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Natural exponential families on R. Let µ be a

non Dirac measure on R with Laplace trans-

form Lµ(θ) =
∫∞−∞ eθxµ(dx) ≤ ∞. Assume that

the interior Θ(µ) of the interval {θ ∈ R;Lµ(θ) <

∞} is not empty. Let us write kµ = logLµ.

Then the following family of probabilities

F = F (µ) = {P (θ, µ) ; θ ∈ Θ(µ)}
where

P (θ, µ)(dx) = eθx−kµ(θ)µ(dx)

is called the natural exponential family (NEF)

generated by µ. The function kµ is strictly

convex and k′µ(θ) =
∫∞−∞ xP (θ, µ)(dx). The set

k′µ(Θ(µ)) = MF is called the domain of the

means.
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Denote by ψµ : MF → Θ(µ) the inverse func-

tion of k′µ. Therefore F (µ) is parameterized

by MF as follows

m 7→ P (ψµ(m), µ) = P (m, F ).

The variance VF (m) of P (m, F ) is

VF (m) = k′′µ(ψµ(m)) =
1

ψ′µ(m)
. (1)

The map m 7→ VF (m) from MF to (0,∞) is

called the variance function. It characterizes

F. The best way to interest a probabilist to

variance functions is to recall that the expli-

cit formula for large deviations : if X1, . . . , Xn

are real iid rv with distribution P (m, F ) and if

Sn = X1 + · · ·+ Xn then

lim
n→∞

1

n
logPr(

Sn

n
≥ m + ε) = −

∫ m+ε

m

x−m

VF (x)
dx.
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How to move from VF to a generating mea-

sure µ? There are four steps :

– dθ = ψ′µ(m)dm = dm
VF (m) leads by a quadra-

ture to θ = ψµ(m).

– An inversion of function gives m = k′µ(θ),
– A second quadrature gives kµ = logLµ.

– A good dictionary of Laplace transforms

leads to µ.

The Jorgensen set Λ(µ) is the set of t > 0

such that there exists µt with Θ(µt) = Θ(µ)

and Lµt = (Lµ)t. It is an addititive semi-

group containing N∗. When t ∈ Λ(µ) we de-

note Ft = F (µt). Trivially we have MFt
= tMF

and VFt
(m) = tVF (m

t ). The union G = G(µ) =

∪t∈Λ(µ)F (µt) is called the exponential disper-

sion model generated by µ.

If F is a NEF and if h(x) = ax+b (with a 6= 0)

then h(F ) is a NEF with Mh(F ) = h(MF ) and

Vh(F )(m) = a2VF (
m− b

a
) (2)
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S. Bar-Lev, a statistician, has asked me a few

months ago whether

V (m) = (1 + Cm4)1/2

is a variance function or not. The question is

a very interesting one. Here is a list of reasons

– Carl Morris in 1982 has observed that va-

riance functions which are second degree

polynomials correspond to Meixner distri-

butions and are completely known (normal,

Poisson, binomial, negative-binomial, gamma

and hyperbolic)

– One can dream of a complete classification

of variance functions of the type V (m) =√
Am4 + Bm2 + C. Experience shows that

when limm→∞ V (m)/m2 does exist, then quite

often the distributions or their Laplace trans-

forms are computable.

– The dual variance functions of
√

Am4 + Bm2 + C

are tractable NEF concentrated on positive

integers.
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Some technique shows that C > 0 and the

question is : for which values of t > 0 can we

claim that the function on R defined by

Vt(m) = t(1 +
4m4

t4
)1/2

is a variance function ? Who is µt?

We shall use for solving this problem the ve-

nerable theory of elliptic functions. May I men-

tion that the best of the textbooks on the

subject was written by Professor G. Sansone ?
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More generally if −2 ≤ a < −1 for which va-

lues of t > 0 can we claim that the function

on R

Vt(m) = t((1 + a
m2

t2
)2 +

4m2

t2
)1/2

is a variance function ? For answering we de-

note k2 = 1 + a = p − 1 ∈ [−1,0) (The case

a = −2, k2 = −1, p = 0 is the preceeding

case). We introduce

K =
∫ 1

0
(1− x2)−1/2(2− p− x2)−1/2dx

K′ =
∫ 1

0
(1− x2)−1/2(1 + (1 + p)x2)−1/2dx

If p = 0 then

K = K′ = B(1/4,1/2) =
Γ(1/4)2

2
√

2π
.

One now applies the four steps procedure to

t = 1 :
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First quadrature

The minimum of (1+am2)2+4m2 is reached
on m = 0. Therefore one uses the change
of variable u2 = (1 + am2)2 + 4m2 and the
change of variable

u = (1 +
1

a
)w2 − 1

aw2
=

1

a
(k2w2 − 1

w2
)

avec 0 < w < 1.

m2 =
1

a2w2
(1− w2)(1− k2w2) (3)

One gets

dθ =
1

V (m)
× dm

=
dw

awm

= − dw√
(1− w2)(1− k2w2)

The first step is now performed

θ =
∫ m

0

dx

VF (x)
=

∫ 1

w(m)

dw√
(1− w2)(1− k2w2)

Note that Θ(µ) = (−K′, K′).
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Inversion and second quadrature

Denote C(θ) = w(m). One gets C(0) = 1

and the function C is defined on [0, K′]. In

(0, K′) it satisfies C′(θ) = −(1−C(θ)2)1/2(1−
k2C(θ)2)1/2. Hence

m = k′µt
(θ) = m(C(θ))

=
1

|a|C(θ)
(1− C(θ)2)1/2(1− k2C(θ)2)1/2

=
C′(θ)
aC(θ)

.

Finally the Laplace transform of µt is

Lµt(θ) =
1

(C(θ))t/|a|.
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Other presentation of the Laplace transform

Now consider the restriction c(s) = C(is) to

the imaginary axis. It satisfies the differen-

tial equation c′(s)2 = (c(s)2− 1)(1− k2c(s)2)

with the initial condition c(0) = 1. We now

introduce s 7→ f(s) = −k2c2(s) which satisfies

f ′(s)2 = 4(f(s) + 1)f(s)(f(s) + k2).

Denoting f(s) = −p
3 + h(s) we get

h′(s)2 = 4h(s)3 − g2h(s)− g3

with

g2 = 4(1− p +
p2

3
) et g3 = −4p

3
(1− p +

2p2

9
).

In other words h is a solution of the differen-

tial equation defining the Weierstrass func-

tion ℘ for g2 and g3. Note that in the case

p = 0, the initial case, then h′(s)2 = 4h(s)3−
4h(s).
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This can be rewritten

h′2(s) = 4(h(s)− e1)(h(s)− e2)(h(s)− e3)

with e1 = 1− 2p
3 > e2 = p

3 > e3 = −1 + p
3 and

discriminant

∆ = g3
2 − 27g2

3 = [4(1− p)(2− p)]2.

Now the periods of ℘ are 2K and 2iK′

2iK′ K + 2iK′ 2K + 2iK′

iK′ K + iK′ 2K + iK′

0 K 2K

Remember : in general

℘(K) = e1, ℘(K + iK′) = e2, ℘(iK′) = e3.

We certainly cannot have h(s) = ℘(s) since 0

is a pole of ℘. However h(s) = ℘(s + C) for

some constant C.

10



Since the variance function is symmetric there

exists a symmetric measure which generates

it. Thus the characteristic function

s 7→ 1

f(s)t/′2|a|)

is real. We have to take C such that c(0) = 1

or f(0) = 1−p or h(0) = 1− 2p
3 or ℘(C) = e1.

Hence C = K. As a result we have

Lµt(is) =

(
1− p

℘(s + K)− p
3

) t
2|a|
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Dictionary : Finding the measure µt

The periods of s 7→ ℘(s) are 2K and 2iK′.
Its poles are on 2aK + 2ibK′ with (a, b) ∈ Z2.

Thus the characteristic function

s 7→
(
1− p

f(s)

)t/2|a|

has zeros on the odd multiples of K. A more

important fact is that it has period 2K. This

implies that it concentrated on the multiples

of π/K :

∑

ν∈Z
pν(t)e

iν π
K = p0(t) + 2

∞∑

ν=1

pν(t) cos
πν

K
.

The last task is to show that we have a

probability. For this we have to compute pν(t)

in order to decide whether they are positive

or not. With this aim we compute the Fourier

series of − t
2|a| log f(s)
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We now pass from Weierstrass to Jacobi. Let

q = e−πK′
K ( and thus q = e−π si p=0). We

introduce the functions

ϑ1(z) = i
∑

ν∈Z
(−1)νq(ν−

1
2)

2
e(2ν−1)πiz

ϑ3(z) =
∑

ν∈Z
qν2

e2νπiz

f(2Kz)1/2 =
√

℘(2Kz + K)− p/3 =
ϑ3(z + 1

2)

Cϑ1(z + 1
2)

where C is some constant. We obtain

−1

2
log f(s) = logC+logϑ1(

s

2K
+

1

2
)−logϑ3(

s

2K
+

1

2
).

We take derivatives :

−1

2
(log f(s))′ = 1

2K

ϑ′1(
s

2K + 1
2)

ϑ1(
s

2K + 1
2)
− 1

2K

ϑ′3(
s

2K + 1
2)

ϑ3(
s

2K + 1
2)

.
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One now use the formulas of classical analysis

for ϑ′j/ϑj. This gives

ϑ′1(z)
ϑ1(z)

= πcosπz
sinπz + 4π

∞∑

ν=1

q2ν

1− q2ν
sin 2νπz

ϑ′3(z)
ϑ3(z)

= 4π
∞∑

ν=1

(−1)νqν

1− q2ν
sin 2νπz

In such an expression we replace z by s
2K + 1

2
and we get

ϑ′1(
πs
2K + π

2)

ϑ1(
πs
2K + π

2)
= −π

sin πs
2K

cos πs
2K

+ 4π
∞∑

ν=1

(−1)νq2ν

1− q2ν
sin

πs

K

ϑ′3(
πs
2K + π

2)

ϑ3(
πs
2K + π

2)
= 4π

∞∑

ν=1

qν

1− q2ν
sin

πs

K
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Finally −K
π (log f(s))′ is equal to

− sin πs
2K

cos πs
2K

+ 4
∞∑

ν=1

(−1)νq2ν − qν

1− q2ν
sin

πs

K
,

and up to some additive constant we get

−1
2 log f(s) as the following sum

log cos
πs

2K
+

∑

ν∈Z\{0}

q|ν| − (−1)νq2|ν|
1− q2|ν|

exp νiπ
s

K
.

Thus the characteristic function 1
c(s)t/|a| is (up

to a multiplicative function)

(cos
πs

2K
)t/|a| exp[

t

|a|
∑

ν∈Z\{0}

q|ν| − (−1)νq2|ν|
1− q2|ν|

exp νiπ
s

K
]

The job is not over : one has to find the va-

lues of t such that it is a characteristic func-

tion.
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This is the case for t = |a| and all the positive
multiples of |a|. The NEF G|a| with variance
function

((|a| −m2)2 + 4m2)1/2

is generated by a measure µ|a| which is the
convolution of a Bernoulli distribution

1

2
(δ− π

2K
+ δ π

2K
)

by an infinitely divisible distribution α|a| concen-
trated on π

KZ. For any positive integer ν we
denote

cν = c−ν =
qν − (−1)νq2ν

1− q2ν
> 0.

The Laplace transform of αt is

∫ ∞
−∞

eθxαt(dx) = exp




t

|a|
∑

ν∈Z\{0}
cν(e

νπθ
K − 1)


 .

Since a Bernoulli factor is present, the cha-
racteristic function has zeros and cannot be
associated to an infinitely divisible distribu-
tion. The Jorgensen set of µ|a| is unknown.
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Résumé

Theorem. Let 0 ≤ p < 1 and

K =
∫ 1

0
(1− x2)−1/2(2− p− x2)−1/2dx

K′ =
∫ 1

0
(1− x2)−1/2(1 + (1 + p)x2)−1/2dx.

There exists a natural exponential family Gt

with domain of the means R and variance
function

m 7→ t

√
1 + 2p

m2

t2
+ (2− p)2

m4

t4

when t is a multiple of 2−p. It is concentrated
on π

2KZ. The family G2−p is generated by a
probability measure

µ2−p =
1

2
(δ− π

2K
+ δ π

2K
) ∗ α2−p

where the infinitely divisible distribution α2−p

is concentrated on π
KZ. We denote q = e−πK′/K

and for a positive integer ν we denote

cν = c−ν =
qν − (−1)νq2ν

1− q2ν
> 0.
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Then the Laplace transform of αt is

∫ ∞
−∞

eθxαt(dx) = exp




t

2− p

∑

ν∈Z\{0}
cν(e

νπθ
K − 1)


 .

Finally the characteristic function of µ4−2p is
1

℘(s+K)−p
3

where ℘ is the elliptic Weierstrass

function satisfying

℘′2(s) = 4(℘(s)−1+
2p

3
)(℘(s)−p

3
)(℘(s)+1−p

3
)

which is doubly periodic with primitive per-

iods 2K and 2iK′. In particular it has zeros

and Gt cannot be infinitely divisible.

− −3K/2• − ◦ − −K/2• − ◦ − K/2• − ◦ − 3K/2• − ◦ − 5K/2• −
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Supplementary material : the dual of Gt.

It is worthwhile to recall what is the dual of

a real NEF. Given a variance function V de-

fined on the domain of the means M we de-

note M+ = M ∩(0,∞) and M+
1 = {m ; 1/m ∈

M+}. We say that the NEF F1 is the dual

of F if its domain of the means M1 satisfies

M+
1 = M1∩(0,∞) and if its variance function

V1 satisfies V1(m) = m3V (1/m) for m ∈ M+
1 .

We do not comment on the challenging pro-

blem of the probabilistic interpretation of the

duality by stopping times and Zolotarev for-

mula .

The next theorem describes the dual of the

NEF G2−p
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Theorem 2. Let p ∈ [0,1). Let x > 0. The

NEF Fx with domain of the means (0,∞) and

variance function

VFx(m) = m[1 + 2p
m2

x2
+

(2− p)2m4

x4
]1/2

is generated by a positive measure on N with

generating function fx(z) given by

exp[x

√
2

2− p

∫ z

0
(1 + qw2)1/2(1− w4)−1/2dw].

(4)

where q = p/(2− p)2.
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Proof. It is convenient to denote c = p/(2−p)

and to observe that

0 ≤ c < 1 ,

√
1− c2 =

2
√

1− p

2− p
,

c± 1√
1− c2

= ± 1√
1− p

.

We use successively the change of variables

u = (2− p)m2/x2 and u =
√

1− c2 sinh v − c.

dθ =
dm

V (m)
=

4mdm

4m2

√
1 + 2pm2

x2 + (2−p)2m4

x4

=
du

u
√

1 + 2cu + u2
=

dv

2
√

1− c2 sinh v − 2c

=
evdv√

1− c2e2v − 2cev −
√

1− c2

=
1

2




1

ev − 1√
1−p

− 1

ev + 1√
1−p


 evdv
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Denoting z = eθ we get

z2 =
ev − 1√

1−p

ev + 1√
1−p

ev =
1√

1− p

1 + z2

1− z2

e−v =
√

1− p
1− z2

1 + z2
√

1− c2 sinh v =
4z2 + p(1− z2)2

(2− p)(1− z4)

u =
2z2

1− z4
(1 + qz2)

m2 =
2

2− p

z2

1− z4
(1 + qz2).

Thus

m = k′µ(θ) = x

√
2

2− p

(1 + qe2θ)1/2

(1− e4θ)1/2
eθ

and this leads to the result 4.

22



It remains to prove that the Taylor expansion

of z 7→ fx(z) defined by 4 has positive coeffi-

cients. For this it is enough to prove that the

argument of the exponential

z 7→
∫ z

0
(1 + qw2)1/2(1− w4)−1/2dw

has positive coefficients. It is enough to prove

that z 7→ (1 + qz2)1/2(1 − z4)−1/2 has posi-

tive coefficients. It is enough to prove that

z 7→ (1 + qz)1/2(1 − z2)−1/2 has positive co-

efficients. It is enough to prove that

z 7→ log[(1 + qz)(1− z2)−1] =
∞∑

n=1

anzn

has positive coefficients. But this very last

point is easy to check since 0 ≤ q < 1 and

since an is computable : for odd n then an =

qn/n > 0 and for even n = 2p we have

an =
1

p
− q2p

2p
> 0.

The theorem is proved.
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The case p = 0 for Fx

For p = 0 it is possible to be more specific :

Theorem 3. Let x > 0. The NEF Fx with do-

main of the means (0,∞) and variance func-

tion

VFx(m) = m(1 +
4m4

x4
)1/2

is generated by a positive measure on N which

is νx(dt) =
∑∞

n=0
pn(x)

n! δn(dt) with generating

function

fx(z) =
∞∑

n=0

pn(x)

n!
zn = e

x
∫ z
0

dw

(1−w4)1/2
. (5)

which satisfies

(1− z4)f ′′x(z)− 2z3f ′x(z)− x2fx(z) = 0.

The total mass of νx is exp(x1
4B(1

2, 1
4)). The

polynomials pn are given by pn(x) = xn for

n = 0,1,2,3,4, p5(x) = x5+12x and for n ≥ 2

pn+2(x) = x2pn(x) + n(n− 1)2(n− 2)pn−2(x).
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Proof. For the beginning, do p = 0 in Theo-

rem 2. The trick to obtain the differential

equation for fx is to write (1−z4)1/2f ′x = xfx,

then to differentiate with respect to z and

then to multiply both sides of the result by

(1− z4)1/2. The remainder is standard calcu-

lus on power series.
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