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Natural exponential families on R. Let u be a

non Dirac measure on R with Laplace trans-

form L, (0) = [ e’ u(dz) < co. Assume that

the interior ©(u) of theinterval {6 € R; L,,(0) <
oo} is not empty. Let us write k, = log L.

Then the following family of probabilities

F=Fu)={PO,pn); 0cO(u)}
where
P(0, u)(dz) = " Fu®) y(dz)

is called the natural exponential family (NEF)
generated by p. The function k, is strictly
convex and k,(0) = [°0 xP (0, u)(dx). The set
k,(©(n)) = Mp is called the domain of the
means.



Denote by ¢, : Mp — ©(p) the inverse func-
tion of kj,. Therefore F(u) is parameterized
by Mg as follows

m > P(u(m), u) = P(m, F).
The variance Vg(m) of P(m,F) is

1
Py, (m)
The map m — Vg(m) from Mg to (0,00) is
called the variance function. It characterizes
F. The best way to interest a probabilist to
variance functions is to recall that the expli-
cit formula for large deviations : if Xq,..., Xy
are real iid rv with distribution P(m, F') and if
Sn=X1+4+---+ X, then

Vr(m) = ky(dbu(m)) = (1)

1
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How to move from Vg to a generating mea-

sure u? There are four steps :

— df = ¢!,(m)dm = % leads by a quadra-
ture to 6 = ¢ (m).

— An inversion of function gives m = k;,(9),

— A second quadrature gives k;, = log L.

— A good dictionary of Laplace transforms
leads to u.

The Jorgensen set A(u) is the set of ¢ > 0O

such that there exists u; with ©(ut) = ©(n)

and L, = (Ly)!. It is an addititive semi-

group containing N*. When t € A(u) we de-

note Fy = F'(ut). Trivially we have Mg, = tMp

and Vi, (m) = tVp(%). The union G = G(pu) =

Ute/\(,u)F(:“t) is called the exponential disper-

sion model generated by wu.

If F'isa NEF and if h(x) = axz+b (with a = 0)
then h(F') is a NEF with Mypy = h(Mp) and

m—2b

Viery(m) = a2Vp(—2) (2)
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S. Bar-Lev, a statistician, has asked me a few
months ago whether

V(m) = (1 4+ Cm*)1/?

IS a variance function or not. The question is

a very interesting one. Here is a list of reasons

— Carl Morris in 1982 has observed that va-
riance functions which are second degree
polynomials correspond to Meixner distri-
butions and are completely known (normal,
Poisson, binomial, negative-binomial, gamma
and hyperbolic)

— One can dream of a complete classification
of variance functions of the type V(m) =

\/Am4 + Bm?2 + C. Experience shows that
when limm—oco V(m)/m? does exist, then quite
often the distributions or their Laplace trans-
forms are computable.

— The dual variance functions of \/Am4 + Bm? 4+ C
are tractable NEF concentrated on positive
integers.




Some technique shows that C > 0 and the
question is : for which values of ¢t > 0O can we
claim that the function on R defined by

Vi (m) —t(1+ )1/2

is a variance function? Who IS pug?

We shall use for solving this problem the ve-
nerable theory of elliptic functions. May I men-
tion that the best of the textbooks on the
subject was written by Professor G. Sansone 7



More generally if —2 < a < —1 for which va-
lues of ¢t > 0 can we claim that the function
on R

Vi(m) = t((1 + am—)2 4 4m? 12

IS a variance function ? For ansvvering we de-
note k2 =1+a=p—1¢€[-1,0) (The case
a = —2,k2 = —1,p = 0 is the preceeding
case). We introduce

Y D N N N
K_/O(lx) (2 —p—a?) 2

1
K = /()<1—x2>—1/2<1+<1 + p)a2) 124y
If p =0 then
r(1/4)2
2021

One now applies the four steps procedure to
t=1:

K=K =B(1/4,1/2) =



First quadrature

The minimum of (1 +am?2)2+4m? is reached
on m = 0. Therefore one uses the change
of variable u2 = (1 + am?)? 4+ 4m? and the
change of variable

1 1 1 1
u= (14w’ - —5 = ~(F®w? - —)
a aw a w
avec O < w < 1.
1
m? = a2w2(1 — w?)(1 — k2w?) (3)
One gets
1
df = X dm
V(m)
_ dw
o awm

dw
-1 - R2e?)

The first step is now performed

0 —

m dr /1 dw
0 Vp(ac) w(m) \/(1 _ w2)(1 _ k2w2)
Note that ©(p) = (—K', K').



Inversion and second quadrature

Denote C(0) = w(m). One gets C(0) = 1
and the function C is defined on [0, K']. In
(0, K') it satisfies C'(0) = —(1—C(9)2)1/2(1—
k2C(0)2)1/2. Hence

m = k,,(0) =m(C(0))

1
= (1-C(®IH?1 - K2C(9)?)/?
a]C(0)
_ C'(9)
 aC(8)
Finally the Laplace transform of pu; is




Other presentation of the Laplace transform

Now consider the restriction ¢(s) = C(is) to
the imaginary axis. It satisfies the differen-
tial equation ¢(s)2 = (¢(s)? — 1)(1 — k2¢(s)?)
with the initial condition ¢(0) = 1. We now
introduce s — f(s) = —k2c¢2(s) which satisfies

F1(5)% = 4(f(s) + 1) F(s)(f(s) + K2).

Denoting f(s) = —£ + h(s) we get

W (s)? = 4h(s)> — goh(s) — g3
with
2 4p 2p2

p
=4(1-p+2)etgs=——(1—p+2).
go ( p—|-3) 93 3 p+ 5

In other words h is a solution of the differen-
tial equation defining the Weierstrass func-
tion p for go and g3. Note that in the case
p = 0, the initial case, then h/(s)2 = 4h(s)3 —
4h(s).



This can be rewritten

h'%(s) = 4(h(s) — e1)(h(s) — e2) (h(s) — e3)

: 2
withe; =1-F>ep=%5>e3=-1+4+% and
discriminant

A = g3 —-27g5 = [4(1 - p)(2 - p)]*.
Now the periods of p are 2K and 2:K’

2iK'— K+ 2iK'— 2K + 2:K’

iK' K+ iK' —2K + iK'

0 K 2K
Remember : in general

p(K) =e1, p(K +iK') = ez, p(iK') = e3.

We certainly cannot have h(s) = p(s) since O
is a pole of p. However h(s) = (s + C) for
some constant C.
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Since the variance function is symmetric there
exists a symmetric measure which generates
it. Thus the characteristic function
1
ST ()2l
is real. We have to take C such that ¢(0) =1
or f(0) =1—porh(0) =1—22 or p(C) = e;.
Hence C' = K. As a result we have

11



Dictionary : Finding the measure uy

The periods of s — p(s) are 2K and 2iK’.
Its poles are on 2aK + 2ibK’ with (a,b) € Z2.
Thus the characteristic function

1 _p\ /2l
. <f<s>>

has zeros on the odd multiples of K. A more
important fact is that it has period 2K. This
implies that it concentrated on the multiples
of /K :

> po(D)eE = po(t) +2 3 pu(t) cos .

vez v=1

The last task is to show that we have a
probability. For this we have to compute p, (1)
in order to decide whether they are positive
or not. With this aim we compute the Fourier

series of —ﬁ log f(s)
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We now pass from Weierstrass to Jacobi. Let
K/
gq=c¢ "K ( and thus ¢ = e~ ™ si p=0). We
introduce the functions
91(2) = iz(_l)yq(z/—%)Qe(Qu—l)m’z

veZ

Z q 2 21/7T’LZ

VEZ

V3(2)

93(z + 3)
2K2)V? = \Jp(2Kz+ K) —p/3 = — 12
f(2Kz) Jo(2Kz + K) — p/ oG+ Dy
where C is some constant. We obtain
1
—5'09 f(s) = log C+log 191(—+ ) log 193(§+2)

We take derivatives :

1 19/1(%4‘%) 1 95(5% + %).
2K01(%+%) 2K 93(55% + 3)

~ (109 f(5))' =
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One now use the formulas of classical analysis
for 19;./19]-. This gives

¥ (2) X g2

1 _ . COs .
91(2) Tene T 4T Z ﬁS'nQVﬁz
I3(2) _

92(2) = 41 Z (= 1); Vsm 2UTTZ

In such an expression we replace z by %+§
and we get

! 2
191(%4' %) Sln 27%-’§+ 4 io: (—1)"q I/Sinw—s
n(G+5 e PR
9337 + %) 4 S s

T8 T Uus Z 55 SN
I3(3x +3) —=11—q
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Finally —£(log f(s))’ is equal to

T

Sin 57> 4 X (=1)Yg? —¢¥ . ws
COSs IS Z 1 — g2V sm},
2K q

r=1

and up to some additive constant we get
—%log f(s) as the following sum

lv| _ (1 \Ww,2lv
q (—1)¥q<V"| R
o exp vim—.

log cos LA >
2K oy 1-a

T hus the characteristic function m is (up
to a multiplicative function)
TS t gVl — (—1)”q2|y| S
(cos —)t/lal exp[— > exp vimr—]
2K al ey 1—a?W K

The job is not over : one has to find the va-
lues of ¢t such that it is a characteristic func-
tion.
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This is the case for t = |a| and all the positive
multiples of |a|. The NEF G|, with variance
function

((Ja] = m2)2 + 4m?)1/?

Is generated by a measure p), which is the
convolution of a Bernoulli distribution

1
5(5_% + 5%)
by an infinitely divisible distribution | CONCen-

trated on %Z. For any positive integer v we
denote

The Laplace transform of oy is

> bx t v
/ e ai(dr) =exp|— > ek —1)
0 al veZ\{0}

Since a Bernoulli factor is present, the cha-
racteristic function has zeros and cannot be
associated to an infinitely divisible distribu-
tion. The Jorgensen set of p, is unknown.
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Résumé

Theorem. Let 0<p <1 and
1
K = /O (1— x2)_1/2(2 —p— x2)_1/2d513

K = /01(1—a:2)—1/2<1+<1 + p)z2) 1/ ?dz.

There exists a natural exponential family G
with domain of the means R and variance
function

2 4
m oM
m'—>t\/1+2pt—2+(2—p) e

when t is a multiple of 2—p. It is concentrated
on QKZ The family G,_, is generated by a
probability measure

H2—p — (5 ‘|‘ 5 ) * O —p

where the infimtely dIVISIb|e distribution as
is concentrated on ZZ. We denote g = e —r i [K
and for a positive mteger v we denote

v (_1)Vq2y
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Then the Laplace transform of a4 is

> bx t v
/ e’ Yar(dx) = exp 5 Y a(erx —1)
0 _pVEZ\{O}
Finally the characteristic function of u4_o) is
where g is the elliptic Weierstrass

1
p(s+K)-%
function satisfying

o2() = 4(p(s) 14D (p()~ D) () +1-2)

which is doubly periodic with primitive per-
iods 2K and 2:iK'. In particular it has zeros
and Gy cannot be infinitely divisible.

—3K/2
o

—K/2 K/2 3K/2
— O — o o

5K/2
— O — o — O — o

_O_
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Supplementary material : the dual of G;.

It is worthwhile to recall what is the dual of
a real NEF. Given a variance function V de-
fined on the domain of the means M we de-
note Mt = MnN(0,o0) and M1+ ={m; 1/m €
M™Y. We say that the NEF Fj is the dual
of F' if its domain of the means M, satisfies
Mi" = M1N(0,00) and if its variance function
Vi satisfies Vi(m) = m3V(1/m) for m € M1+.
We do not comment on the challenging pro-
blem of the probabilistic interpretation of the
duality by stopping times and Zolotarev for-
mula .

The next theorem describes the dual of the
NEF Gg_p
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Theorem 2. Let p € [0,1). Let x > 0. The
NEF F, with domain of the means (0,c0) and
variance function

(2 p)2 4]1/2

Vi, (m) = m[l + 2p— -+

IS generated by a positive measure on N with
generating function f;(z) given by

2 /7 2\1/2/4 . AN—1/2
exp[az,/z_p/Oquqw) (1 — w1 2dw].

(4)

where g = p/(2 — p)2.

20



Proof. It is convenient to denote ¢ = p/(2—p)
and to observe that

2/T—p
0<c<1, VJ1-c2= L

2—p

+ 1 1
C _

We use successively the change of variables
u=(2—p)m?/z2 and u = /1 — c?sinhv —c.

g — dm . dmdm
g V(m) — 2\/ m2 (Q—p)2m4
4m=<\/1 4+ 2p o —+ g
. du . dv
u\/1+20u—|—u2 2\/1—025inhv—20
. eVdv
V1 — c2e2V _ Dcel — V1 — c2
1 1 1
— 5 . 1 — " 1 evdv
_e - eV 4+ i
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0

Denoting z = e¢” we get

\/1—c25inhv = 422+p(1_22)2

(2 -p)(1 —2%)
222 2
u = 1_Z4(1+q2)
2 22
2 2
— 1 .
" 5 p1 AT )

Thus

1./ _ 2 (1+q€20)1/2 9
m =k, (0) = 5 —p (1 —e40)1/2 ©

and this leads to the result 4.
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It remains to prove that the Taylor expansion
of z — fz(2) defined by 4 has positive coeffi-
cients. For this it is enough to prove that the
argument of the exponential

2 /Oz(l ~+ qw2)1/2(1 — w4)_1/2dw

has positive coefficients. It is enough to prove
that z — (1 4 ¢22)1/2(1 — 24)~1/2 has posi-
tive coefficients. It is enough to prove that
2z (14 ¢q2)1/2(1 — 22)~1/2 nhas positive co-
efficients. It is enough to prove that

2 log[(1+ g=)(1— 27 = 3" aps"

n=1
has positive coefficients. But this very last
point is easy to check since 0 < ¢ < 1 and
since an, IS computable : for odd n then a, =
q"/n > 0 and for even n = 2p we have
Ay = 1 — ﬁ > 0.
p 2p
The theorem is proved.
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The case p =0 for Fy

For p = 0O it is possible to be more specific :
Theorem 3. Let £ > 0. The NEF F, with do-

main of the means (0, 00) and variance func-
tion
Ve, (m) = m(1 + —)1/2

IS generated by a positive measure on N which
is ve(dt) = 300 Opn@)én(dt) with generating
function

_ — pn(x) n __ fO —w /
fz(2) —ngo n! PA— (1— 4)1 2 (5)
which satisfies
(1— 2N fl(2) — 227 f1.(2) — 2° f2(2) = 0.

The total mass of vy is exp(:v4B(2,4)) The
polynomials p, are given by pn(x) = z™ for
n=20,1,2,3,4, ps(z) = 2°+12z and for n > 2

Prt2(®) = 2°pn(2) + n(n — 1)%(n — 2)p, _o(z).
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Proof. For the beginning, do p =0 in Theo-
rem 2. The trick to obtain the differential
equation for f is to write (1 —2%)Y/2f/ = xf,,
then to differentiate with respect to z and
then to multiply both sides of the result by
(1 —2*1/2, The remainder is standard calcu-
lus on power series.
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