbEEEEEEEE

OO

•3
<<yyyyyyyy

OO

•1
bbEEEEEEEE

<<yyyyyyyy

This means that for w = 2 that X2 and (X3, X6, X7)

are conditionally independent knowing X1. For

w = 4 this means that X4 and (X3, X5, X6, X7)

are conditionally independent knowing (X1, X2).

There is no condition for w = 1 since Jw is

empty.
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A remark : given an undirected graph G =

(V, E) the Dempster model is built with the

triplets (I, J, K) where I = {i} and J = {j}
are all possible singletons such that i 6∼ j and

K = V \{i, j}. When the poset (V,¹) is a roo-

ted tree with natural order as in the example,

consider the undirected graph where i ∼ j if

and only if either i ¹ j or j ¹ i for i 6= j. Then

the Dempster model and the homogeneous

cone model coincide. Here the homogeneous

cone is the cone is QG the set of incomplete

matrices x = (xij) such that xS is positive de-

finite for all maximal complete subsets S of V

for the undirected graph structure G = (V, E).
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Duality

Theorem 5.1 Let (V,¹) be a sandglass po-

set and let C be the associated homogeneous

cone. Consider the sandglass poset (V,¹1)

obtained by reversing the partial order ¹ and

consider the corresponding homogeneous cone.

Then C1 is the dual cone of C.
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