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A refreshment on hypergeometric functions.
The sequence of Pochhammer’s symbols ((a)n)5
is defined by (a)o = 1 and (a)p4+1 = (a +

n)(a)n. For real numbers ag,...,ap and posi-
tive numbers b1,...,bq we denote by
qu(al,...,ap;bl,...,bq;Z)

the sum of the power series

oo

(a1)n .. (ap)n n
nz::o n!(b1)n .. (bg)n | (1)

a—1n|

If a > 0 then (a)n ~ “FW by the Stirling
formula of the gamma function. For p = qg+41

and for a; > 0O for all j denote

c=by+---+bg—ay— - —ag41. (2)

Then the coefficient of the general term of
the series 1 is equivalent to n~17¢ up to a
multiplicative constant and this implies that
the series 1 converges for z = 1 if and only if
c > 0.




Thomae invariance by Sg. Let us state a stri-
cking result due to Thomae (1879) :

Theorem. Consider the analytic function on
C® defined by the analytic continuation of

(a,b,c,d,e) — 3F5(a,b,c,d,e; 1) = Z (a)n(b)n(c)n

=0 n(d)nle)n .

Consider the (5,5) matrices

J3 0
0 0

Jz 0
0 Jo

where Jp is the (k,k) matrix whose entries
are 1. Define (z,v,z,u,v) = (a,b,c,d,e)A"1L.
Then the function E(z,y,z,u,v) =

1
F(dre)f(d+e—a—>b—-c)
is a symmetric function of (z,vy, z,u,v).

A= 15—|—J5—[ ] , 3A71 =3154J5-3 [

3F>(a,b,c;d,e; 1)



Impressive, but not that much

In the previous theorem, actually the sym-
metry in x,y,z iSs more or less obvious be-
cause of the block structure of A and the
obvious symmetry in a, b, c. Similarly the sym-
metry in u,v is inherited of the obvious sym-
metry in d,e. Since the group of permuta-
tions Sy is generated by the 4 transpositions
(1,2),(2,3),(3,4),(4,5) and since the Tho-
mae result is obvious for (1,2),(2,3),(4,5)
the only thing to prove is the result for the
transposition (3,4), therefore to prove the
formula

3F>(a,b,c;d,e; 1) =
F(dre)fr(d+e—a—-56—c
NM(d+e—b—c)lf(d+e—a—c)l(c)
3F>(d—c,e—c,d+e—a—b—g
d+e—a—c,d+e—b—c;1)




Generalized beta on (0,1).Let a, @’ and b > 0.

As seen before 3F>(a,a,b;a + b,a + a/;1) is
finite. Define u, o ,(dz) =

Cx® (1 —-2)"1 5P (a,b;a+d; )1 1)(z)dz.

where
1 _ (a)l(b) _ /.
C= Tlatb 3F5(a,a,b;a+b,a+a’;1). (3)

We shall see that p, ., IS @ probability and
that C is a symmetric function of (a,a’). This
strange distribution is actually a generaliza-
tion of the beta distribution of the first kind

SiNCe iy o/ gtq/(dT) =
(a+a)
M(a)l (a’)
The reason is that >Fy(a,a+d’;a+d';z) =
1Fo(a; —iz) = (1 —2)~ %

2971 (1-2)¥ 11 (g 1y (@) de = B, o(dz).



Another presentation of p, ..

It is based on the classical formula

2Fy(a, By 2) = (1-2)7" 7P 5y (y—a, v—B; 7; 2).

(4)
When applied to (a,3,7) = (a,b,a + d) it
gives

e p(dx) = CB(a, a)oFy(d, a+ad —b; a+d'; ) By o/ (dx).
(5)

This shows that when d = a + a’ — b is small,

then Koo' p APPEArS to be a perturbation of

B+ This also gives an other presentation of

C as

1 / / / / /

a = B(a,d’) 3F>(a,a’,a+a —b;a+a’,a+a’; 1)

where the symmetry between a and o’ in the

value of C appears clearly.

Consequence : the marginal distributions of
Bao/(dx) By o (dz")
K(1 — x2")d
are pg o p(dz) and :“a’,a,b(dml)-




The beta distribution of the second Kkind.

It is the probability on (0, 00) defined by

(2)( ) = MFa+b) wil
M) (b) (1 + w)atd (0:)
In the following we will need the fact that

(w)dw.

0

<2> Ma—t)I(b+1t)
/ (d ) = M(a)l (b) ’

—b<t<a.

0



The random continued fraction

Theorem 1.1. The measure p, . is a proba-

bility with the following property : If W’ ~ 5(2)
and X ~ p, . p are independent then

1
1 _I_ XW/ ~ Ma/,a,b
Furthermore C defined by 3 is a symmetric
function of (a,da’).




Proof. The integration on (0, 1) of each term
of the series

22 11— )" SR (a,bia+ d; )
gives a convergent series whose sum is
(a)l ()

M(a+0b)
This shows that p, ./, IS a probability.

3F>(a,a,b;a+b,a+a’;1).

Suppose now that X' ~ ., ;. We show that

1;(—),<’ ~ XW'. The density of V = I_T)/(/ is

b—1 1

v ! . /.
"y 2F1(a,b,a—l-a,1_|_v

(1+wv)?

fy(w) ="

where
1 _ (@) (b)
C!' (a4 b)

)1(0,00)(v)dv

F>(d,d ,b;a" +b,a+d;1).
3



We now compute the density of U = XW' :
/
Writing K = 0L Hb) the density fir(u) is

(a’)I"(b)
= K= / a=le1 — )1 SR (a,bia+ dx)(— )b(l _I_df)a
1 .a+a' —1 _ \b—1
_ b1 [T (1—=) . .
= Ku /O (@t o)+ >Fi(a,ba+d;z)dx

B ltb_l 1 — ¢ ata —1
Kub 1/0 (1E|—u—)t)a’+b >Fi(a,b;a+a’ ;1 —t)dt

K ’U,b_l /]_ tb_l(l _ t)a—l—a’—l
(14+w)d+bJo (1-— 1_1|ﬁ_u)a’—|—b
>Fi(a,b;a+a’;1 —t)dt
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We conclude the proof of the theorem by a
lemma

Lemma 1.2. Fora,a’,b>0andfor0<z< 1
we have

1 tb_l(]. - t)a—l—a’—l
/O (1 — zt)a'+b
_ M(a)r@)
- (a4 )

>Fi(a,b;a+a’ ;1 —t)dt

~Fy(a,b;a+d; 2).

This lemma when applied to z = 1/(1 + u)
shows that the densities of U and V are pro-
portional. Since their integrals are 1 one even
gets that C = C’ or that

B(a,b) 3F5>(a,a,b;a+b,a +a’; 1)
= B(d,b) 3F>(d,d',b;d +b,a+4d’;1)
This concludes the proof.

11



Proof of the lemma.

1 tb_l(l _ t)CL—I-CL/—].
/O (1 — zt)e'+0b
O & (@n(®)n /1 th=1(1 — pyatatn-l
- —on!(a+a)nJo (1 — zt)a'+b
(2) i (@)n(®)n TN (a+a' +n)

o =0 n(a+ad)nlM(a+ad +b+n)
>Fi1(a' +b,b;a+d +b+n;z2)

(3) i (@)n(®)n TN (a+a' +n)
B On!(a—l—a’)nl_(a—l—a’—l—b—l—n)
i (o' + b)) (b) K

— k'(a—l—a —I—b—l—n)k

>Fi(a,b;a+a’;1 —t)dt

dt

a + b).(b

@) kzo( kl)k( )k _k
i’é (a)n(®)n CB)(a+a +n)
= On'(a—l—a’) Na+ad +b+n+k)
®) §~ (@ +0)) i O (a+a)

=0 k! FN(a+ad +b+ k)
2F1(a ba+d +b+k;1)
©®) ~ (@ +0)p(b)y T (a+a)

=0 k! MNa+a +b+ k)
F(a+a +b+E)(a + k) 12
M +b+Kk)M(a+d + k)

() F(a)r(®) i (@)e®)k i

(~A! LAY “~ Li(~A L A7),



Corollary 1.3.

1. If W ~ 615263 W' ~ Bé? and X > 0 are three
independent random variables, then
1
1%
1+ 1+W'X
if and only if X ~ p, .

X ~

2. If W ~ Béig and if X > 0 are two inde-
pendent random variables, then
1
T14+wX
it and only if X ~ pg 4 p-

3. Let (Wn)p>1 and (W},),>1 be two iid se-
quence of random variables with respec-
tive distributions 8;2) and B;%). Then p, o4
is the distribution of the random conti-
nued fraction

13



Some particular cases for p, ., We list some
values of (a,a’,b) for which p, ,; has a re-
markable form.

1)As seen before b = a+a’ gives pi, o 44 /(dr) =
By o (dz). If more generally b = a+a’+k where
k is a non negative integer, then the hyper-
geometric series 5 Fy(a’,a+a’—b;a+d’; x) ter-
minates and is a polynomial with degree < k.
Thus g o a4a/+k(dT) has a simple expression
from 5. In particular the normalizing constant
and the moments of u, o/ 444k (dz) are com-
putable, since the integral of a polynomial by
B IS €lementary. For instance

/
Ma,a’,a—l—a’—|—1(d$) == a2 —I—CLa—IC_L’C:— a’2 (a—i—a’(l—x))ﬁa,a/(da}).

14



2) For a=d =b=1/2 then

2 (/2 dt
L (dx) = 1 (z)dx
1/2,1/2,1/2 ml/zfo J1—wsnzy D

3) For a =a/ = b+ 3e with e = +1 we get

1(dx)

a,a,a+3

= C1(1 - VI —2)207 a1 - 2)2% 2 1(g 1y (2)da
e Cl)

= Co(1—VI—2)*" 171 —2)*"! 1(g1y(z)dx

L

15



4) A elegant example is

§) 1 dx
dr) = —log—1 —. 6}
p1,1,1(de) = —log ——1g1)(z)—.  (6)

This is the distribution of
Ui

U
Uy + (1-U1) 2
U2+(1—U2)U3Ui’

where U4, Uy, ... are independent and uniform
on (0,1), a rather unexpected result.

Thus if (1 —X)/X ~ WX for X and W in-
dependent, the latter with the Pareto distri-
bution function Pr(W > z) = 1/(1 + =), for
x > 0, then X has distribution (6). Note that
here E(X') can be made explicit when t > —1
and t #= 0 by expanding z — log(1l — z) in
power series :

6 X1 1 =1
BX) =5 % ettt = 00y (A
_1n =1 " n—l—t
When t is a positive integer we get
6 .1
E(XY) = — —. 7
(XN =53 - (7)

16




Mellin's transforms Observe that the Mellin
transform of p, ., can be easily computed
from the definition. More generally if X ~
la o'y We can easily compute E(X'(1 — X)*)
and from this Theorem 1.1 will give us an
other expression of the Mellin transform of
X .

Corollary 1.4. For real t and s the integral
I = [ga8(1 — 2)%p, o p(dz) converges if and
only if ¢t > —a and s > —min(d/,b). In this
case

T (la+t)rd+s) . /.
I1=C Flatbtits) 3F>(a+t,a,b; a+b+t+s,ata’; 1)
(8)

Furthermore for t > —a

3F>(a’,a’ —t,b;a’ +b,a+d’;1)
35 (d,d/,b;al +b,a+a’;1)
(9)

1 t
/O T g o p(dT) =

17



Proof. We skip the easy first part. For the
second part, we consider the two independent

random variables X ~ p, s and W' ~ [315203

Theorem 1.1 says that X/ = (1 + XW')~1 ~

/
Mot ap Since 125 = XW' we write for ¢ > a

/
N (o))
(W) X
We now apply the first part of the proposition
by replacing (a,a’,b,t,s) by (a’,a,b, —t,t) and
we get the result 9 for —min(b,a) < t < a’.
Extension to a larger interval is standard.

E(X?) =

18



Explanation by Thomae’'s formula

The last equality of Cor 1.4 has been obtai-
ned as a consequence of Theorem 1.1 and is
actually equivalent to it. Thus, doing s = 0
in 8 our main result is equivalent to

M(a+ 1) (b) . ..
Cl_(a—l—b—l—t) 3f>(a+t,a,b;a+b+t,a+a;1)

. 3F5(a’,a’ —t,b;a’ +b,a+a’;1)
o 3F>(a’,a’,b;a’ +b,a+a’; 1)

19



The Thomae's theorem gives an other proof :
Consider the coefficients occurring in 3F5(...; 1)
in the preceding formula. Let us compute the
two vectors (a +t,a,b;a+ b+ t,a + a)3A71
and (a’,d —t,b;d +b,a + a")3A~1. We get
respectively

2t — b+ a+ a’ 2t —b+a+ a’
—t—b4+a+d —t—b4+a+4d
—t+2b—2a+d 2t 4+ 2b+ a — 24’
2t + 2b+ a — 24’ —t+2b—2a+d
—t—b4+a+4d —t—b4+a+d

and we observe that the second vector is a
permutation of the first (the transposition
(3,4)). We omit the details about the gamma
factors.

20



Injectivity of (a,a’,b) = py 44,

Proposition 1.6. If (a,a’,b) and (a1,a%,b1) in
(0,00)3 are such that pu, ., = p, then

(CL,CL 7b) - (alaa’]_abl)'

'LLa’l a’17

Proof. We denote by C71 the constant cor-
responding to (ai,a’,b1). We see easily that
a = a1 and that ¢ = (1 since when =z — 0 of

the density Of p, o/ p = Hg, . a!) by when z — 0 is

equivalent to Cz% 1 = Cy2%1~1. Thus writing
the equality of densities leads to

(1-2)° 2Fy(a,b;a+a’; 2) = (1—2)" 2F1(a,by; ata); 2)

for all x € (0,1). Now use a classical formula
to obtain

>Fy1(d,b;atd’; —x/(1—z)) = oFy(a},b1; atal; —z/(1-x))

Finally observe that if for z in a neighborhood
of O we have

2P (a, B;7:2) = 2F1(a1, 61715 2)
then watching the coefficients of z, 22 and 23
will give
21



af _ a1f

g Y1
ala+1)8(B+1) _ ai(ag +1)5:1(B1 +1)
v(vy+ 1) y1(v1 + 1)

ala + 1) (a4 2)B(8 + 1)(3 + 2)
v+ (v +2)
_ ai(ar +1)(an +2)51(81 +1)(B1 +2)
v1(v1 + 1) (1 +2)

From this we get («,8,7) = (a1,81,71) Or
(681,a1,7v1). Here are the details : introduce
the numbers

\ _ap \ _(a+1)(B+1)
O — 1 — y
gl v+ 1
v - @+ 2)(B+2)

? v+ 2 '

Clearly these numbers do not change when
replacing (o, 3,7v) by (a1, 061,v1). We deduce
from this that

Y(2A1 — Ao — A2) + 24+ A1 — 2 =0,

a+ 8=+ 1A —7v 0 — 1, af =7

22



Thus the knowledge of (Ag, A1, Ag) gives the
knowledge of v and the knowledge of the pair

{a, B}
We apply thisto a=ad/, B=0b, y=a+d =

a-+«a etc and we get easily ' = a7 and b = by.
The proposition is proved.

23



Image of p, o DY z — 1 —x. We investigate
here the question : when p, /3 IS symmetric
with respect to 1/27 The answer is in Corol-
lary 1.9 below. We show first a lemma :

Lemma 1.7. Let (o, 3,v) and (a7, 61,v1) be
real numbers such that v > 0 and ~; > O.
Consider the two functions y and y; on (0, 1)
defined by

y(x) = 2F1(a, 3,7, 1—x), y1(x) = 2F1(aq1,B1;,71; )

and assume that Dy = y; for some D #
0. Then y1 is the constant 1, that is a8 =

a1f1 = 0.

24



Proof. The functions y and yq are solutions
of the differential equations

(1 — z)y{(z) +

(71 — (a1 4+ 61+ Dx)yi(z) — 0161 y1(x) =0

(1 —2)y"(z) +

(—v+a+B8+1—-(a+ 8+ 1)y (z) —aBy(x) =0

25



Since Dy = y1 multiplying both sides of the
first by D we get another differential equa-
tion for yq1 which subtracted from the second
yields (A — Bz)y;(z) = Cy1(z) where A, B,C
are suitable constants. Remember that y1(0+) =
1 by definition. Now suppose that y; is not
constantly equalto 1. Then C =0 and (A, B) #
(0,0). If B = 0 then yy(z) = ¢“%/4, which

IS not a hypergeometric function as seen by
the power series expansion. If A = 0 then
y1(04+) = 1 is impossible. Thus without loss

of generality we assume A = 1 and we get
y1(z) = (1—Bx) *with a = C/B # 0. Expan-
ding z +— (1—-Bz)~ % in power series > >° (?% (B)" 2™
shows that it is a hypergeometric function
only if B = 1. To conclude the proof

2F1 (e, B viz) =y(1—2) = Dty (z) = D e

(10)
which is impossible since the limit of function
at the r.h.s. on 0 is not finite for a > 0 and is
zero if a < 0. [

26



Theorem 1.8. Let X ~ pu, ., Then there
exists (ay,ay,b1) in (0,00)3 such that X; =
1—X ~ Hay ) by if and only if a; = d/, a’l = a1
and by =b=a-+d'

Corollary 1.9. Let X ~ p, ypand X' ~ py o4
Then X ~1—X"if and only if b=a + &’ and
X ~1-Xifand only ifa=a" =1b/2.

27



Proof of Theorem 1.8. The if part is ob-
vious since pg, o q4qf = Bg oo CONVersely, sup-
pose that X; ~ 1 - X with X ~ p, ., and
X1~ gy af by FOrallz e (0, 1) since the den-
sities are continuous we have

Crz™ (1 —2)" 71 5 Fy(aq,b1; 01 + af; )
=C(1—2)* 121 SRy (a,b;a+d; 1 —2)

or

C1(1 —z)"17% 5Fy(a1,by; a1 + af; 2f11)
= Cgb—® >Fi(a,b;a+a’ ;1 —2x)

28



Introduce d =a4a’—b and d; = a3 +a7 —b3.
Applying 4 to both sides of 11 (specifically
(@, 8,7,2) = (a1,b1;a1 + a};x) and (a,bja +
a’71—x)) we get
C1(1 — 2)1 ™% 5 Fy(a}, dy; a1 + af; 2§12)
= Cz¥ 1 SFi(d,d;a+d;1—2x).

Note for all t € R we have

B0 =

Now application of Corollary 1.4 shows that
the left hand side is finite if and only if

—min(a’,b) <t <ag

and that the right hand side is finite if and
only if —a <t < min(a’,b). This leads to

a1 = min(a’,b), a = min(a’,b1)

29



It remains to discuss several cases :

If ag = a’ < band a = a < by then one applies
Lemma 1.7 to 12 and we get d = d; = 0 as
desired.

If a; = b < d’ and a = by < af then one ap-
plies Lemma 1.7 to 11 and we get the absurd
statement ab = a1b7 = 0.

If a3 = da’ <band a = b1 < a) then mixing 11
and 12 we get

C1 2F1(aq,b1;a1+4ady;x) = C oF1(d,d; a+a’; 1—2)
1

leading via Lemma 1.7 to the absurd state-
ment a;b; = 0. The case a = a} < by and
a1 = b < &’ is similar. The theorem is proved.
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